Second reduction

\[U \rightarrow \emptyset \rightarrow V \]

Assume that for any \(a \in V \) there exists an open neighborhood \(V_a \) of \(a \), \(V_a \subset V \) such that the formula holds for functions \(f \in C_0(\mathbb{R}^n) \) such that
Let \(f \in C_c(\mathbb{R}^n) \) with
\[
\text{supp } f \subset V_a.
\]

Then \((V_a; \alpha \in K) \) is an open cover of \(K \). Let
\[
(\psi_1, \ldots, \psi_m)
\]
be a partition of unity subordinated to the cover \((V_a; \alpha \in K) \).

Then
\[
\sum_{i=1}^{m} \psi_i(y) = 1 \text{ for } y \in K.
\]

Moreover,
\[
f(y) = \sum_{i=1}^{m} \psi_i(y) f(y) = \sum_{i=1}^{m} (\psi_i f)(y), \quad y \in \mathbb{R}^n.
\]
Put $f_i = f \cdot q_i$. Then $\text{supp } f_i \subset V_i$ for some $a_i \in K$.

By the assumption, we have

$$\int_{\mathbb{R}^m} f_i(x) |J(x)| \, dx = \int_{\mathbb{R}^m} f_i(x) \, dx = \int_{\mathbb{R}^m} f_i(x) \, dx$$

for $1 \leq i \leq m$. Hence

$$\int_{\mathbb{R}^m} f(x) \, dx = \int_{\mathbb{R}^m} \sum_{i=1}^{m} f_i(x) \, dx = \sum_{i=1}^{m} \int_{\mathbb{R}^m} f_i(x) \, dx =$$

$$= \sum_{i=1}^{m} \int_{\mathbb{R}^m} f_i(x) \, dx = \sum_{i=1}^{m} \int_{\mathbb{R}^m} f_i(x) |J_{\tau}(x)| \, dx =$$
\[
= \int \sum_{i=1}^{\infty} f_i(T(x)) \left| \mathcal{J}_T(x) \right| \, dx = \\
= \int f(T(x)) \left| \mathcal{J}_T(x) \right| \, dx \\
\text{So, the formula holds for } f.
\]

(This is a typical example of reducing a global statement to local using partition of unity.)
Primitive maps

Let \(\mathcal{G} : \mathcal{U} \rightarrow \mathcal{V} \), \(\mathcal{U} \) and \(\mathcal{V} \) open in \(\mathbb{R}^m \). Then

\[
\begin{array}{c}
\text{U} \\
\downarrow \mathcal{G} \\
\text{V}
\end{array}
\]

\(\mathcal{G} (x) = (G_1 (x), \ldots, G_m (x)) \)

where

\(G_i : \mathbb{R}^m \rightarrow \mathbb{R} \), \(1 \leq i \leq m \).

We say that \(\mathcal{G} \) is **primitive** if there exists \(m \), \(1 \leq m \leq m \), such that

\(G_i (x_1, \ldots, x_m) = x_i \)

for \(1 \leq i \leq m \), \(i \neq m \).

In this case

\(G_m (x) = g (x) \)

is a function on \(\mathcal{U} \).

Assume, in addition, that
G is a continuously differentiable bijection of U onto V. Then

$$G'(x) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \ddots & \ddots \\
0 & \cdots & 1 \\
0 & \cdots & 0
\end{bmatrix}$$

Hence, we have

$$J_G(x) = \det G'(x) = \partial_{x} g(x).$$

Assume that $J_G(x) \neq 0$ on U. Then we have

$$\partial_{x} g(x) \neq 0$$

on U, let f be a continuous
function with compact support in V. Then $f \circ G$ is a continuous function with compact support in V. Moreover, we have

$$\int f(G(x)) |J_G(x)| \, dx = \int \ldots \int f(G(x)) \left(\frac{\partial m g(x)}{\partial x_m} \right) \, dx \ldots \, dx$$

since the result doesn't depend on the order of integration.

Fix $x_1, \ldots, x_{m-1}, x_{m+1}, \ldots, x_n$. Then $g(x_{m}) = g(x_1, \ldots, x_{m-1}, x_{m+1}, \ldots, x_n)$ is a differentiable function on an open set in IR^n. Then

$$g'(x_m) = \left(\frac{\partial m g}{\partial x_m} \right)(x_1, \ldots, x_{m-1}, x_{m+1}, \ldots, x_n)$$
Put
\[\varphi(x_m) = f(x_1, \ldots, x_m, \ldots, x_m) \].
Then
\[\varphi(\gamma(x_m)) = f(x_1, \ldots, g(x), \ldots, x_m) \]
Hence, by 1-dim. version of change of variables formula, we know that
\[\int f(x_1, \ldots, x_{m-1}, g(x), \ldots, x_m) \left| \frac{\Delta g(x_1, \ldots, x_m, x_{m-1})}{dx_m} \right| dx_m = \]
\[= \int \varphi(\gamma(x_m)) \left| \frac{\Delta \gamma(x)}{dx_m} \right| dx_m = \]
\[= \int \varphi(x_m) dx_m = \]
\[= \int f(x_1, \ldots, x_m, \ldots, x_m) dx_m \]
Plugging this in the previous expression we get
\[\int f(G(x)) |J_G(x)| \, dx = \int f(x) \, dx. \]

Hence, the change of variables formula holds for primitive maps.