Let G be a connected compact Lie group.

\tilde{G} - universal covering group of G

$\tilde{G} \rightarrow G$

$\ker p = C$ - central

C - discrete subgroup

There are two options

① C is finite

② C is infinite

① $\Rightarrow \tilde{G}$ is compact

② C is finitely generated

$C = T \times \mathbb{Z}^+$ $p > 0$

finite torsion group
There is a group homomorphism
\[C = \mathbb{T} \times \mathbb{Z}^p \]
\[\varphi \quad \text{epimorphism} \quad \mathbb{Z} \]
\[\varphi \quad \text{extends to a Lie group morphism} \quad \Phi : \tilde{G} \to \mathbb{R} \]
\[\Phi = 0. \]
Therefore, \(L(\Phi) : L(\tilde{G}) \to L(\mathbb{R}) \)
\[L(\tilde{G}) \to \mathbb{R} \]
is nonzero.
Since the Lie algebra \(L(\mathbb{R}) \) is abelian, \(L(\Phi)([L(G),L(G)]) = 0. \)
Therefore we must have
\[[L(G),L(G)] \neq L(G). \]
$[L(G), L(G)]$ is an ideal in $L(G)$.

\(\mathfrak{y} \) an ideal in $L(G)$.

\(\mathfrak{y}^\perp \) orthogonal complement with respect to an invariant inner product.

Lemma: (i) \mathfrak{y}^\perp is an ideal in $L(G)$

(ii) $L(G) = \mathfrak{y} \oplus \mathfrak{y}^\perp$

(direct sum of ideals).

Proof. Let $\xi \in \mathfrak{y}^\perp$ and $\eta \in \mathfrak{y}$.

Then

$$ ([\xi, \xi], \eta) = - ([\xi, \xi], [\xi, \eta]) = 0 $$

for all $\xi \in L(G)$, $\eta \in \mathfrak{y}$.
$[\xi, \xi] \in \mathfrak{y}^\perp.$
Hence, \mathfrak{y}^\perp is an ideal.

$[\xi, \eta] \in \mathfrak{y} \cap \mathfrak{y}^\perp = \mathfrak{z}$
$L(G) = \mathfrak{y} \oplus \mathfrak{y}^\perp. \quad \Box$

Hence, $[L(G), L(G)]^\perp$ is an ideal in $L(G)$.

Lemma. $[L(G), L(G)]^\perp$ is the center \mathfrak{z} of $L(G)$.

Proof. Let $\xi, \eta \in L(G)$

$\forall \xi \in [L(G), L(G)]^\perp \iff (\xi \mid [\xi, \eta]) = 0$

for all $\xi, \eta \iff ([\xi, \xi] \mid \eta)$ for all ξ, η

$\iff [\xi, \xi] = 0$ for all ξ

$\iff \xi \in \mathfrak{z}. \quad \Box$
\[Z \neq \{0\}. \]

This implies that the center \(Z \) of \(G \) has Lie algebra \(L(Z) = Z \). Hence, \(\dim Z > 0 \).

The identity component \(Z_0 \) of \(Z \) is a connected compact abelian Lie group. Hence \(Z_0 \) is a torus of dimension \(> 0 \).

Let \(K \) be the integral subgroup corresponding to \([L(G),L(G)]\).

Let \(\tilde{K} \) be the universal covering group of \(K \).
Consider the projection
\[G \leftarrow K \]
The morphism
\[\pi \] \quad \alpha \quad \frac{\alpha}{\pi} \]
has differential
\[\frac{\alpha}{G/Z_0} \]
which is an isomorphism of Lie algebras. Therefore this is a covering map. Hence \(K \) is the universal covering of \(G/Z_0 \).

Clearly, \(G/Z_0 \) is compact Lie group.

\[L(G/Z_0) = [L(G), L(G)] \]

Let \(z \) be in the center of \[[L(G), L(G)] \]. Then it
commutes with \([L(G), L(G)]\)
and \(Z \Rightarrow \) commutes with \(L(G) \Rightarrow z \in Z\). Hence
\(y \in Z \cap [L(G), L(G)] = \{0\}\).

Hence the center of \(L(G/Z_0)\)
is trivial.

\(\Rightarrow [L(G/Z_0), L(G/Z_0)] = L(G/Z_0)\)
\(\Rightarrow\) the universal cover
\(\tilde{K}\) of \(G/Z_0\) is compact.

Hence, \(K\) is compact.

It follows that \(K\) is a
closed subgroup of \(G\), i.e.,
it is a compact Lie subgroup.
$g = \dim \mathbb{R}^n$

$K \times \mathbb{R}^n$ is simply connected

$K \times \mathbb{Z}$ is a Lie group

G is a Lie group isomorphism such that π is a Lie algebra isomorphism.

Hence, $\tilde{G} \in \tilde{K} \times \mathbb{R}^n$.

\tilde{G} is not compact.

Therefore,

\mathbb{C} is infinite $\iff \mathfrak{g} = \{0\}$

Hence

\mathbb{C} is finite $\iff \mathfrak{g} = \{0\}$

$[\mathfrak{l}(G), \mathfrak{l}(G)] = \mathfrak{l}(G)$.