Let \(g \) be a semisimple Lie algebra. Let \(\mathfrak{o} \) be an ideal in \(g \). We proved that \(\mathfrak{o} \) is semisimple. Then \(\mathfrak{o}^+ \) is also an semisimple ideal and
\[
\mathfrak{o}^g = \mathfrak{o} \oplus \mathfrak{o}^+.
\]
Assume that \(\mathfrak{o} \) is a minimal ideal. It is not abelian. Let \(\mathfrak{b} \) be an ideal in \(\mathfrak{o} \). Since \(\mathfrak{o}^g = \mathfrak{o} \oplus \mathfrak{o}^+ \), \(\mathfrak{b} \) is an ideal in \(\mathfrak{o}^g \). \(\Rightarrow \mathfrak{b} = \{0\}, \mathfrak{o} \). \(\mathfrak{o} \) is a simple ideal.
Let \mathfrak{a} and \mathfrak{b} be ideals in \mathfrak{g} and $\mathfrak{a} \cap \mathfrak{b} = \{0\}$.

$x \in \mathfrak{a}, y \in \mathfrak{b} \implies (\text{ad}_x \circ \text{ad}_y)(\mathfrak{g}) \subseteq \mathfrak{a} \cap \mathfrak{b} = \{0\}$.

$\text{ad}_x \circ \text{ad}_y = 0 \implies B(x,y) = 0$.

$\mathfrak{a} \perp \mathfrak{b} \implies \mathfrak{b} \subseteq \mathfrak{a}^{\perp}$.

Let m_1, \ldots, m_p be minimal ideals in \mathfrak{g}. Then M_i are simple. If $M_i \neq M_j$, $M_i \perp M_j$.

Put $\mathfrak{a} = m_1 \oplus m_2 \oplus \cdots \oplus m_p$.

Firstly, $p \leq \dim \mathfrak{g}$. Hence, \mathfrak{g} has finitely many minimal ideals. Hence, we can assume
that \(M_1, \ldots, M_p \) are all minimal ideals. Then \(\mathfrak{g}_f = \mathfrak{o}_e \oplus \mathfrak{o}_f \).

If \(\mathfrak{o}_f \neq \{0\} \), \(\mathfrak{o}_f \) contains a minimal ideal - one of \(M_i \); and we have a contradiction.

So, \(\mathfrak{o}_f = \{0\} \) and \(\mathfrak{g}_f = \mathfrak{o}_f = M_1 \oplus \ldots \oplus M_p \).

Theorem. A semisimple Lie algebra is a product of simple Lie algebras.
Cartan subalgebras

Let Lie algebra over algebraically closed field \(k \). Pick \(h \in \mathfrak{g} \)

\[\text{ad } h : \mathfrak{g} \to \mathfrak{g}, \mu \in k \]

\[\mathfrak{g}(h, \mu) = \{ x \in \mathfrak{g} \mid (\text{ad } h - \mu)x = 0 \} \]

for \(p > \| \mathfrak{g} \| \)

\[\mathfrak{g} = \bigoplus_{i=0}^n \mathfrak{g}(h, \mu_i) \]

\(\mathfrak{m}_0 = 0, \mu_1, \ldots, \mu_n \)

\(\mathfrak{g}(h, 0) \in \mathfrak{h}, \text{ so } \mathfrak{g}(h, 0) \neq \{0\} \).

Lemma: \(x \in \mathfrak{g}(h, \lambda), y \in \mathfrak{g}(h, \mu) \)

\[\Rightarrow [x, y] \in \mathfrak{g}(h, \lambda + \mu), \]

Proof: \((\text{ad } h - (\lambda + \mu))[x, y] = \)
\[
\begin{align*}
\text{By induction in } m \\
\left(\text{ad } h - (\lambda + \mu) \right)^m [x, y] &= \\
= \sum_{j=0}^{m} \binom{m}{j} \left[(\text{ad } h - \lambda)^j x, (\text{ad } h - \mu)^{m-j} y \right] \\
\Rightarrow [g(h, \lambda), g(h, \mu)] &= \mathcal{O}_j(h, \lambda + \mu) \\
\Rightarrow (i) \quad g(h, 0) \text{ is a Lie subalgebra of } \mathcal{O}_j.
\end{align*}
\]

\[P(h, \lambda) = \det(\lambda I - \text{ad } h) = \]
\[= \sum_{p=0}^{n} a_p(h) \lambda^p, \quad n = \dim \mathfrak{g} \]

\(a_p \) are polynomials on \(\mathfrak{g} \) with values in \(k \).

\[a_m = 1, \quad a_p = 0, \quad p = 0, 1, \ldots, n - 1 \]

\[a_0 \neq 0. \]

Definition: \(r = \text{rank} \mathfrak{g} \)

\[P(h, \lambda) = \lambda^n + \ldots + a_n(h) \lambda^n \]

\[\dim \mathfrak{g}(h, 0) \geq r = \text{rank} \mathfrak{g} \]

\[0 \leq \text{rank} \mathfrak{g} \leq \dim \mathfrak{g} \]

\[\text{rank} \mathfrak{g} = \dim \mathfrak{g} \implies P(h, \lambda) = \lambda^n \]

\[\implies \text{ad } h \text{ is nilpotent for any } h \in \mathfrak{g} \]

\[\implies \mathfrak{g} \text{ is nilpotent!} \]
If \(\mathfrak{g} \) is not nilpotent

\[\text{rank of } \mathfrak{g} < \dim \mathfrak{g}. \]

Def. \(h \in \mathfrak{g} \) is regular if \(\mathfrak{r}(h) \neq 0 \).

Regular elements form a dense Zariski open set in \(\mathfrak{g} \).

Ant(\(\mathfrak{g} \)) - group of automorphisms of \(\mathfrak{g} \)

\[\varphi \in \text{Ant}(\mathfrak{g}), \quad (\text{ad} \varphi(h))(\varphi(x)) = \]

\[= [\varphi(h), \varphi(x)] = \varphi([h,x]) = \]

\[= (\varphi \circ \text{ad} h \circ \varphi^{-1})(\varphi(x)) \]

\[\text{ad} \varphi(h) = \varphi \circ \text{ad} h \circ \varphi^{-1} \]

\[P(h, \lambda) = P(\varphi(h), \lambda). \]

\(h \) regular \(\iff \) \(\varphi(h) \) is regular
The set of reg of all regular elements is $\text{Aut}(\mathfrak{g})$-invariant.

Fix regular element $h_0 \in \mathfrak{g}$.

$$h = \mathfrak{g}(h_0, 0)$$

is a Lie subalgebra of \mathfrak{g}, $\dim h = 1$.

Lemma: h is a nilpotent Lie algebra.

Proof: $\mathfrak{g} = \bigoplus_{i=0}^{\infty} \mathfrak{g}(h_0, \lambda^i) = h \bigoplus_{i=1}^{\infty} \mathfrak{g}(h_0, \lambda^i)$$

$$= \mathfrak{g}$$

$$[h, \mathfrak{g}(h_0, \lambda^i)] \subset \mathfrak{g}(h_0, \lambda^i) \Rightarrow$$

$$[h, \mathfrak{g}] \subset \mathfrak{g}$$
\(\sigma_1 \) is invariant for \(\text{ad} \, h \).

\(p \) restriction of \(\text{ad} \, h \) to \(\sigma_1 \).

\(g(h_0) \) has nonzero eigenvalues on \(\sigma_1 \).

\(\Rightarrow \ h \mapsto \det g(h) \) is a polynomial function on \(Y \) which doesn't vanish at \(h_0 \), \(\Rightarrow \) nonzero.

Let \(h \in Y \) such that \(\det g(h) \neq 0 \).

Then all eigenvalues of \(\text{ad} \, h \) on \(\sigma_1 \) are nonzero \(\Rightarrow \sigma_1(h,0) \subset Y \).

Since \(\dim \sigma_1(h,0) \geq r = \dim Y \)

\(\Rightarrow \sigma_1(h,0) = Y \). \(\text{ad} \, h|_Y \) is nilpotent.

\((\text{ad}_Y h)^t = 0 \) - matrix coefficients of \(\text{ad}_Y h \) are linear functions on \(Y \).

\(\Rightarrow \) matrix coefficients of \((\text{ad}_Y h)^t \)
are polynomials on y vanishing on the Zariski open set $\{ \det p(h) \neq 0 \}$. Hence they are O on y.

$\Rightarrow \text{ad}_y h'$ are nilpotent for all $h' \in \mathfrak{h} \Rightarrow h$ is nilpotent.