Math 3220-3 Take Home Midterm 2, March 6, 2017 Show all work!

Name:

Problem 1. Let f be a continuous function on \mathbb{R} periodic with period 2π , given by f(x) = |x| for $-\pi \le x \le \pi$. Using Bessel equality for its Fourier coefficients prove that

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}.$$

Problem 2. Let f be infinitely differentiable function on \mathbb{R} periodic with period 2π . Show that Fourier series for the k-th derivative $f^{(k)}$ of f converge uniformly to $f^{(k)}$ for any integer $k \geq 0$.

Problem 3. Let A be a linear map from \mathbb{R}^n into R. Show that

- (i) there is a unique vector $y \in \mathbb{R}^n$ such that $A(x) = (x \mid y)$ for all $x \in \mathbb{R}^n$:
- (ii) ||A|| = |y|.

Problem 4. Let f be a function on \mathbb{R}^2 defined by

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0); \\ \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

Prove

- (i) f is not continuous at 0;
- (ii) The first partial derivatives of f exist at every point of \mathbb{R}^2 . Is f differentiable at (0,0)?

Problem 5. Let f be a differentiable function from a connected open set U in \mathbb{R}^n into \mathbb{R}^m . Assume that f'(x) = 0 for all $x \in U$. Show that f is a constant function.