\[\mathbb{R}^m \times \mathbb{R} = \mathbb{R}^{m+1} \]

\[\uparrow \quad \text{natural topology} \]

\[\text{product topology} \]

\[\| (x_1, \ldots, x_m, x_{m+1}) \| = \]

\[\| (x_1, \ldots, x_m, 0) + (0, \ldots, 0, x_{m+1}) \| \leq \]

\[\| (x_1, \ldots, x_m, 0) \| + \| (0, \ldots, 0, x_{m+1}) \| = \]

\[= \| (x_1, \ldots, x_m) \| + |x_{m+1}|. \]

\[d((x_1, \ldots, x_{m+1}), (y_1, \ldots, y_{m+1})) = \]

\[= d((x_1, \ldots, x_m), (y_1, \ldots, y_m)) + |x_{m+1} - y_{m+1}| \]

\[\Rightarrow \quad \text{ball of radius } 2 \text{ centered at } (x_1, \ldots, x_{m+1}) \text{ contains the} \]

\[\text{ball of radius } \varepsilon/2 \text{ centered at } (x_1, \ldots, x_m) \times (x_{m+1} - \varepsilon/2, x_{m+1} + \varepsilon/2) \]
⇒ Open set in natural topology is open in the product topology.

\[
\| (x_1, \ldots, x_m, 0) \| = \sqrt{x_1^2 + \ldots + x_m^2} \leq \sqrt{x_1^2 + \ldots + x_m^2} = \| (x_1, \ldots, x_m) \| \\
\| (0, \ldots, 0, x_{m+1}) \| = \sqrt{x_{m+1}^2} \leq \| (x_1, \ldots, x_{m+1}) \|
\]

⇒ ball of radius \(\varepsilon \) centered at \((x_1, \ldots, x_m)\) is contained in the product of the ball of radius \(\varepsilon \) centered at \((x_1, \ldots, x_m)\) and \((x_{m+1} - \varepsilon, x_{m+1} + \varepsilon)\).
This implies that an open set in product topology is open in the natural topology. Hence, the natural topology of \mathbb{R}^{n+1} is the product topology of $\mathbb{R}^n \times \mathbb{R}$.

Theorem $[a_1, b_1] \times \ldots \times [a_m, b_m] \subset \mathbb{R}^n$ is compact.

Proof: We proved this for $n=1$.
General case follows by induction. \(\mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R} \) as topological spaces. By induction assumption, \([a_1, b_1] \times \ldots \times [a_{n-1}, b_{n-1}]\) is compact. Hence,
\([a_1, b_1] \times \ldots \times [a_{n-1}, b_{n-1}] \times [a_n, b_n]\) is compact, by the theorem we proved last time.

A set \(S \) in \(\mathbb{R}^n \) is bounded if it is contained in some ball centered at \(0 \) (this depends on metric, not on topology!).
Theorem (Heine-Borel)

Let \(S \subset \mathbb{R}^n \). The following properties are equivalent:

(i) \(S \) is compact;

(ii) \(S \) is closed and bounded.

Proof: \(\mathbb{R}^n \) is Hausdorff. Hence, if it is compact, it is closed.

\[
S = \bigcup_{m=1}^{\infty} B(0, m).
\]

By compactness, \(S \subset B(0, N) \) for some \(N > 0 \), i.e., \(S \) is bounded.

If \(S \) is closed and bounded, \(S \) is a closed subset of...
a sufficiently large box \([a_1, b_1] \times \cdots \times [a_n, b_n]\). Since this box is compact, \(S\) is compact.
Weierstrass theorem

Can define

\[\alpha : [0,1] \rightarrow [a,b] \]

\[\alpha (t) = a + (b-a)t \]

\[\alpha^{-1}(s) = \frac{s-a}{b-a} \text{ - inverse map.} \]

Theorem: Let \(f \) be a continuous function on \([a,b]\). Then there exist function on \([a,b]\). Then for any \(\epsilon > 0 \) there exists a polynomial \(P \) such that \(\|f-P\| < \epsilon \) in \(C([a,b]) \).

(Therefore, polynomials are dense in \(C([a,b]) \).

Proof: I can assume that \(a=0, b=1 \).
Can assume that $f(0) = f(1) = 0$.

Proof: Put $g(x) = f(0) + (f(1) - f(0))x$ linear.

$F(x) = f(x) - g(x)$, $F(0) = F(1) = 0$.

$F(0) = f(0) - g(0) = 0$, $F(1) = f(1) - g(1) = 0$.

Can extend f to be 0 outside $[0, 1]$.

Then f is continuous on \mathbb{R}.

![Graph of f with Q_m(x) = c_m(1-x^2)^m](image)

$Q_m(x) = c_m(1-x^2)^m$ is positive on $[-1, 1]$. Can pick $c_m > 0$ such that

$$\int_{-1}^{1} Q_m(x) dx = 1.$$

$$P_m(x) = \int_{-1}^{x} f(x+t) Q_m(t) dt$$

for $0 \leq x \leq 1$.

f is zero outside $[0, 1]$.
\[t \mapsto f(x+t) \] is 0 for \(t \leq -x, t \geq 1-x. \]

Hence

\[P_m(x) = \int_{-x}^{1-x} f(x+t) Q_m(t) \, dt. \]

Make change of variables \(s = t+x \)
\[ds = dt \]

\[P_m(x) = \int_0^{1-2x} f(s) Q_m(s-x) \, ds, \]

\[Q_m(s-x) = C_m \left(1 - (s-x)^2 \right)^n \]

is polynomial in \(s \) and \(x \)

\[Q_m(s-x) = \sum a_{pq} s^p x^q \]

\[\Rightarrow P_m(x) = \sum a_{pq} \left(\int_0^1 f(s) s^p \, ds \right) x^q \]

is a polynomial in \(x \).

\[\left| P_m(x) - f(x) \right| = \left| \int_0^1 f(x+t) Q_m(t) \, dt - \right| \]

\[- f(x) \int_{-1}^1 Q_m(t) \, dt = \]
\[
\frac{1}{L} \left| \int_{-\frac{1}{L}}^{1} (f(x+t) - f(x)) \Omega_m(t) \, dt \right| \\
\leq \int_{-1}^{1} |f(x+t) - f(x)| \Omega_m(t) \, dt, \\
\text{since } f \text{ is uniformly continuous on } \mathbb{R}, \text{ there exists } \delta > 0 \text{ such that } \\
|t| < \delta \text{ implies } |f(x+t) - f(x)| < \frac{\varepsilon}{2}, \\
P_m(x) - f(x) \leq \int_{-\delta}^{\delta} |f(x+t) - f(x)| \Omega_m(t) \, dt + \\
\int_{-\delta}^{\delta} |f(x+t) - f(x)| \Omega_m(t) \, dt + \\
\int_{-1}^{1} |f(x+t) - f(x)| \Omega_m(t) \, dt < \frac{\varepsilon}{2}. \\
f \text{ is bounded, } \exists M > 0 \text{ such that }
\[
|P_m(x) - f(x)| \leq M \int_{-1}^{1} Q_m(t) \, dt + \varepsilon/2 + M \int_{-\delta}^{\delta} Q_m(t) \, dt \\
\leq \varepsilon/2 + 2M \int_{-\delta}^{\delta} \frac{1}{\delta} \, dt \\
(\text{since } Q_m \text{ is even}).
\]

If we prove that \(\int_{-\delta}^{\delta} Q_m(t) \, dt \to 0 \) as \(m \to \infty \), there exists \(m \) such that \(2M \int_{-\delta}^{\delta} Q_m(t) \, dt < \varepsilon/2 \) for \(m \geq m_0 \).

Hence, for \(m \geq m_0 \), we have
\[
|P_m(x) - f(x)| < \varepsilon \text{ for all } x \in [-1, 1].
\]
This implies that \(\|P_m - f\| < \varepsilon \) for \(m \geq m_0 \).

It remains to prove \(\ast \)