Let G be a Lie group.

$\lambda \in \wedge^n T^*_1(G), \quad n = \dim G$

$\omega_g = \wedge^n T_g (\delta(g^{-1}))^* \lambda$

ω is left invariant n-form on G.

\rightarrow corresponding positive measure $\mu = |\omega|$ is a left Haar measure on G.

This completes the proof of existence.

G - Lie group, μ - left Haar measure

$\lambda : f \rightarrow \int_G f(gh) \, d\mu(g)$ a left invariant measure
\[\Delta(h \in G \int f(hg) \, d\mu(g)) = \int f(g) \, d\mu(g) \]

\[\Delta(h) > 0 \quad \Delta : G \rightarrow \mathbb{R}_+^* \]

\(-\text{continuous (exercise)}\)

\[\Delta(g_1 g_2) \int f(hg_1 g_2) \, d\mu(h) = \]

\[= \Delta(g_1) \int f(h g_2) \, d\mu(h) = \]

\[= \Delta(g_1) \Delta(g_2) \int f(h) \, d\mu(h) \]

\[\Rightarrow \quad \Delta(g_1 g_2) = \Delta(g_1) \cdot \Delta(g_2) \]

\(-\text{is a group homomorphism}\)

\(-\text{is a Lie group homomorphism}\)

\(-\text{Modular \(\Delta \) : \(G \rightarrow \mathbb{R}_+^* \)}\)

\(-\text{function of group of positive reals}\)
G is unimodular if
\[\Delta_G = 1. \]

Theorem. Let G be a compact Lie group. Then G is unimodular.

Proof.
\[
\Delta(g) \int_G 1(hg) \, dh = \Delta(g) \cdot \mu(G)
\]

\[
\int_G 1(h) \, dh = \mu(G)
\]

Exercise. G is a two-dimensional connected non-abelian Lie group \(\Rightarrow G \) is not unimodular!
If a Lie group G is unimodular and μ a left Haar measure on G,

$$\int f(g) \, d\mu(g) = \int f(gh) \, d\mu(g)$$

$$= \int f(hg) \, d\mu(g)$$

$\Rightarrow \mu$ is right invariant, i.e., μ is bi-invariant – Haar measure on G.

Assume that G is a compact Lie group, μ a Haar measure on G. Then $\mu(G) > 0$.

By replacing μ with its multiple, we can assume that
\[
\mu(G) = 1. \text{ Such Haar measure is unique.}
\]

- normalized Haar measure on \(G \).

Theorem. Let \(G \) be a Lie group. Then the following conditions are equivalent:

(i) \(G \) is compact;

(ii) \(\mu(G) \) is finite.

Proof. We proved (i) \(\Rightarrow \) (ii).

Assume that \(\mu(G) \) is finite. Let \(V \) be a compact neighborhood of \(1 \). Then \(\mu(V) > 0 \).
Denote by \mathcal{F} the family of finite sets $\{g_1, g_2, \ldots, g_m\}$ such that $g_i V \cap g_j V = \emptyset$ for all $i \neq j$, $1 \leq i, j \leq m$.

Then
$$\mu\left(\bigcup_{i=1}^{m} g_i V\right) = m \cdot \mu(V) \leq \mu(G).$$

Hence
$$m \leq \frac{\mu(G)}{\mu(V)}$$
i.e. m is bounded.

Let m be maximal possible.

Then for $\{g_1, \ldots, g_m\}$ in \mathcal{F}, and $g \in G$ we have
$$gV \cap g_i V \neq \emptyset$$ for some $i.$
This implies
\[g \subseteq g_iVV^{-1} \]
\[\implies G = \bigcup_{i=1}^{\infty} g_iVV^{-1} \]

Since \(V \) is compact, \(V^{-1} \) is also compact \(\implies \) \(VV^{-1} \) is compact \(\implies g_iVV^{-1} \) is compact
\[\implies G \) is compact. \]
Invariant inner product on $L(G)$, G compact.

Let G be a compact Lie group. Take an arbitrary inner product (\cdot, \cdot) on $L(G)$.

$$g \mapsto (\text{Ad}(g) \xi, \text{Ad}(g) \eta)$$

is a continuous function on G.

Put

$$\langle \xi, \eta \rangle = \int_G (\text{Ad}(g) \xi, \text{Ad}(g) \eta) \, d\mu(g)$$

where μ is the normalized Haar measure on G.

$\langle \cdot, \cdot \rangle : \mathcal{L}(G) \times \mathcal{L}(G) \to \mathbb{R}$ is a bilinear form.

Since (\cdot, \cdot) is symmetric, $\langle \cdot, \cdot \rangle$ is also symmetric.

$$\langle \xi, \xi \rangle = \int_G (\text{Ad}(g)\xi, \text{Ad}(g)\xi) \, d\mu(g) =$$

$$= \int_G \|\text{Ad}(g)\xi\|^2 \, d\mu(g) \geq 0$$

continuous positive

$\langle \xi, \xi \rangle = 0$ implies that

$$\int_G \|\text{Ad}(g)\xi\|^2 \, d\mu(g) = 0$$

Assume that $\xi \neq 0$. Then
\[\| \xi \| > 0. \] Therefore, there exists an open neigh-
bor \(U \) of \(1 \) such that
\[\| \text{Ad}(g) \xi \| \geq \frac{1}{2} \| \xi \| \]
for \(g \in U \).

\[\Rightarrow \sum_{g} \| \text{Ad}(g) \xi \|^{2} \, d\mu(g) \geq \]
\[\geq \sum_{U} \| \text{Ad}(g) \xi \|^{2} \, d\mu(g) \geq \frac{1}{4} \sum_{U} \| \xi \|^{2} \, d\mu(g) = \]
\[= \frac{1}{4} \mu(U) \| \xi \|^{2} \]

Hence \(\langle \xi, \xi \rangle > 0 \) and \(\langle \cdot, \cdot \rangle \) is an inner product
on \(L(G) \).
\[\langle \text{Ad}(g) \xi, \text{Ad}(g) \eta \rangle = \]

\[= \int_G \langle \text{Ad}(h) \text{Ad}(g) \xi, \text{Ad}(h) \text{Ad}(g) \eta \rangle \, d\mu(h) \]

\[= \int_G \langle \text{Ad}(hg) \xi, \text{Ad}(hg) \eta \rangle \, d\mu(h) = \]

\[= \int_G \langle \text{Ad}(h) \xi, \text{Ad}(h) \eta \rangle \, d\mu(h) = \]

\[= \langle \xi, \eta \rangle. \]

Hence \(\langle \cdot, \cdot \rangle \) satisfies

\[\langle \text{Ad}(g) \xi, \text{Ad}(g) \eta \rangle = \langle \xi, \eta \rangle \]

for any \(g \in G, \xi, \eta \in L^2(G) \).

Hence it is an \(G \)-invariant inner product.
By differentiation we get

\[\langle \text{ad}(\xi) \xi, \eta \rangle + \langle \xi, \text{ad}(\xi) \eta \rangle = 0 \]

for all \(\xi, \eta, \zeta \in L(G) \).

\[\Rightarrow \text{ad}(\xi), \xi \in L(G), \text{ is } \]

antisymmetric linear map with respect to the invariant inner product.

The existence of invariant inner product on \(L(G) \) allows to say a lot on its structure.
Let \(\mathfrak{o} \) be an ideal in \(L(G) \).
Let \(\mathfrak{o}^\perp \) be the orthogonal complement of \(\mathfrak{o} \)
\(\xi \in \mathfrak{o}^\perp, \eta \in \mathfrak{o} \implies \langle \xi, \eta \rangle = 0 \)
Let \(\mathfrak{s} \in L(G) \). Then \([\xi, \eta] \in \mathfrak{o} \)
\(\implies 0 = \langle \xi, (\text{ad}_\mathfrak{s})(\eta) \rangle = -\langle (\text{ad}_\mathfrak{s})(\xi), \eta \rangle \)
\(= -\langle [\xi, \xi], \eta \rangle \)
\(\implies [\xi, \xi] \in \mathfrak{o}^\perp \).
\(\mathfrak{o}^\perp \) is an ideal.
\(L(G) = \mathfrak{o} \oplus \mathfrak{o}^\perp \) as linear spaces,
\(\xi \in \mathfrak{o}, \eta \in \mathfrak{o}^\perp \implies [\xi, \eta] \in \mathfrak{o} \cap \mathfrak{o}^\perp = \{0\} \).
\(L(G) \) is a direct sum of
two ideals.

By induction

$L(G)$ is a direct sum of minimal ideals.

M - minimal ideal in $L(G)$.

$\exists M$ ideal in M

$L(G) = M \oplus M^\perp \Rightarrow$

B is an ideal in $L(G)$.

$\Rightarrow B = \{0\}$ or $B = M$.

There are two options

1. $\dim M = 1$, M is abelian

 $\xi \in M$, $\text{ad} \xi |_M = 0$, $\text{ad} \xi |_{M^\perp} = 0$

 $\text{ad} \xi = 0 \Rightarrow \xi \in Z - \text{center of } L(G)$

 $m \subset Z$.

② M is not abelian.

Then $\dim M > 1$ and M has no nontrivial ideals.

- simple Lie algebra.

$L(G)$ is a direct sum of its center Z and simple ideals.

Example ① of two dimensional Lie algebra with basis e_1, e_2 and $[e_1, e_2] = e_1$.

Then $R(e, 1)$ is an ideal in M.

$[1, 1] = 0$ in not simple.
This implies that the dimension of a simple Lie algebra \(\geq 3 \).

\[\mathfrak{q}_1 = L(\text{SU}(2)) \]

\[\mathfrak{q}_1 = \{ \left(\begin{array}{cc} ix & y+iz \\ y-iz & -ix \end{array} \right) ; x, y, z \in \mathbb{R} \} \]

\(\mathfrak{q}_1 \) is simple.