Let O_f be a Lie algebra.

Denote by R the family of all solvable ideals in O_f. If $\mathcal{F} \subseteq R$, then R is not empty.

If $\mathfrak{a}, \mathfrak{b} \in R$, then $\mathfrak{a} + \mathfrak{b}$ is also an ideal.

$$\mathfrak{a} + \mathfrak{b} \cong \mathfrak{a} / \mathfrak{a} \cap \mathfrak{b}$$

Since \mathfrak{a} is solvable, $\mathfrak{a} / \mathfrak{a} \cap \mathfrak{b}$ is also solvable. Hence $$(\mathfrak{a} + \mathfrak{b}) / \mathfrak{b}$$ is solvable.

Since \mathfrak{b} is solvable, $\mathfrak{a} + \mathfrak{b}$ is solvable.
Therefore \(a + b \in R \).

If we equip \(R \) with partial order given by inclusion, any element of \(R \) is in a maximal element, because of finite-dimensionality.

If \(M \) and \(N \) are maximal solvable ideals, \(M + N \) is a solvable ideal. By maximality, we see that \(M = M + N = N \).

\(R \) contains largest element \(r \).

The radical \(r \) of \(\mathfrak{g} \)

\(\mathfrak{g} \) is semisimple Lie algebra if its radical \(r = \{0\} \).
Lemma. Equivalent:
① \(\mathfrak{g} \) is semisimple;
② \(\mathfrak{g} \) contains no nontrivial abelian ideals.

Proof: If \(\mathfrak{g} \) is semisimple, we have \(\mathfrak{z} = \{0\} \), all solvable ideals are \(0 \). This implies ②.

② If \(\mathfrak{z} \) is radical, \(D^n + \neq 0, D^{n+1} = 0 \), \(D^n + \) is abelian. \(\Box \)

Corollary: If \(\mathfrak{g} \) is semisimple, its center is \(\{0\} \).

A Lie group \(G \) is semisimple if \(\mathcal{L}(G) \) is semisimple.

A compact Lie group is semisimple if and only if the center of \(\mathcal{L}(G) \) is \(\{0\} \).
Proof. $L(G)$ is semisimple

\Rightarrow center in \mathfrak{so}_3.

Assume the center in \mathfrak{so}_3. If \mathfrak{o}_3 is not semisimple, it contains a nonzero abelian ideal \mathfrak{z}

$L(G) = \mathfrak{o}_3 \oplus \mathfrak{o}_3$

\mathfrak{o}_3 is in the center of $L(G)$

$\Rightarrow \mathfrak{o}_3 = \{0\}$, contradiction.

If G is a connected compact Lie group. Equivalent:

@ G is semisimple;

@ center Z of G is finite.
Theorem (H. Weyl)
Let G be a connected compact Lie group. Equivalent:
(c) G is semisimple
(a) G is compact.

Let G be a connected compact Lie group. Then there exists a finite cover of G which is a product of connected compact semisimple Lie group K and a torus T.

$\tilde{G} = K \times \mathbb{R}^P$

compact.
Theorem. Let \(\mathfrak{g} \) be a Lie algebra and \(\mathfrak{r} \) its radical. Then \(\mathfrak{g}/\mathfrak{r} \) is semisimple.

Proof. Let \(\mathfrak{a} \) be an solvable ideal in \(\mathfrak{g}/\mathfrak{r} \). Let \(\varphi : \mathfrak{g} \to \mathfrak{g}/\mathfrak{r} \) \(\varphi^{-1}(\mathfrak{r}) = \mathfrak{B} \) \(\mathfrak{B} \) is an ideal in \(\mathfrak{g} \)

\[
0 \to \mathfrak{r} \to \mathfrak{B} \to \mathfrak{a} \to 0
\]

\(\varphi \) solvable \(\mathfrak{B} \) solvable \(\mathfrak{a} \) solvable

\(\Rightarrow \mathfrak{B} = \mathfrak{r} \Rightarrow \mathfrak{a} = 0. \) \(\square \)
Killing form of finite-dimensional Lie algebra over a field k of characteristic 0.

$$B(\xi, \eta) = tr(\text{ad}\xi \circ \text{ad}\eta)$$

bilinear form.

A an automorphism of G

$$\text{ad}(A\xi)(\eta) = [A\xi, \eta] = A[\xi, A^{-1}\eta] = (A \circ \text{ad}\xi \circ A^{-1})(\eta)$$

$$\text{ad}(A\xi) = A \circ \text{ad}\xi \circ A^{-1}$$

$$B(A\xi, A\eta) = tr(\text{ad}(A\xi) \circ \text{ad}(A\eta)) =$$

$$= tr(A \circ \text{ad}\xi \circ A^{-1} \circ A \circ \text{ad}\eta \circ A^{-1}) =$$

$$= B(\xi, \eta)$$
Killing form is $\text{Aut}(g)$-invariant.

G is a Lie group, $g \in G$.

$\text{Ad}(g)$ is in $\text{Aut}(\mathfrak{L}(G))$.

$$B(\text{Ad}(g)\xi, \text{Ad}(g)\eta) = B(\xi, \eta).$$