End \((C^\infty(G)) \) asso. algebra with 1.

Any asso. algebra with 1 determines a Lie algebra by

\[
[A, B] = A\circ B - B\circ A.
\]

Let \(X, Y \) be two vector fields on \(G \). \(X, Y : C^\infty(G) \rightarrow \) satisfy Leibnitz rule

\[
X(f_1f_2) = f_1X(f_2) + X(f_1)f_2.
\]

\(X\circ X \) and \(Y\circ X \) are not vector fields, but \([X, Y] = [X_1, X_2] \) is (i.e. it satisfies Leibnitz).

Therefore all vector fields
on G form a Lie algebra. This Lie algebra is infinite dimensional too big.
A vector field X is left invariant if $X(F \circ \gamma(g)) = X(F) \circ \gamma(g)$ for all $g \in G$.

$$X(F)(g) = (X(F) \circ \gamma(g))(1) = X(F \circ \gamma(g)) = X, (F \circ \gamma(g))$$

Hence, X is uniquely determined by $X,$. \rightarrow Left invariant vector fields $\leftrightarrow T_{1}(G)$.
\(L(G) \) all left invariant vector fields

\[
X, Y
\]

\[
Y(F \circ \gamma(g)) = Y(F) \circ \gamma(g)
\]

\[
X(Y(F \circ \gamma(g))) = X(Y(F) \circ \gamma(g)) = \]

\[
= X(Y(F)) \circ \gamma(g)
\]

\[
\Rightarrow [X, Y](F \circ \gamma(g)) = [X, Y](F) \circ \gamma(g)
\]

\[
\Rightarrow L(G) \text{ is a Lie subalgebra of } T(G) \text{ - finite dimensional.}
\]

\[
X_1 = \xi, \quad Y_1 = \eta
\]

\[
X(Y(F))_1 = \xi (Y(F))_1
\]
\[
Y(F)(g) = Y_1((F \circ \phi)(g)) = Y_1((F \circ m)(g, \cdot)) = \eta((F \circ m)(g, \cdot)) = (F \circ m)^{\eta}(g) \\
\Rightarrow \lambda(Y(F))(1) = \xi((F \circ m)^{\eta}) = (\xi \circ \eta)(F) \\
\Rightarrow [X, Y]_1(F) = (\xi \circ \eta)(F) - (\eta \circ \xi)(F) = [\xi, \eta](F).
\]
\(G \) — left invariant

\(G^{opp} \) — right invariant

\[G \rightarrow G^{opp} \]

\[\iota: g \rightarrow g^{-1} \]

is an isomorphism

\[L(\iota): L(G) \rightarrow L(G^{opp}) \]

isomorphism of Lie algebras

\[L(\iota) = -I \]

\[L(G^{opp}) = L(G)^{opp} \]
Foliations

Let M be a diff. manifold $i : L \to M$ an immersion such that

(a) $i : L \to M$ is a bijection,

(b) for any $m \in M$ there exists a chart (U, φ, m), $p \geq \mathbb{Z}_+ \cap p + 2 = n$ $V \subseteq \mathbb{R}^p$, $W \subseteq \mathbb{R}^q$ open such that $\varphi(U) = V \times W$

$(\varphi \circ i)^{-1}(\{v\} \times W)$ is open in L for any $v \in V$

$(\varphi \circ i) : (\varphi \circ i)^{-1}(\{v\} \times W) \to \{v\} \times W$ is a diffeo. for any $v \in V$

(L, i) is a foliation of M.

m ∈ M, \(i^{-1}(m) \subseteq L \) - connected component of \(L \) containing \(i^{-1}(m) \) is the leaf \(L_m \) through \(m \).

\(i : L_m \rightarrow M \) is an immersion.

\(L_m \) is not a submanifold.

\(m \mapsto \dim L_m \) is locally constant \(\Rightarrow \) constant on connected components of \(M \).

\(T(M) \) - tangent bundle of \(M \).

\[\pi \] projection
Separability of leaves

A topological space is called separable if it has a countable basis of open sets.

Lemma. Let G be a connected Lie group. Then G is separable.

Proof. U open neigh. of \mathcal{L}

- domain of a chart

$E C U$, C countable (say points with rational coordinates in \mathcal{L})

$G = \bigcup_{n=1}^{\infty} U^n$
\[D = \bigcup_{m=1}^{\infty} C^m \]

\[D \text{ is countable} \]

\[g \in G \text{, } V \text{ neigh. of } g \]

\[g \in V^m \implies g = g_1 \cdots g_n \quad g_i \in U \]

\[\implies \exists V_i \text{ neigh. of } g_i \text{ such that } V_1 \cdots V_n < V. \quad V_i \ni c_i \in C \]

\[\implies c_1 \cdots c_n \in V. \]

\[D \text{ is dense in } G. \]

\[\{ U_n \mid n \in \mathbb{N} \} \text{ fund. system of neigh. of } 1 \text{ in } G. \text{ We can assume that all } U_n \text{ are symmetric.} \]

\[\text{Claim } \{ U_n \mid d \in D \} \text{ is a basis of topology of } G. \]
Let V be open in G, $g \in V$. There exists $m \in \mathbb{N}$ such that $V^m g \subseteq V$. Since D is dense in G, $V^m g \cap D \neq \emptyset$.

Let $d \in V^m g \cap D$

$V^m d c V^2 g c V$, V^m is symmetric

d $\in V^m g \implies V^{m+d} \supseteq g$

$\implies g \in V^{m+d} \subseteq V$

$\implies V$ is union of elements of $\{V^m d ; m \in \mathbb{N}, d \in D\}$.

We want to prove:

Theorem. Let M be a
manifold such that all components of M are separable. Let (L,i) be a foliation of M. Then all leaves of L are separable.

In particular, this implies that any foliation of a Lie group has separable leaves.

Lemma A. Let M be a separable topological space. Let $(U_i; i \in I)$ be an open cover. Then $(U_i; i \in I)$ has a
countable subcover.

Proof. Let \(\{ V_j : j \in \mathbb{N} \} \) be a basis of topology of \(M \).

Every \(V_i \) is a union of elements of \(\{ V_j : j \in \mathbb{N} \} \). Let \(A \) be a subfamily of \(\{ V_j : j \in \mathbb{N} \} \) such that \(V_i \in A \implies V_i \subseteq U_i \)
for some \(i \in I \).

\[m \in M \implies m \in V_m \subseteq U_i \]
\[V_m \in A \quad A \text{ is a cover of } M. \]

For each \(V_m \) in \(A \) we pick \(U_{i(m)} \supseteq V_m \) \((U_{i(m)}) \) is a subcover of \((U_{i,j}) \). \(\square \)
Lemma B. Let M be a connected topological space. Let $U = (U_i : i \in I)$ be an open cover of M with following properties:

(i) all U_i are separable,

(ii) $\{j \in I \mid U_i \cap U_j \neq \emptyset \}$ is countable for any $i \in I$.

Then M is separable.

Proof. Let $U_{i_0} \neq \emptyset$. We say that $i \in I$ is accessible from i_0 in m steps if there exist $i_1, i_2, \ldots, i_m \in I$ such that $U_{i_k} \cap U_{i_{k+1}} \neq \emptyset$ for $k = 0, \ldots, m-1$ and $i = i_m$.
Let A_n be the set of all indices in I accessible in n steps from i_0.

We claim that all A_n are countable.

First, (ii) implies that for A_i, assume that A_n is countable.

Let $j \in A_{n+1}$. Then there exists $i \in A_n$ such that $U_i \cap V_j \neq \emptyset$. Since A_n is countable, by (ii) there exists countably many j such that $U_i \cap V_j \neq \emptyset$ for $i \in A_n$. Thus A_{n+1} is countable.
\[A = \bigcup_{n=1}^{\infty} A_n \text{ is countable.} \]

Let \(V = \bigcup_{i \in A} V_i \). Then

\[V \text{ is an open set in } M. \]

Let \(m \in V \). Then, \(m \in V_i \) for some \(i \). \(V_i \cap V \neq \emptyset \)

\[\Rightarrow V_i \cap V_j \neq \emptyset \text{ for some } j \in A_m \Rightarrow i \in A_{m+1} \Rightarrow m \in U. \text{ Hence, } \overline{V} = V. \]

\[\Rightarrow M \setminus \overline{V} \text{ is also open} \]

\[M = V \cup (M \setminus \overline{V}). \text{ } M \text{ is connected} \Rightarrow M = U. \]

\(U_i \) are separable \(\Rightarrow M \text{ is separable. } \]
Lemma C. Let M be a locally connected, connected topological space. Let $(U_{nj})_{n \in \mathbb{N}}$ be an open cover of M such that each connected component of U_n is separable. Then M is separable.

Proof: Since M is locally connected, the connected components of its open sets are open. $U_{nj, x : x \in A_n - \text{component of } U_n}$ if $U_{nj, x : x \in A_n, n \in \mathbb{N}}$ is an open cover of M.
Let $A_{n, \alpha, j, m} = \{ \beta \in A_n | U_{n, \alpha} \cap U_{m, \beta} \neq \emptyset \}$.

Claim:

$A_{n, \alpha, j, m}$ is countable.

Since $U_{n, \alpha}$ is separable, $U_{n, \alpha} \cap U_{m}$ is open in $U_{n, \alpha}$ and can have only countably many components. We denote them by S_{p}. S_{p} is open and connected, so it has to be in one unique component $U_{m, \beta(p)}$ of U_{m}.

Let $\beta \in A_{n, \alpha, j, m}$. Then
$\forall m, a \land \forall m, \beta \neq \emptyset$.

If $a \in \forall m, a \land \forall m, \beta$, $a \in \forall m, a \land \forall m$
$\Rightarrow a$ is in a component of $\forall m, a \land \forall m$. Hence a is in S_p for some p and $\beta = \beta(p)$. This proves the claim.

$\forall m, a$ are open and separable.
$\Rightarrow M$ is separable by Lemma B.
Let M be a manifold and (L, i) a foliation of M.
Assume that components of M are separable.
Let L be a leaf of (L, i).
Since L is connected, it is contained in a connected component of M. Hence, without any loss of generality we can assume that M is connected.
Any point in M has an open neighborhood U such that
\mathcal{U} is a domain of a chart $(\mathcal{U}, \varphi, \eta)$ such that $\varphi \circ g = \eta$ and $\varphi(\mathcal{U}) = \mathcal{V} \times \mathcal{W}$

$\mathcal{V} \subset \mathbb{R}^p$ connected open neigh. of $0 \in \mathbb{R}^p$

$\mathcal{W} \subset \mathbb{R}^q$ connected open neigh. of $0 \in \mathbb{R}^q$

$\varphi(m) = 0$

$(\varphi \circ i)^{-1}(\mathcal{V} \times \mathcal{W})$ is open in \mathcal{L}

$\varphi \circ i : (\varphi \circ i)^{-1}(\mathcal{V} \times \mathcal{W}) \to \mathcal{V} \times \mathcal{W}$ is a diffeomorphism for any $\omega \in \mathcal{U}$.
for all $m \in M$ we get an open cover $(U_m : m \in M)$ of M. Since M is separable by assumption, it has a countable subcover $(U_k : k \in \mathbb{N})$.

Pick a point $m_0 \in M$ and the leaf L_0 through m_0. Then $V_k = \varphi^{-1}(U_k) \cap L_0$ is a countable open cover of L_0. The open sets $(\varphi \circ i)^{-1}(\varnothing \times 3 \times W_k)$, $\sigma \in V_k$, are open and connected in \mathcal{L}. Hence, they are either in L_0 or disjoint of it.
It follows that components of V_2 are diffeomorphic to some $i_2 \times W_i$, i.e. they are separable. By lemma C, L_0 is separable.

This proves the theorem.

\[
\begin{array}{ccc}
N \xrightarrow{f} M & \text{Let } M \text{ be a manifold with separable components,} \\
N \xrightarrow{\bar{f}} L & \text{N a manifold and } f: N \rightarrow M \\
\end{array}
\]
a differentiable map.
Since \(i : L \rightarrow M \) is a bijection, there exists a map \(\overline{f} : N \rightarrow L \) such that the diagram commutes.

Corollary. Assume that \(\overline{f}(N) \) is contained in a union of countably many leaves. Then \(\overline{f} : N \rightarrow L \) is differentiable.

Proof. Let \(t \in N \), \(f(t) \in M \).

Find an open neighborhood of \(f(t) \) such that \(\gamma(U) = V \times W \),
Let \(O \) be a connected neigh. of \(t \) such that \(f(O) \subset U \), since the leaves of \(L \) are separable

\[
i^{-1}(U) \cap L = U(4) \cup \omega \times W
\]

over countably many \(v \in V \), for any leaf \(L_0 \). Therefore,

\[(p \circ f)(O) \subset C \times W\]

where \(C \) is a countable subset in \(V \).

Since \(O \) is connected, \n
\[(p \circ f)(O) \text{ is connected}\]
Hence, C has to be connected. Since C is countable, $C = \{ c_i \}$.

$$
\Rightarrow (f_0) (0) = \delta c \cap W
$$

diff. $(f_0) (\delta c \cap W)$ is open in L_0.

$$
\Rightarrow \exists \tilde{l}_0 \text{ is differentiable.}
$$

Lemma: C countable subset in \mathbb{R}^n, C connected $\Rightarrow C$ is a point.

Proof: Assume that C is not a point. Then there exist $a, b \in C$

$a \neq b$. $a = (a_1, \ldots, a_p)$, $b = (b_1, \ldots, b_p)$

$a \neq b \Rightarrow a_i \neq b_i$ for some i.
\(\exists \alpha \text{ between } a_i \text{ and } b_i \)
such that it is not \(i \)-th coordinate of any point in \(C \).

Put \(C_1 = \{ c \in C \mid c_i < \alpha \} \)
\(C_2 = \{ c \in C \mid c_i > \alpha \} \)

Then \(C_1 \neq \emptyset \), \(C_2 \neq \emptyset \), \(C = C_1 \cup C_2 \)
and \(C_1, C_2 \) are open in \(C \).

This contradicts the connectedness of \(C \). \(\square \)

Let \(M \) be a manifold with separable components. Let \((L, i) \) be a foliation of \(M \).
Assume that \(L \) has countably
many leaves. Then \(i: M \to L \) is differentiable, hence, \(M \cong L \) and \(L \) has only one leaf.

Corollary. If \(M \) has separable components, any nontrivial foliation has uncountably many leaves.
(L, i) foliation of M.

\[\begin{align*}
T(L) & \text{ tangent bundle of } L \\
\downarrow & \\
T(i): T(L) & \rightarrow T(M) \\
\downarrow & \\
\downarrow & \\
L & \rightarrow M
\end{align*} \]

Can view \(T(i)T(L) \) as a vector subbundle of \(T(M) \).

A vector subbundle of \(T(M) \) is involutive if for any two vector fields \(X, Y \) on \(M \):

\[X_m, Y_m \in E_m \Rightarrow [X, Y]_m \in E_m \]

Lemma: \(T(i)T(L) \) is an involutive vector subbundle
Converse is the Frobenius theorem.

Frobenius theorem: Let E be an involutive vector subbundle of $T(M)$. An integral manifold (N, j) of E is

1. N a diff. manifold
2. $j : N \to M$ is an injective immersion
3. $T_a(j) T_a(N) = E_{j(a)}$ for all $a \in N$.

of $T(M)$.

If \(m = \tilde{j}(s) \) we say that \((N, j)\) is an integral manifold through \(m \).

Thm: Let \(M \) be a diff.

manifold and \(E \) an involutive vector sub-bundle of \(T(M) \). Then there exists a foliation \((L, i)\) of \(M \) with the following properties:

(i) \((L, i)\) is an integral manifold for \(E \);

(ii) For any integral manifold \((N, j)\) of \(E \) there exists a unique differentiable map \(J : N \rightarrow L \).
such that the diagram
\[
\begin{array}{ccc}
N & \xrightarrow{f} & M \\
\downarrow{i} & & \downarrow{j} \\
\end{array}
\]

commutes and \(J(N) \) is an open submanifold of \(L \).

\((L, i)\) is unique

\((L, i)\) is the integral foliation of \(M \) with respect to \(E \).
G Lie group

$\mathfrak{h} \subset \mathfrak{L}(G)$ Lie subalgebra

E - vector subbundle of $T(G)$

$E_g = T(g \mathfrak{h})$

ξ_1, \ldots, ξ_p basis of \mathfrak{h}

X_1, \ldots, X_p left invariant vector fields such that $(X_i)_{g^{-1}} = \xi_i$.

$[\xi_i, \xi_j] = \sum_{k=1}^{p} c_{ijk}\xi_k$

X_i, Y_j vector fields, $X, Y \in E_g$

$\Rightarrow \quad X = \sum_{i=1}^{p} f_i X_i, \quad Y = \sum_{j=1}^{p} g_j Y_j$

$[X,Y] = \sum_{i,j \neq i}^{p} \left(f_i X_i (g_j)X_j - g_j X_i (f_i)X_i \right)$

\[
+ \sum_{i,j \neq i}^{p} f_i g_j [X_i,X_j]
\]
\[= \sum_{i,j} (f_i X_i(g_j) X_j - g_j X_j(f_i) X_i) + \sum_{i,j,k} c_{ijk} f_i g_j X_k \]

\[\Rightarrow [X, Y]_g \in E_g\]

E is involutive.

(L, i) the integral foliation of G determined by E

(L, i) is the left foliation of G determined by E.

H is the leaf of L through \(l \in G \), \(g \in H \), \(\gamma(g) \cdot \iota : H \rightarrow G \)

is an integral manifold of E. Since H is a leaf then I
$\gamma(g) \cdot i : H \to G$ is an integral manifold thru $g \in H$.

H is connected \implies the integral manifold is open subset of H.

$\implies gH \subset H$.

H is closed under multiplication

Apply to g^{-1}, $\delta(g^{-1}) \cdot i : H \to G$

integral manifold, containing 1 since $g \in H$. Since $1 \in H$

$\implies g^{-1} \in H$. H is a subgroup.

$H \times H \longrightarrow H$ μ is diff.

image is in
one leaf of L. Since components of L are separable, hence leaves of L are separable.

$\Rightarrow H \times H \xrightarrow{m} \Rightarrow H$ is differentiable.

H is a Lie group.

Uniqueness

\[
\begin{array}{ccc}
H & \xrightarrow{i} & G \\
\cap & & \\
H' & \xrightarrow{i'} & G \\
\end{array}
\]

$L(i') : L(H') \rightarrow L(G)$ isomorphism onto y.

It follows that $T_y(i')(T_1(y(g))L(H'))$

$= T_1(\delta(g))(y) = E_g$
H' is an integral manifold of left foliation attached to y passing thru 1. Since H' is connected $\alpha : H' \rightarrow H$

$H \xrightarrow{i} G$ diffeomorphism

$\uparrow \alpha \Downarrow \beta \xrightarrow{i'}$ on open set

α is homomorphism $\alpha(H') \cap H$

open subgroup $\Rightarrow \alpha(H') = H$.
Tangent Lie algebra

Let G be a Lie group and H a subgroup of G.

$$\mathfrak{h} = \{ \xi \in \mathfrak{L}(G) \mid \exists I \subset \mathbb{R} \text{ interval } 0 \in I$$

$$\Gamma : I \to G \text{ diff.}$$

$$\Gamma_0(\mathbb{R}) (1) = \xi$$

$$\Gamma(I) \subset H \text{ tangent vector}$$

Lemma 1. \mathfrak{h} is a Lie subalgebra of $\mathfrak{L}(G)$.

Proof. $\Gamma(t) = 1, t \in (-1, 1)$

$$\Gamma_0(\mathbb{R})(1) = 0$$

$$\Gamma(I) \subset \mathfrak{h}$$

$$\Rightarrow \ 0 \in \mathfrak{h}.$$
\[
\begin{align*}
\Gamma_1 : I_1 \to G, \quad \Gamma_2 : I_2 \to G \\
\mathcal{I} = I_1 \cap I_2, \quad T_\mathcal{I}(\Gamma_1) = \xi_1, \quad T_\mathcal{I}(\Gamma_2) = \xi_2 \\
\Gamma(t) = \Gamma_1(t) \Gamma_2(t), \quad t \in \mathcal{I}, \quad \Gamma(I) \subset \mathcal{I} \\
T_\mathcal{I}(\Gamma(t)) = T_{\mathcal{I}(m)}(T_\mathcal{I}(\Gamma_1)(1), T_\mathcal{I}(\Gamma_2)(1)) \\
= T_\mathcal{I}(\Gamma_1)(1) + T_\mathcal{I}(\Gamma_2)(1) = \xi_1 + \xi_2 \\
\Rightarrow \xi_1 + \xi_2 \in \mathcal{I}^1.
\end{align*}
\]

\[
\begin{align*}
\lambda \in \mathbb{R}, \quad \xi_\lambda(t) &= \Gamma_1(\lambda t) \\
T_\mathcal{I}(\xi_\lambda)(1) &= T_\mathcal{I}(\Gamma_1)(\lambda) = \lambda \xi_1 \\
\Rightarrow \lambda \xi_1 \in \mathcal{I}^1.
\end{align*}
\]

\[\mathcal{I}^1 \text{ is a vector space.}\]

\[
\begin{align*}
\forall \lambda \in \mathbb{H}, \quad \Gamma_1(t) = \lambda \Gamma_1(t) \lambda^{-1} \in \mathcal{H}
\end{align*}
\]
To \(T_0(\Gamma_h)(1) = Ad(h) T_0(\Gamma)(1) = Ad(h) \xi \),

\[\Rightarrow Ad(h)(\eta) \in \mathfrak{h}. \]

Let \(\eta \in \mathfrak{h}, \exists \Gamma_t: I \rightarrow H, \)

\[\eta = T_0(\Gamma_t)(1) \quad Ad(\Gamma_t(t))(\eta) \in \mathfrak{h}, t \in \Sigma \]

differentiate with respect to \(t \in I \).

\[\Rightarrow [\eta, \gamma] \in \mathfrak{h} \quad \gamma \in \mathfrak{h} \]

is a Lie subalgebra of \(L(G) \).

\[\mathfrak{h} \text{ is the tangent Lie algebra of } H. \]