Jordan decomposition

Let V be a vector space over $k/\text{alg. closed}

$T \in \mathcal{L}(V)$ is semisimple if there exists a basis e_1, \ldots, e_n of V such that $Te_i = \lambda_i e_i$, $\lambda_i \in k$.

$T \in \mathcal{L}(V)$, $T = S + N$

S semisimple

N nilpotent

$[S, N] = 0$.

Extra. S and N are given by polynomials in T without constant term.
Uniqueness:

\[T = S + N = S' + N' \]

\[S = P(T) \quad N = Q(T) \]

\[[S, N] = 0 \quad [T, S] = [T, N] = 0 \]

\[S + N = S' + N' \]

\[S - S' = N' - N \]

\[S' \text{ commutes with } S' \text{ and } N' \Rightarrow \]

\[\text{with } T \Rightarrow \text{ with } S \]

\[\Rightarrow S - S' \text{ is semisimple} \]

Analogously, \(N' \) commutes with \(T \Rightarrow \text{ with } N \Rightarrow N - N' \text{ is nilpotent}. \]

\[\Rightarrow S - S' = N' - N \]

is semisimple & nilpotent \(\Rightarrow \) equal to 0.
Jordan decomposition is unique!

- S is the **semisimple part**
- N is the **nilpotent part** of I

V vector space over k
e_1, \ldots, e_m basis of V
$E_{ij} \in \mathcal{L}(V)$, $E_{ij}e_k = 0$ $k \neq j$

$E_{ij}e_j = e_i$

$A e_j = \sum_{i=1}^n A_{ij} e_i$

$A e^j = \sum_{i=1}^n A_{ij} E_{ij} e_j = \left(\sum_{i=1}^n \sum_{k=1}^n A_{ik} E_{ik} \right) e_j$

$(E_{ij} ; 1 \leq i, j \leq m)$ is a basis of $\mathcal{L}(V)$.
\[T \in \mathfrak{gl}(V) \]
\[T e_i = \lambda_i e_i \]
\[(\text{ad}T)(E_{ij}) = [T, E_{ij}] = \]
\[= TE_{ij} - E_{ij}T \]
\[((\text{ad}T)(E_{ij})) e_k = TE_{ij}e_k - \lambda_i E_{ij} e_k = 0 \]
\[= 0 \]

if \(k \neq j \), if \(k = j \)
\[((\text{ad}T)(E_{ij})) e_j = T e_i - \lambda_j E_{ij} e_j = \]
\[= (\lambda_i - \lambda_j)e_i = (\lambda_i - \lambda_j)E_{ij} e_j \]
\[\Rightarrow (\text{ad}T)(E_{ij}) = (\lambda_i - \lambda_j)E_{ij} \]
\[\Rightarrow \text{ad}T \text{ is semisimple} \]

We proved that \(T \) nilpotent \(\Rightarrow \)
\(\text{ad}T \) is nilpotent.

\[T = S + N \Rightarrow \text{ad}T = \text{ad}S + \text{ad}N \]

Jordan decomposition

Jordan decomposition
Lemma. Let V be a vector space over algebraically closed field k. Let $U \subset W$ be two subspaces of $L(V)$.

Put $Y = \{ T \in L(V) \mid (\text{ad} T)(W) \subset U \}$. Let $A \in Y$ be such that $(\text{ad} AB) = 0$ for all $B \in Y$. Then A is nilpotent.

Proof. $B \in Y$. Then

$(\text{ad} B)(W) \subset U \subset W$ and

$(\text{ad} B)(U) \subset U$

$\Rightarrow V$ and W are invariant for $\text{ad} B$.

Assume that $A \in Y$, $tr(AB) = 0$ for all $B \in Y$.
Let \(A = S + N \) - Jordan decomposition.

\(e_1, \ldots, e_n \) basis of \(V \) \(Se_i = \lambda_i e_i \).

Let \(L \) be a vector subspace of \(V \) over \(\mathbb{Q} \) spanned by \(\lambda_1, \ldots, \lambda_m \).

Let \(f : L \to \mathbb{Q} \) be a \(\mathbb{Q} \)-linear form on \(L \).

Put \(T e_i = f(\lambda_i) e_i, \ 1 \leq i \leq n \).

\[
(adT)(E_{ij}) = (f(\lambda_i) - f(\lambda_j)) E_{ij}
\]

\(\lambda_i - \lambda_j \in L \quad \lambda_i - \lambda_j = \lambda_p - \lambda_g \)

\[
f(\lambda_i) - f(\lambda_j) = f(\lambda_i - \lambda_j) =
\]

\[
f(\lambda_p - \lambda_g) = f(\lambda_p) - f(\lambda_g)
\]

\(\lambda_i - \lambda_j = 0 \quad f(\lambda_i) - f(\lambda_j) = 0 \)
There exists $P \in k[x]$ such that
\[P(\lambda_i - \lambda_j) = f(\lambda_i) - f(\lambda_j) \]
and P has no constant term.

It follows that
\[P(\text{ad} S) E_{ij} = P(\lambda_i - \lambda_j) E_{ij} = (f(\lambda_i) - f(\lambda_j)) E_{ij} = (\text{ad} T) E_{ij} \]
\[\Rightarrow P(\text{ad} S) = \text{ad} T \]

On the other hand, $\text{ad} S = Q(\text{ad} A)$ with no constant term.

\[\text{ad} T = (P \circ Q)(\text{ad} A) \]
\[\Rightarrow T \in \mathfrak{g}! \]

This implies that $\text{tr}(\text{ad} T) = 0$.
Let V_i be the eigenspace of S for eigenvalue λ_i. Then it is invariant for N. Moreover, T act by multiplication by $f(\lambda_i)$ on V_i. Therefore, V_i is invariant for T and A and

$$tr(AT|_{V_i}) = tr(A|_{V_i} \cdot T|_{V_i}) =$$

$$tr(S|_{V_i} \cdot T|_{V_i}) + tr(N|_{V_i} \cdot T|_{V_i}) =$$

$$= tr(S \cdot T|_{V_i})$$

$$= 0$$

$$\Rightarrow \ tr(AT) = tr(ST) =$$

$$\sum_{i=1}^{n} \lambda_i f(\lambda_i) \Rightarrow \sum_{i=1}^{n} \lambda_i f(\lambda_i) = 0.$$

Now $b f\left(\sum_{i=1}^{n} \lambda_i f(\lambda_i)\right) = \sum_{i=1}^{n} f(\lambda_i)^2$.
Since \(f(\lambda_i)^2 \) are positive, this implies that \(f(\lambda_i) = 0 \). Hence \(f \) must be \(0 \). Since \(f \) was arbitrary, \(L \) must be \([0]^J\).

Hence, all eigenvalues \(\lambda_1, \ldots, \lambda_m \) are \(0 \). Hence, \(S = 0 \) and \(A = N \) is nilpotent. \(\Diamond \)