A topological space X is a Baire space if the intersection of any countable family $\{U_n, n \in \mathbb{N}\}$ of open dense sets U_n is dense in X (i.e., $\bigcap_{n \in \mathbb{N}} U_n$ is dense in X).

Lemma (Category Theorem)

A locally compact space X is a Baire space.

Proof. Let $(U_n, n \in \mathbb{N})$ be a family of open dense subsets in X. Let $V = V_i$ be a nonempty open set in X such that V_i is compact. (X is locally compact).
Consider, $V_1 \cap U_1$ - this is a nonempty open set in X since U_1 is dense in X.

Therefore, there exists a nonempty open set V_2 such that $V_2 \subset V_1 \cap U_1$,

and $\overline{V_2}$ is compact (since X is locally compact).

Continue inductively:

$$\Rightarrow V_{m+1} \subset \overline{V_m} \subset V_m \cap U_m$$

Since these are compact sets,

$$\Rightarrow \bigcap_{m \in \mathbb{N}} \overline{V_m} = W$$
compact and nonempty. This implies that $W \subset \cup_m$ for all $m \in \mathbb{N}$, hence $W \subset \bigcap_{m \in \mathbb{N}} U_m$.

$\Rightarrow \bigcap_{m \in \mathbb{N}} U_m \neq \emptyset \Rightarrow \bigcap_{m \in \mathbb{N}} U_m$ is dense in X. \(\Box\)

Manifolds are Baire spaces!

A locally compact space X is countable at infinity if it is a union of countably many compact sets.
Theorem (open mapping).
Let G be a locally compact group countable at infinity. Assume that G acts continuously on a compact space M, and that the action is transitive. Then the orbit map $\omega_m : G \to M$ (given by $g \mapsto g \cdot m$) is open.

Lemma. Let G be a Lie group. Then, the following are equivalent:
(i) G is countable at infinity
(ii) G has countably many components.

Proof. (i) \Rightarrow (ii) Assume that G is countable at ∞, \Rightarrow

$$G = \bigcup_{n \in \mathbb{N}} K_n$$

where K_n are compact $(G_i, j \in I)$ are open and disjoint $(G_i \cap K_n, j \in I)$

is an open cover of K_m. It has a finite subcover \Rightarrow

K_m intersects finitely many $G_i, i \in I$. \Rightarrow

Union of $K_m = G$ intersect countably many $G_i \Rightarrow I$ is countable.
(ii) \Rightarrow (i) G has countably many components.
It is enough to show that G_0 is a union of countably many compact sets.
This follows from the lemma.
Lemma. Let G be a connected Lie group. Let U be a neighbor.
of 1 in G. Then $G = U \bigcup_{n \in \mathbb{N}} U^n$.

Proof. Can assume that U is symmetric. Then $H = U \bigcup_{n \in \mathbb{N}} U^n$ is a subgroup.
H is also open. \Rightarrow
h \in U^n \text{ for some } n \in \mathbb{N}

\bigcirc h \cdot U \subset U^{n+1}

\text{neighborhood of } h \Rightarrow h \cdot U \subset H

H \text{ is open } \Rightarrow G \text{ is union of } H \text{ cosets } = \text{ open. } G

\text{is connected } \Rightarrow H = G.

G \text{ is a Lie group with countably connected components, } G \text{ is countable at } \infty.

G \text{ acts differentiably on manifold } M. \text{ If the action is transitive, for } m \in M,

\forall m : G \to M \text{ is open.}
The orbit map $\omega_m : G \to M$ has to have constant rank (subimmersion). It is open only if the rank is maximal, i.e., ω_m is a submersion.

Proof of open mapping theorem:
Let U be an open neighborhood of $1 \in G$. We claim first that $\omega_m(U)$ is a neighborhood of m. Assume that V is a compact symmetric neighborhood of 1.

such that $V^2 \subset U$.

Existence: multi. is continuous.

Let $V_1 = 1$ open such that $V_1^2 \subset U$.

Can shrink it to $V_2 \in 1$ which is a neigh. of 1 and compact.

$V_2 \subset U$, $V_2 \cap V_2^{-1}$ is compact and neigh. of 1 (V_2 is a neigh. and V_2^{-1} is a neigh.)

$\Rightarrow V = V_2 \cap V_2^{-1}$ satisfies our assumption.

(v, U) $v \in G$ is a cover of G.

Since $G = \bigcup_{n=1}^{\infty} U_n$
\((g \cdot \text{int}(V); g \in G)\) is a cover of \(K_n \implies \exists \text{ finite subcover} (g_m \cdot \text{int}(V); m \in N)\) is an open cover of \(G\).

\((g_m \cdot V; m \in N)\) is a cover of \(G\).

\[V_m = M - \omega(g_m \cdot V) = \]
\[= M - g_m \cdot V \cdot m \]

\(\uparrow\)

compact \implies \text{closed}

\(U_m\) is open

\[\bigcap_{\infty} U_m = \bigcap_{m=1}^{\infty} (M - g_m \cdot V \cdot m) = \]
\[= M - \bigcup_{m=1}^{\infty} g_m \cdot V \cdot m = M - G \cdot M = \]
\[= \emptyset.\]
Since M is a Baire space, at least one U_m is not dense in M.

$$U_m = M - g_m(V, m) \text{ not dense}$$

$$\Rightarrow g_m(V, m) \text{ has nonempty interior}$$

V, m has nonempty interior

V, m is a neigh of g_m

$$\Rightarrow g_m^{-1}(V, m) \text{ is a neigh of } m$$

$g_m^{-1}(V, m) \subset V^0, m \subset U, m$

$$\Rightarrow U, m \text{ is a neigh of } m.$$ Can complete the proof.

O open in G, $g \in O$.
$g^{-1}O$ is a neigh. of 1
$g^{-1}O \cap m$ in a neigh. of m

$\Rightarrow O \cap m$ is a neigh. of $g \cdot m$.
$\Rightarrow O \cdot m$ is open!
Universal covering spaces

\(X \) a manifold, \(x_0 \) - base point

\(X \sim (\tilde{X}, \tilde{x}_0) \) is a universal

\(\downarrow \quad \text{covering space} \)

\(\downarrow \quad X \sim x_0 \) if \(X \) is a connected manifold such that \(p: \tilde{X} \rightarrow X \) is a covering \(p(\tilde{x}_0) = x_0 \), and for any other covering space \((Y, y_0)\)

\[X \xleftarrow{\sim} \text{unique} \]

\(\downarrow \quad X \xrightarrow{p} \sim \quad Y \)

\(\downarrow \quad \text{must} \)

\(X \xrightarrow{\sim} \text{be identity} \)

\(\Rightarrow\ \)

Another universal cover must be diffeo.
Universal covering space is unique up to an isomorphism.

Universal covering spaces are simply connected, i.e.
\[\pi_1(\tilde{X}, \tilde{x}_0) = \{ 1 \} \]
\(\tilde{x} \sigma \in p^{-1}(x_0) \) \((\tilde{x}, \sigma) \) is a universal covering space
\(\exists \) unique \(T_\sigma : \tilde{X} \to \tilde{X} \)
\(\tilde{x} T_\sigma \tilde{x} = T_\sigma (x_0) = x_0 \)
map \(\sigma - \) deck transformation
\(\tilde{X} \xrightarrow{T_\sigma} \tilde{X} \quad T_\sigma (p^{-1}(x_0)) = p^{-1}(x_0) \)
Deck transformations form a group \(\equiv \pi_1(X, x_0) \)
\(G\) a connected Lie group

\((\tilde{G},\tilde{1})\) universal covering

A unique Lie group structure on \(G\) (compatible with manifold structure on \(\tilde{G}\)) such that

\(\tilde{1}\) is the identity and

\(p : \tilde{G} \rightarrow G\) is a Lie group morphism.

\(\tilde{G}\) - universal covering group.

Lifting property

\((X,x_0)\) connected manifold
\((Y, p, y_0)\) a covering space

\[F : (Z, z_0) \to (Y, y_0)\]

\((Z, z_0)\) connected and simply connected manifold, \(F\) diff. map.

Then there exists the unique diff. map \(F' : Z \to Y\) such that \(F'(z_0) = y_0\).

Construction of the group structure on \(G\).
\(\tilde{G} \times \tilde{G} \) is simply connected

\[
(\tilde{G} \times \tilde{G}, 1 \times 1) \xrightarrow{\tilde{m}} (\tilde{G}, 1)
\]

\(\tilde{m} \) is unique.

\(\tilde{m} : G \times G \rightarrow \tilde{G} \) is a diff. map, - binary operation. Have to show that it defines a group structure.

We have

\[
p \circ \tilde{m} = m \circ (p \times p).
\]