Problem 1. Let \(f \) be a continuous function on \(\mathbb{R} \) periodic with period \(2\pi \), given by \(f(x) = |x| \) for \(-\pi \leq x \leq \pi \). Using Bessel equality for its Fourier coefficients prove that

\[
\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}.
\]

Problem 2. Let \(f \) be a periodic continuous function on \(\mathbb{R} \) with period \(2\pi \). Denote by

\[
\sum_{n \in \mathbb{Z}} c_n e^{inx}
\]

its Fourier series. Show that the following conditions are equivalent:

(i) the function \(f \) is infinitely differentiable;

(ii) for any \(k \geq 0 \) there exists \(M > 0 \) such that \(|c_n||n|^k \leq M \) for all \(n \in \mathbb{Z} \).

Problem 3. Let \(A \) be a linear map from \(\mathbb{R}^n \) into \(\mathbb{R} \). Show that

(i) there is a unique vector \(y \in \mathbb{R}^n \) such that \(A(x) = (x \mid y) \) for all \(x \in \mathbb{R}^n \);

(ii) \(\|A\| = |y| \).

Problem 4. Let \(f \) be a function on \(\mathbb{R}^2 \) defined by

\[
f(x, y) = \begin{cases}
0 & \text{if } (x, y) = (0, 0); \\
x y & \text{if } (x, y) \neq (0, 0).
\end{cases}
\]

Prove

(i) \(f \) is not continuous at \(0 \);

(ii) The first partial derivatives of \(f \) exist at every point of \(\mathbb{R}^2 \).

Is \(f \) differentiable at \((0, 0) \)?