Lie's theorem

Let \(\mathfrak{g} \) be a Lie algebra over an algebraically closed field \(\mathbb{K} \).
Let \(V \) be a finite-dimensional vector space over \(\mathbb{K} \).

A Lie algebra morphism
\[
\pi : \mathfrak{g} \rightarrow \mathfrak{L}(V)
\]

is called a representation of \(\mathfrak{g} \) on \(V \).

The representation \(\pi \) is irreducible, if there is no nontrivial vector space \(U \subset V \) such that \(\pi(x)(U) \subset U \) for all \(x \in \mathfrak{g} \).
Main Lemma. Let \mathfrak{r} be the radical of \mathfrak{g}.

If π is an irreducible representation of \mathfrak{g} on V, there exists a linear form $\lambda : \mathfrak{r} \to \mathbb{k}$ such that

$$\pi(x) = \lambda(x) I_v$$

for $x \in \mathfrak{r}$.

Remark. $\lambda([x,y]) I = \pi([x,y]) = \pi(x) \pi(y) - \pi(y) \pi(x) = (\lambda(x) \lambda(y) - \lambda(y) \lambda(x)) I_v = 0$ for $x, y \in \mathfrak{r}$.

$\Rightarrow \lambda|_{\mathfrak{r}} = 0$.

Corollary. Let \mathfrak{g} be a solvable Lie algebra. Then any irreducible
representation of \mathfrak{g} is one-dimensional.

The consequence of this result is the following theorem:

Theorem (Lie's theorem)

Let \mathfrak{g} be a solvable Lie algebra over an algebraically closed field k. Let (π, V) be a representation of \mathfrak{g} on a finite-dimensional vector space V over k. Then there exists a basis of V such that the matrices of $\pi(x)$, $x \in \mathfrak{g}$, are upper triangular.
Proof: By induction in $\dim V$.
Assume that V is irreducible. By the first corollary, $\dim V = 1$ and $\pi(x) = \lambda(x) I_v$.
Assume that $\dim V > 1$. Then π is not irreducible.
There exists an invariant subspace U, $0 \neq U \subseteq V$. Hence, $\dim U < \dim V$.
By induction assumption there exists a basis e_1, \ldots, e_m of U such that $\pi_u(x)$ are upper triangular.
\[W = V / \mathcal{U} \quad \dim W < \dim V \]

There exist \(e_{m+1}, \ldots, e_m \) such that \((e_{m+1} + \mathcal{U}, \ldots, e_m + \mathcal{U}) \) is a basis such that the rep. on the quotient is upper triangular.

\[
\pi(x) e_i = \sum_{j=1}^m a_{ij} e_j
\]

Proof of \(\oplus \): Let \(\pi(\gamma) = \mathcal{O}_L \), \(\pi(\delta) = p \). Then \(\mathcal{O}_L \) is a Lie subalg. of \(\mathfrak{L}(W) \) and \(p \) is a solvable ideal in \(\mathcal{O}_L \). Assume \(\pi \) is not \(\mathcal{O}_L \), then \(\pi(p) \neq 0 \). Then \(b = \mathcal{D}^p \pi p = 0 \). Then \(b = \mathcal{D}^p \pi p \) is an abelian ideal in \(\mathcal{O}_L \). Elements of \(\mathcal{O}_L \) form a commuting family of
linear transformations. Therefore they have a common eigenvector $v \neq 0$.

$$Tv = \lambda(T)v, \quad T \in B$$

$\lambda : B \to k$ is a linear form.

Let $S \in O_l$. Then $[S,T] \in B$ for all $T \in B$.

Claim: $\lambda([S,T]) = 0$.

Proof: Let V_m be the subspace spanned by $v, Sv, \ldots, S^m v$.

Then

$$V_0 \leq V_1 \leq \ldots \leq V_m \leq \ldots$$

Since V is finite-dimensional, it has to stabilize.
Assume that

\[V_0 \supset V_1 \supset \ldots \supset V_m = V_{m+1} \]

Then \(V_m \) is \(\mathcal{S} \)-invariant.

Moreover, \(v_0, S v_0, \ldots, S^m v_0 \) is a basis of \(V_m \) \(\Rightarrow \) \(\dim V_m = m+1 \).

We claim that

\[TS^m v - \lambda(t) S^m v \in V_{m-1} \]

for \(m = 0, \ldots, m \).

Clear for \(m = 0 \) by choice of \(\mathcal{S} \).