Dimension of a manifold

Connectedness - Let X be a topological space. X is connected if X is not equal to $U \cup V$ where U, V are nonempty open, disjoint sets.

Example: Open ball in \mathbb{R}^n is connected.

Lemma. Let $x \in X$. Denote by U the family of all connected subsets of X containing x.
Then the union of all sets in U is connected.

Proof. Assume that Y is that
union, \(Y = U \cap V \), \(U \cup V \neq \emptyset \)
and \(U \cap V = \emptyset \) \(U \cup V \) open in \(Y \).

Let \(Z \in U \). Then \(Z \cap U \), \(Z \cap V \)
are open in \(Z \), \((Z \cap U) \cap (Z \cap V) = \emptyset \)
and \((Z \cap U) \cup (Z \cap V) = Z \).

Since \(Z \) is connected, this is possible only if \(Z \cap U = \emptyset \) or
\(Z \cap V = \emptyset \).

Assume that \(x \in U \). Then \(x \in Z \cap U \)
\(\Rightarrow Z \cap V = \emptyset \Rightarrow Z \subset U \).

Hence, union of all \(Z \) is in \(U \).
\(\Rightarrow V = \emptyset \). Therefore, \(Y \) is
connected. \(\Box \)
The set Y is the connected component of x.

Let $y \in Y$. Then the connected component W of y contains Y (since it is connected).

It follows that $y \in Y \subset W$.

Therefore, $W \subseteq U$ and $W \subseteq Y$.

Hence, $W = Y$.

⇒ Y is connected component of each of its points.

X is a disjoint union of all of its connected components.

Theorem. Connected components of a differentiable manifold
are open (and closed).

Proof. Let M be a manifold and N a connected component of M. Let $x \in N$. Then there exists a chart $c = (U, \varphi, \pi)$ around x such that $\varphi(U)$ is a ball. $\implies \varphi(U)$ is connected $\implies U$ is connected. $\implies U \subset N$, $\implies N$ is open. All connected components are open. $X \setminus N$ is a union of components. $\implies N$ is also closed. \square
M manifold, \(x \in M \)
\(c = (U, \varphi, n) \) chart around \(x \).

If \(d = (V, \psi, m) \) is another chart around \(x \)
\(\varphi \circ \psi^{-1} : \varphi(U \cap V) \rightarrow \psi(U \cap V) \)
is a diffeomorphism \(\Rightarrow n = m \)
\(\Rightarrow \dim_x M = n \)-dimension of \(M \) at \(x \).

\(\circ \ x \rightarrow \dim_x M \) is a locally constant function (it is constant on a neighborhood of \(x \)).

Assume that \(\dim_x M \) has two different values \(n, m \).
Then \(U = \{ x \in M \mid \dim_x M = n \} \)
\(V = \{ x \in M \mid \dim_x M \neq n \} \)
are open sets in \(M \), \(U \cup V = M \)
\(U, V \neq \emptyset \) and \(U \cap V = \emptyset \).
Hence \(M \) is not connected.

\[\Rightarrow \quad \text{Local dimension} \ \dim_x M \]
is constant on connected components of a manifold.

If the manifold is connected, \(\dim_x M = \dim M \)
dimension of \(M \).
Products.

- M, N are manifolds
- $M \times N$ - product
- Topological space
- $U \subseteq M \times N$ is open if for any $(x, y) \in U$, there exist open $U_x \ni x$ in M, $V_y \ni y$ in N such that $U_x \times V_y \subseteq U$.
- Define charts on $M \times N$

$c = (U, \varphi, m)$
$d = (V, \psi, n)$

$c \times d = (U \times V, \varphi \times \psi, m+n)$

This defines on $M \times N$ a structure of differentiable manifold. - Product manifold
of M and N,

Lie groups

A Lie group G is a

(a) group;

(b) manifold;

$m : M \times M \rightarrow M$

is differentiable map

$i : M \rightarrow M$ \hspace{1cm} i(a) = a^{-1}

is a differentiable map.