Cartan's criterion for solvability

Theorem (Cartan) Let V be a vector space over an algebraically closed field k. Let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$. Define

$$\beta: \mathfrak{g} \times \mathfrak{g} \to k$$

by $\beta(T_1, S) = \text{tr}(TS)$. Then the following conditions are equivalent:

(i) \mathfrak{g} is solvable;

(ii) \mathfrak{g} is solvable with respect to β.

Proof:

(i) \Rightarrow (ii) If \mathfrak{g} is solvable by Lie's theorem, there is a basis
Let $T \in \mathcal{D}(V)$.

Then T is upper triangular with zeros on diagonal.

Hence, for $S \in \mathcal{D}(V)$, $T \in \mathcal{D}(V)$

$S \cdot T$ is upper triangular with zeros on diagonal. Hence

$tr(S \cdot T) = 0 \Rightarrow \beta(S, T) = 0.

\mathcal{D}(V) = \mathcal{D}(V).

(ii) \Rightarrow (i) \[[g, g] \cdot g \subseteq \mathcal{L}(V) \],

$\mathcal{G} = \{ T \in \mathcal{L}(V) \mid (\text{ad}T)(g) \subseteq [g, g] \}.$

Let $T \in \mathcal{G}$. Then $[T, A] \in \mathcal{D}(V)$
for any $A \in \mathfrak{g}$.

Moreover, if $A, B \in \mathfrak{g}$, we have
\[
\text{tr}([A, B] \cdot T) = \text{tr}(ABT) - \text{tr}(BAT)
\]
\[
= \text{tr}(ABT) - \text{tr}(ATB) = \text{tr}(A [B, T]).
\]
If $T \in \mathfrak{g}$, $[B, T] = -\text{ad}_T(B) \in \mathfrak{g}$

for any $B \in \mathfrak{g}$.

If $g \perp \mathfrak{g}$ \implies $\text{tr}(A [B, T]) = 0$

\[
\implies \text{tr}([A, B] \cdot T) = 0
\]

By the lemma, this implies that $[A, B]$ is nilpotent. Therefore, any element of \mathfrak{g} is nilpotent.

Hence \mathfrak{g} is a nilpotent Lie algebra.
Therefore we have

\[0 \to \mathfrak{d} \to \mathfrak{o} \to \mathfrak{o}/\mathfrak{d} \to 0 \]

\[\mathfrak{m}' \text{ nilpotent} \quad \mathfrak{a} \text{ abelian} \]

\[\text{solvable} \]

Hence, \(\mathfrak{o}/\mathfrak{a} \) is a solvable Lie algebra.

Theorem. Let \(\mathfrak{o} \) be a Lie algebra and \(\mathfrak{a} \) its radical.

Then

\[\mathfrak{r} = (\mathfrak{d} \mathfrak{o})^+ \]

with respect to the Killing form.
Proof. Assume first that \(\pi \) is an irreducible representation of \(\mathfrak{g} \). Then \(\pi |_{\mathfrak{g}} = \chi(\cdot)I \).

Hence, for \(x \in \mathfrak{g}, y, z \in \mathfrak{g} \):

\[
\tau (\pi(x), \pi([y, z])) = \\
= \chi(x) \tau (\pi(y), \pi(z)) = 0 \\
= \beta(x, y) \tau (\pi(x), \pi(y)) = 0
\]

for \(x \in \mathfrak{g} \) and \(y \in \mathfrak{so} \).

Induction in limit:

\[
\tau (\pi(x), \pi(y)) = 0, \quad x \in \mathfrak{r}, \quad y \in \mathfrak{so}
\]

for any finite-dimensional representation \((\pi, V) \).
If \(\dim \pi \) is minimal, \(\pi \) is irreducible. Otherwise, \(V \) has a minimal invariant subspace \(U \)

\[
0 \rightarrow U \rightarrow V \rightarrow V/U \rightarrow 0
\]

\[
\pi_U \quad \pi \quad \pi_{V/U}
\]

irreducible

\[
\dim (V/U) < \dim V.
\]

\[
\pi_U \quad \pi_U \quad \pi_U
\]

\[
0 = \text{tr} (\pi(x) \pi(y)) = \text{tr}(\pi_U(x) \pi_U(y)) + \text{tr}(\pi_{V/U}(x) \pi_{V/U}(y))
\]

= 0 by first step & induction assumption.

This proves our claim.
Applying this statement to the adjoint representation, we get the statement for the Killing form,

\[B(x, y) = 0 \text{ for } x \in \mathfrak{r}, y \in \mathfrak{do}. \]

Hence, \(r \subset (\mathfrak{do})^\perp \).

\(r' \) is an ideal.

For \(x \in r', y \in \mathfrak{o}, z \in \mathfrak{do} \)

\[B([y, x], z) = -B(x, [y, z]) = 0 \]

\[\Rightarrow [x, y] \in (\mathfrak{do})^\perp \Rightarrow [x, y] \in r'. \]

\(r' \) is an ideal.
8

\(\mathfrak{g} \) - Lie algebra, \(\mathfrak{h} \) - subalgebra, ideal

\[
\text{ad}_x = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix} \quad \text{for } x \in \mathfrak{h}
\]

\[
B_{\mathfrak{g}}(x, y) = (\text{ad}_x \text{ad}_y) = \tau_x (\text{ad}_y x \cdot \text{ad}_y y) = B_{\mathfrak{h}}(x, y), \quad x, y \in \mathfrak{h}.
\]

2. \(\mathfrak{h}' \) is solvable.

By the above argument

\[
B_{\mathfrak{g}}(x, y) = B_{\mathfrak{h}'}(x, y), \quad x, y \in \mathfrak{h}'.
\]

\[
\Rightarrow \quad B_{\mathfrak{h}'} = B_{\mathfrak{g}} |_{\mathfrak{h}' \times \mathfrak{h}'}.
\]

This implies that

\[\mathfrak{h}' \perp \mathfrak{d}_{\mathfrak{h}'} \]

By Cartan's criterion, \(\text{ad}_{\mathfrak{h}'} \) is
a solvable Lie algebra.

\[0 \to z \to r' \to \text{ad}^+ r' \to 0 \]

\[\text{center of } r' \]

\[z \text{ is abelian Lie algebra} \]

\[\text{ad}^+ r' \text{ is solvable Lie algebra} \]

\[\implies r' \text{ is solvable Lie algebra}. \]

Therefore \(r' \) is a solvable ideal in \(o' \). Hence, \(r' \leq r \).

This implies that \(r' = r \).
Semisimple Lie algebras

k - algebraically closed field

Theorem: Let \mathfrak{g} be a Lie algebra over k. Then the following conditions are equivalent:

(i) \mathfrak{g} is semisimple;

(ii) B is nondegenerate on $\mathfrak{g} \times \mathfrak{g}$.

If these conditions hold, $D\mathfrak{g} = \mathfrak{g}$.

Proof: (i) \Rightarrow (ii) \mathfrak{g} is semisimple

\Rightarrow radical $+ \mathfrak{g}$ of \mathfrak{g} is $\{0\} \Rightarrow (D\mathfrak{g})^+ = \{0\}$.

$\mathfrak{g}^+ = \{0\} \Rightarrow$ this means that B is nondegenerate. Hence

$D\mathfrak{g} = ((D\mathfrak{g})^+)^+ = (\{0\}^+)^+ = \mathfrak{g}$.

(ii) ⇒ (i) Assume that Killing form is nondegenerate. Let \mathfrak{g} be an abelian ideal in \mathfrak{g}.

$x \in \mathfrak{g}, y \in \mathfrak{g}$

$$\text{ad} x \text{ad} y (\mathfrak{g}) = \text{ad} x (\mathfrak{g}) \subseteq \mathfrak{g}$$

$$\text{ad} x \text{ad} y (\mathfrak{g}) = \{0\}$$

$$(\text{ad} x \text{ad} y)^2(\mathfrak{g}) = \{0\}$$

$$(\text{ad} x \text{ad} y)^2 = 0 \Rightarrow \text{ad} x \text{ad} y \text{ is nilpotent}, \quad \text{to } (\text{ad} x \text{ad} y)^2 = 0.$$

$\mathfrak{g} \perp \mathfrak{g}$. Since \mathfrak{B} is nondegenerate, $\mathfrak{g} = \{0\}$. Hence, \mathfrak{g} is semisimple.
Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{o} an ideal in \mathfrak{g}. Then \mathfrak{o}^\perp is an ideal in \mathfrak{g}. $\mathfrak{b} = \mathfrak{o} \cap \mathfrak{o}^\perp$ is an ideal in \mathfrak{g}. \mathfrak{b} is solvable with respect to Killing form. By Cartan criterion, $\text{ad} \mathfrak{b}$ is solvable. Since the center of \mathfrak{g} is $\{0\}$, $\text{ad} : \mathfrak{g} \rightarrow \mathfrak{g}(\mathfrak{g})$ is injective. $\Rightarrow \mathfrak{b}$ is solvable $\Rightarrow \mathfrak{b} = \{0\}$. Hence, $\mathfrak{o} \cap \mathfrak{o}^\perp = \{0\}$. $\mathfrak{g} = \mathfrak{o} \oplus \mathfrak{o}^\perp$. $\mathfrak{B}_\alpha = \mathfrak{B}_\mathfrak{g}|_{\alpha \times \mathfrak{g}}$
Let $x \in \mathfrak{a}$, $B_\mathfrak{a}(x, y) = 0$ for $y \in \mathfrak{a}$.

$\Rightarrow B_{\mathfrak{a}^+}(x, y) = 0 \Rightarrow B_{\mathfrak{a}^+}(x, y) = 0$ for all $y \in \mathfrak{a}^+$.

$\Rightarrow B_\mathfrak{a}(x, y) = 0$ for all $y \in \mathfrak{a}$.

$\Rightarrow x = 0$.

$B_\mathfrak{a}$ is nondegenerate. Hence \mathfrak{a} is semisimple.

In addition, \mathfrak{a}^+ is semisimple.

$\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^+$.