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CHAPTER 1

Sheaves of differential operators

1. Twisted sheaves of differential operators

Let X be a smooth algebraic variety over an algebraically closed field k of
characteristic zero, OX the structure sheaf of X, TX the tangent sheaf of X and
DX the sheaf of differential operators on X. We consider the category of pairs (A, i),
where A is a sheaf of associative k-algebras with identity on X and i : OX −→ A
a morphism of k-algebras with identity. The sheaf DX with the natural inclusion
iX : OX −→ DX is an object of this category. We say that a pair (D, i) is a twisted
sheaf of differential operators on X if it is locally isomorphic to the pair (DX , iX),
i.e. if X admits a cover by open sets U such that (D|U, i|U) ∼= (DU , iU ).

Now we want to discuss the natural parametrization of twisted sheaves of dif-
ferential operators on X. First we need some preparation.

1.1. Lemma. Let φ be an endomorphism of (DX , iX). Then there exists a closed
1-form ω on X such that

φ(ξ) = ξ − ω(ξ)

for any local vector field ξ ∈ TX , and φ is completely determined by ω. In particular,
φ is an automorphism of (DX , iX).

Proof. Let f ∈ OX and ξ ∈ TX . Then

[φ(ξ), f ] = [φ(ξ), φ(f)] = φ([ξ, f ]) = φ(ξ(f)) = ξ(f).

Evaluating this on the function 1 we get

φ(ξ)(f) = ξ(f) + fφ(ξ)(1).

Therefore, we can put ω(ξ) = −φ(ξ)(1). Obviously, ω is a 1-form on X. Also, we
have

ω([ξ, η]) = −φ([ξ, η])(1) = −(φ(ξ)φ(η)− φ(η)φ(ξ))(1)

= φ(ξ)(ω(η))− φ(η)(ω(ξ)) = ξ(ω(η))− η(ω(ξ))

for ξ, η ∈ TX . Therefore,

dω(ξ ∧ η) = ξ(ω(η))− η(ω(ξ))− ω([ξ, η]) = 0

for ξ, η ∈ TX , i.e. dω = 0 and ω is closed. It is evident that φ is completely
determined by ω. Also, φ preserves the filtration of DX and the induced endomor-
phism Grφ of GrDX is the identity morphism. This clearly implies that φ is an
automorphism. �

By 1.1, every automorphism φ of (DX , iX) determines a closed 1-form ω on X.
Evidently, this map is an monomorphism of the multiplicative group Aut(DX , iX)
into the additive group Z1(X) of closed 1-forms on X.
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2 1. SHEAVES OF DIFFERENTIAL OPERATORS

1.2. Lemma. The natural morphism of Aut(DX , iX) into Z1(X) is an isomor-
phism.

Proof. It remains to show this morphism is surjective. Let ω be a closed
1-form on X. Then we can define a map φ of TX into DX by φ(ξ) = ξ − ω(ξ), for
ξ ∈ TX . Evidently, φ satisfies conditions (ii) and (iii) of [9]. Also, since ω is closed,
for ξ, η ∈ TX , we have

φ([ξ, η]) = [ξ, η]− ω([ξ, η]) = [ξ, η]− ξ(ω(η)) + η(ω(ξ))

= [ξ − ω(ξ), η − ω(η)] = [φ(ξ), φ(η)];

i.e. the condition (i) is also satisfied. Therefore, φ extends to an endomorphism of
(DX , iX). By 1.1, φ is actually an automorphism. �

Let (D, i) be a twisted sheaf of differential operators on X. Then there exists
an open cover U = (Uj ; 1 ≤ j ≤ n) such that (D, i)|Uj is isomorphic to (DUj , iUj )
for 1 ≤ j ≤ n. For each j fix an isomorphism ψj : (D, i)|Uj −→ (DUj , iUj ). Then
there exist an automorphism φjk of (DUj∩Uk , iUj∩Uk) such that the diagram

(D, i)|Uj ∩ Uk

ψk

||

ψj

""
(DUj∩Uk , iUj∩Uk)

φjk

// (DUj∩Uk , iUj∩Uk)

commutes, i.e. ψj = φjk ◦ ψk. By 1.2, there exists a closed 1-form ωjk on Uj ∩ Uk
which determines φjk. If Uj ∩ Uk ∩ Ul 6= ∅ we have on it

ψj = φjk ◦ ψk = φjk ◦ φkl ◦ ψl,

hence, φjl = ψjk ◦ ψkl on Uj ∩ Uk ∩ Ul. This in turn implies that

φjl(ξ) = ξ − ωjl(ξ) = (φjk ◦ φkl)(ξ) = φjk(ξ − ωkl(ξ)) = ξ − ωjk(ξ)− ωkl(ξ)

for ξ ∈ TUj∩Uk∩Ul , i.e.

ωjl = ωjk + ωkl

on Uj ∩ Uk ∩ Ul.
Let Z1

X be the sheaf of closed 1-forms on X, and C ·(U ,Z1
X) the Čech complex

of Z1
X corresponding to the cover U . Then ω = (ωjk; 1 ≤ j < k ≤ n) is an element

of C1(U ,Z1
X) and dω = 0, i.e. ω ∈ Z1(U ,Z1

X). Assume now that we take another
set of local isomorphisms ψ′j : (D, i)|Uj −→ (DUj , iUj ), 1 ≤ j ≤ n. This would lead

to another set (φ′jk; 1 ≤ j < k ≤ n) and another ω′ ∈ Z1(U ,Z1
X). Applying 1.2

again, we can get automorphisms σj of (DUj , iUj ), 1 ≤ j ≤ n, such that ψ′j = σj ◦ψj
for 1 ≤ j ≤ n and closed 1-forms ρj , 1 ≤ j ≤ n, associated to them. Evidently,
ρ = (ρj ; 1 ≤ j ≤ n) is an element of C0(U ,Z1

X). Now, we have

σj ◦ φjk ◦ ψk = σj ◦ ψj = ψ′j = φ′jk ◦ ψ′k = φ′jk ◦ σk ◦ ψk
on Uj ∩ Uk, hence σj ◦ φjk = φ′jk ◦ σk. This leads to

ρj + ωjk = ω′jk + ρk



1. TWISTED SHEAVES OF DIFFERENTIAL OPERATORS 3

on Uj ∩Uk. It follows that ω′ − ω = dρ. Therefore, the twisted sheaf of differential
operators (D, i) determines an element of H1(U ,Z1

X).
Therefore we have a well-defined map t : (D, i) 7−→ t(D, i) ∈ H1(X,Z1

X) from
the isomorphism classes of twisted sheaves of differential operators into the first
Čech group of X with coefficients in Z1

X .

1.3. Theorem. The map t defines a bijection between the isomorphism classes
of twisted sheaves of differential operators on X and the elements of H1(X,Z1

X).

Proof. First, we shall check that this map is injective. Let D and D′ be two
twisted sheaves of differential operators such that t(D) = t(D′). Then both of them
determine an open cover U = (Uj ; 1 ≤ j ≤ n) and ω, ω′ ∈ Z1(U ,Z1

X) such that
they define the same element of H1(X,Z1

X); and families of local isomorphisms
ψj : D|Uj −→ DUj , 1 ≤ j ≤ n, and φ′j : D′|Uj −→ DUj , 1 ≤ j ≤ n, as explained in
the previous discussion. By taking possibly a refinement of U , we can assume that
ω − ω′ = dρ for some ρ = (ρj ; l ≤ j ≤ n) ∈ C0(U ,Z1

X). Let σj : DUj −→ DUj be
the automorphism determined by ρj , 1 ≤ j ≤ n. Then φ′′j = σj ◦ φ′j , 1 ≤ j ≤ n, is
a family of local isomorphisms φ′′j : D′|Uj −→ DUj with the property that

σj ◦ φ′jk ◦ ψ′k = σj ◦ ψ′j = ψ′′j = φ′′jk ◦ ψ′′k = φ′′jk ◦ σk ◦ ψ′k
and therefore σj ◦ φ′jk = φ′′jk ◦ σk, i.e. φ′′jk = σj ◦ φ′jk ◦ σ

−1
k on Uj ∩Uk. This implies

that ω′′jk = ω′jk + ρj − ρk on Uj ∩ Uk, i.e. ω′′ = ω′ + dρ = ω. This finally implies

that φjk = φ′′jk on Uj ∩ Uk. Define local isomorphisms θj : D|Uj −→ D′|Uj by

θj = ψ′′j
−1 ◦ ψj for 1 ≤ j ≤ n. Then, on Uj ∩ Uk, we have

θj = ψ′′j
−1 ◦ ψj = (φjk ◦ ψ′′k )−1 ◦ φjk ◦ ψk = ψ′′k

−1 ◦ ψk = θk,

and θ extends to a global isomorphism of D onto D′.
The proof of the surjectivity is the standard “recollement” argument using

1.2. �

Now we shall describe a construction of some twisted sheaves of differential
operators on X. Let L be an invertible OX -module on X and DL the sheaf of all
differential endomorphisms of L. Because L is locally isomorphic to OX , DL is a
twisted sheaf of differential operators on X. Let O∗X be the subsheaf of invertible
elements in OX . Then, as it is well known, the Picard group Pic(X) is equal to
H1(X,O∗X). There exists a natural homomorphism d log : O∗X −→ Z1

X of sheaves
of abelian groups given by the logarithmic derivative, i.e. d log f = f−1df , for
any f ∈ O∗X . It induces morphisms Hp(d log) : Hp(X,O∗X) −→ Hp(X,Z1

X) of
cohomology groups. Let i(L) be the element of H1(X,O∗X) corresponding to L.
Then we have the following result.

1.4. Proposition. For any invertible OX-module L on X,

t(DL) = H1(d log)(i(L)).

Proof. Let U = (Ui; 1 ≤ i ≤ n) be an open cover of X such that L|Ui is
isomorphic to OX |Ui for all i, 1 ≤ i ≤ n. Denote by αi : L|Ui −→ OX |Ui,
1 ≤ i ≤ n, the corresponding OX -module isomorphisms, and by sjk the sections of

O∗X on Uj ∩ Uk defined by sjk = αj(α
−1
k (1)) for all 1 ≤ j < k ≤ n. Then, for a

section s of L|Uj ∩ Uk,

αj(s) = αj(α
−1
k (αk(s))) = sjkαk(s),
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i.e. s = (sjk; 1 ≤ j < k ≤ n) is a 1-cocycle which represents i(L). Also, αi defines

an isomorphism ψi of DL|Ui onto DX |Ui by ψi(u) = αi ◦ u ◦ α−1
i for all 1 ≤ i ≤ n.

This implies that

ψj(u)(f) = (αj ◦ u ◦ α−1
j )(f) = αj(u(α−1

j (f)))

= sjkαk(u(α−1
k (s−1

jk f))) = sjkψk(u)(s−1
jk f),

for any f ∈ OX |Uj ∩ Uk. Therefore, ψj(u) = sjkψk(u)s−1
jk . It follows that

φjk(D) = sjkDs
−1
jk ,

for any D ∈ DX |Uj ∩ Uk. Let ζ ∈ TX |Uj ∩ Uk. Then,

φjk(ζ) = sjk ζ s
−1
jk = ζ − s−1

jk ζ(sjk),

i.e. ωjk = s−1
jk dsjk. Therefore, the 1-cocycle ω which represents t(DL) is given by

(s−1
jk dsjk; 1 ≤ i < j ≤ n). �

Now we want to study the functoriality questions.
Let X and Y be two smooth algebraic varieties, ϕ : X −→ Y a morphism

of algebraic varieties and D a twisted sheaf of differential operators on Y . Then
DX→Y = ϕ∗(D) is an OX -module for the left multiplication and a right ϕ−1(D)-
module for the right multiplication. We denote by Dϕ the sheaf of all differential
endomorphisms of the right ϕ−1(D)-module DX→Y . Evidently, Dϕ is a sheaf of
associative algebras on Y . There is also a natural morphism of sheaves of alge-
bras iϕ : OX −→ Dϕ. Hence, from [9] we know that the pair (Dϕ, iϕ) is locally
isomorphic to (DX , iX), i.e. Dϕ is a twisted sheaf of differential operators on X.

By 1.3, Dϕ determines an element t(Dϕ) of H1(X,Z1
X). Now we want to

calculate t(Dϕ).
First we need a lifting result. Let (C, i) and (D, j) be two twisted sheaves of

differential operators on Y , and ψ : (C, i) −→ (D, j) an isomorphism. Therefore,
ψ is an OY -module isomorphism for the structures given by both left and right
multiplication. Hence, ψ induces an OX -module isomorphism ϕ∗(ψ) : CX→Y −→
DX→Y of OX -modules. Also, if u ∈ CX→Y , v ∈ ϕ−1(C), we have

ϕ∗(ψ)(uv) = ϕ∗(ψ)(u)ϕ−1(ψ)(v).

It follows that, for any z ∈ Cϕ, u ∈ DX→Y , v ∈ ϕ−1(D), we have

(ϕ∗(ψ)zϕ∗(ψ−1))(uv) = ϕ∗(ψ)(z(ϕ∗(ψ−1)(u)ϕ−1(ψ−1)(v)))

= ϕ∗(ψ)((zϕ∗(ψ−1)(u))ϕ−1(ψ−1)(v)) = (ϕ∗(ψ)zϕ∗(ψ−1))(u)v,

i.e. ϕ∗(ψ)zϕ∗(ψ−1) ∈ Dϕ. Hence, if we put

ϕ#(ψ)(z) = ϕ∗(ψ)zφ∗(ψ−1),

ϕ#(ψ) : Cϕ −→ Dϕ is an isomorphism of sheaves of k-algebras on X. Evidently,
jϕ = ϕ#(ψ) ◦ iϕ. Therefore, ϕ#(ψ) is an isomorphism of twisted sheaves of differ-
ential operators. We call it the lifting of ψ. Also, for any z ∈ Cϕ, u ∈ CX→Y , we
have

(ϕ#(ψ)(z))ϕ∗(ψ)(u) = ϕ∗(ψ)(zu).

Now, we consider the special case of an automorphism α of DY . By 1.2, it is
determined by a closed 1-form ω on Y . By [9], there is a natural isomorphism
δ of the pair (DX , iX) with (DϕY , iY,ϕ). We want to calculate the automorphism
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induced by the lifting ϕ#(α) of α on DX ; more precisely, the closed 1-form on X
it determines by 1.2.

Let x ∈ X and U a small open neighborhood of ϕ(x) ∈ Y such that we can
find fi ∈ OY (U), 1 ≤ i ≤ dimY , such that dfi, 1 ≤ i ≤ dimY , form a basis of the
free OU -module T ∗Y |U . Let ∂i, be the dual basis in TY |U . Then, as we have seen
in [9], for a local vector field ξ around x, we have

γ(ϕ#(α)(ξ))(1) = β(ϕ#(α)(ξ)(1⊗ 1)) = β(ϕ∗(α)(ξ(1⊗ 1)))

= β(ϕ∗(α)(
∑

ξ(fi ◦ ϕ)⊗ ϕ−1∂i))) = β(
∑

ξ(fi ◦ ϕ)⊗ ϕ−1(α∂i))

= −
∑

ξ(fi ◦ ϕ)ω(∂i) = −ω(
∑

ξ(fi ◦ ϕ)∂i) = −(ϕ∗ω)(z),

here we denoted by ϕ∗ω the 1-form on X induced by ω. Therefore ϕ∗ω is the closed
1-form associated to ϕ#(α).

Now we can apply this fact to the calculation of t(Dϕ). Let U = (Ui; 1 ≤ i ≤
n) be an open cover of X and ψi : (D, i)|Ui −→ (DY , iY )|Ui the corresponding
isomorphisms. As before, for 1 ≤ j < k ≤ n, denote by φjk the automorphisms of
(DY , iY )|Uj∩Uk such that ψj = φjk ◦ψk. Let V = (Vi; 1 ≤ i ≤ n) be the open cover
of X given by Vi = ϕ−1(Ui), 1 ≤ i ≤ n. Then, the lifting ϕ#(ψi) is an isomorphism
of (Dϕ, iϕ)|Ui onto (DX , iX)|Ui, and the liftings ϕ#(φjk) are automorphisms of
(DY , iY )|Uj ∩ Uk such that

ϕ#(ψj) = ϕ∗(φjk) ◦ ϕ∗(ψk),

for 1 ≤ j < k ≤ n. From the previous discussion it follows that, if ω = (ωjk; 1 ≤ j <
k ≤ n) is a 1-cocycle of closed 1-forms on Y corresponding to D, then (ϕ∗ωjk; 1 ≤
j < k ≤ n) is a 1-cocycle of closed 1-forms on X corresponding to Dϕ. The map
ω −→ ϕ∗ω of closed 1-forms on Y into closed 1-forms on X induces a morphism
ϕ−1(Z1

Y ) −→ Z1
X of the sheaves of vector spaces. This morphism, using [6, 3.2.2],

induces linear maps Zp(ϕ) : Hp(Y,Z1
Y ) −→ Hp(X,Z1

X) for each p ∈ Z+. Therefore,
our previous discussion actually proves the following result.

1.5. Proposition. Let ϕ : X −→ Y be a morphism of smooth algebraic vari-
eties, and D a twisted sheaf of differential operators on Y . Then

t(Dϕ) = Z1(ϕ)(t(D)).

Moreover, the construction behaves well with respect to the composition of
morphisms.

1.6. Proposition. Let ϕ : X −→ Y and ψ : Y −→ Z be morphisms of smooth
algebraic varieties and D a twisted sheaf of differential operators on Z. Then Dψ◦ϕ
is naturally isomorphic to (Dψ)ϕ.

Proof. Evidently,

(ψ ◦ ϕ)∗(D) = ϕ∗(ψ∗(D)) = ϕ∗(DY→Z) = OX ⊗ϕ−1(OY ) ϕ
−1(DY→Z)

= OX⊗ϕ−1(OY )ϕ
−1(Dψ)⊗ϕ−1(Dψ)ϕ

−1(DY→Z) = (Dψ)X→Y⊗ϕ−1(Dψ)ϕ
−1(DY→Z)

as an OX -module and right (ψ ◦ ϕ)−1(D)-module. Also, the action of (Dψ)ϕ on
the first factor in the last expression evidently commutes with the right action of
(ψ ◦ϕ)−1(D). Therefore, there is a natural morphism of (Dψ)ϕ into Dψ◦ϕ. By 1.1,
this morphism is an isomorphism of twisted sheaves of differential operators. �
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In the following we shall identify (Dψ)ϕ with Dψ◦ϕ using this isomorphism.
Another construction we want to discuss is the twist of a twisted sheaf of dif-

ferential operators D on a smooth algebraic variety X by an invertible OX -module
L. If we consider D as an OX -module for the left multiplication, we can form
the OX -module L ⊗OX D. The sheaf L ⊗OX D is a right D-module for the right
multiplication on the second factor. Therefore, we can consider the sheaf DL of
local differential endomorphisms of the right D-module L ⊗OX D. It is obviously
a sheaf of k-algebras on X. Also, because L ⊗OX D is an OX -module, there is a
natural homomorphism iL : OX −→ DL. We claim that (DL, iL) is a twisted sheaf
of differential operators on X. Let U = (Ui; 1 ≤ i ≤ n) be an open cover of X
such that L|Ui is isomorphic to OX |Ui and D|Ui is isomorphic to DX |Ui. There-
fore, as an OX |Ui-module, (L ⊗OX D)|Ui is isomorphic to DX |Ui. Also, under
this isomorphism, the right D|Ui-action on (L ⊗OX D)|Ui corresponds to the right
DX |Ui-action on DX |Ui. This induces an isomorphism of the sheaves of differential
endomorphisms, and therefore identifies DL|Ui with the sheaf of differential endo-
morphisms of DX |Ui considered as a right DX |Ui-module. Evidently, this sheaf
of algebras is naturally isomorphic to DX |Ui. Therefore, DL is a twisted sheaf of
differential operators on X. It is called the twist of D by L.

We start the study of twists with the following result.

1.7. Lemma. Let L be an invertible OX-module on a smooth algebraic variety
X. Then the twist (DX)L of the sheaf of differential operators DX is naturally
isomorphic to DL.

Proof. Let IX be the left ideal in DX generated by TX . Then, we have an
exact sequence of OX -modules

0 −→ IX −→ DX −→ OX −→ 0,

and, by tensoring with L,

0 −→ L⊗OX IX −→ L⊗OX DX −→ L −→ 0.

From the construction of (DX)L is clear that this is an exact sequence of (DX)L-
modules. Therefore there is a natural morphism of (DX)L into DL. By 1.1, it is an
isomorphism of twisted sheaves of differential operators. �

In the following we shall identify (DX)L with DL using this isomorphism.

1.8. Proposition. Let D be a twisted sheaf of differential operators on a smooth
algebraic variety X and L an invertible OX-module. Then

t(DL) = t(D) +H1(d log)(i(L)).

Proof. Let U = (Ui; 1 ≤ i ≤ n) be an open cover of X, and αi : L|Ui −→
OX |Ui and ψi : (D, i)|Ui −→ (DX , iX)|Ui, 1 ≤ i ≤ n, local isomorphisms. As in the
proofs of 1.3 and 1.4, we denote by φjk the automorphisms of (DX , iX)|Uj∩Uk such

that ψj = φjk ◦ ψk and sjk = αj(α
−1
k (1)) ∈ O∗X for 1 ≤ j < k ≤ n. For 1 ≤ i ≤ n,

σi = αi ⊗ ψi : (L ⊗OX D)|Ui −→ DX |Ui is an isomorphism of OX -modules, and

σi(s⊗ uv) = αi(s)ψi(uv) = αi(s)ψi(u)ψi(v) = σi(s⊗ u)ψi(v),

for s ∈ L|Ui, u, v ∈ D|Ui. Therefore, if we identify the differential endomorphisms
of DX , considered as a right DX -module for the right multiplication, with DX via
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the map T −→ T (1), we have a natural isomorphism τi : DL|Ui −→ DX |Ui given
by

τi(u) = (σi ◦ u ◦ σ−1
i )(1) = σi(u(α−1

i (1)⊗ 1)).

Also, for 1 ≤ j < k ≤ n,

σj(s⊗ v) = αj(s)ψj(v) = sjkαk(s)φjk(ψk(v)) = sjkφjk(σk(s⊗ v)),

for any s ∈ L|Uj ∩ Uk and v ∈ D|Uj ∩ Uk, what implies that

τj(u) = σj(u(α−1
j (1)⊗ 1)) = sjkφjk(σk(u(s−1

jk α
−1
k (1)⊗ 1)))

= sjkφjk(σk(u(α−1
k (1)⊗ s−1

jk ))) = sjkφjk(σk(u(α−1
k (1)⊗ 1)s−1

jk ))

= sjkφjk(σk(u(α−1
k (1)⊗ 1))s−1

jk = sjkφjk(τk(u))s−1
jk

for u ∈ DL|Uj ∩ Uk. If we put

ρjk(v) = sjkφjk(v)s−1
jk

for v ∈ DX |Uj ∩ Uk, we get an automorphism ρjk of DX |Uj ∩ Uk such that τj =
ρjk ◦ τk. As before, denote by ω = (ωjk; 1 ≤ j < k ≤ n) the element of C1(U ,Z1

X)
corresponding to (φjk; 1 ≤ j < k ≤ n). Let ξ ∈ TX |Uj ∩ Uk. Then

ρjk(ξ) = sjkφjk(ξ)s−1
jk = sjk(ξ − ωjk(ξ))s−1

jk = ξ − s−1
jk dsjk(ξ)− ωjk(ξ),

hence, the element of C1(U ,Z1
X) corresponding to (ρjk; 1 ≤ j < k ≤ n) is equal to

(ωjk + s−1
jk dsjk; 1 ≤ j < k ≤ n). �

1.9. Proposition. Let D be a twisted sheaf of differential operators on X and
L and L′ two invertible OX-modules. Then the twisted sheaf of differential operators

(DL)L
′

is naturally isomorphic to DL′⊗OXL.

Proof. Evidently,

L′ ⊗OX L ⊗OX D = (L′ ⊗OX DL)⊗DL (L ⊗OX D),

as an OX -module and right D-module. Therefore, the right action of (DL)L
′

on
the first factor in the second expression commutes with the right D-action. This

gives a natural morphism of (DL)L
′

into DL′⊗OXL. By 1.1, this morphism is an
isomorphism of twisted sheaves of differential operators. �

In the following we shall identify (DL)L
′

with DL′⊗OXL using this isomorphism.

1.10. Proposition. Let ϕ : X −→ Y be a morphism of smooth algebraic
varieties, D a twisted sheaf of differential operators on Y and L an invertible OY -
module. Then the twisted sheaf of differential operators (DL)ϕ is naturally isomor-
phic to (Dϕ)ϕ

∗(L).

Proof. Evidently,

DX→Y = ϕ∗(D) = ϕ∗(L−1 ⊗OY L ⊗OY D) = ϕ∗(L)−1 ⊗OX ϕ∗(L ⊗OY D)

= ϕ∗(L)−1 ⊗OX (DL)X→Y ⊗ϕ−1(DL) ϕ
−1(L ⊗OY D)

= (ϕ∗(L)−1 ⊗OX (DL)ϕ)⊗(DL)ϕ (DL)X→Y ⊗ϕ−1(DL) ϕ
−1(L ⊗OY D),

as a OX -module and right ϕ−1(D)-module. It is clear that the left action of
((DL)ϕ)φ

∗(L) on the first factor commutes with the right action of ϕ−1(D). There-
fore there is a natural morphism of ((DL)ϕ)ϕ

∗(L) into Dϕ. By 1.1, this is an
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isomorphism of twisted sheaves of differential operators. By twisting this natural
isomorphism by ϕ∗(L) and using 1.9, we get that (DL)ϕ is naturally isomorphic to
(Dϕ)ϕ

∗(L). �

If A is a sheaf of k-algebras on X, we denote by A◦ the opposite sheaf of
k-algebras on X.

1.11. Proposition. Let (D, i) be a twisted sheaf of differential operators on a
smooth algebraic variety X. Then (D◦, i) is a twisted sheaf of differential operators
on X.

Let n = dimX and ωX be the sheaf of differential forms of degree n on X.
Then there is a natural action of the sheaf of Lie algebras TX on the sheaf ωX ; a
vector field ξ acts by the corresponding Lie derivative Lξ. In fact, if U is an open
set in X, ω ∈ ωX(U), and ξ, η1, η2, . . . , ηn local vector fields on U , we have

(Lξω)(ξ1∧η2∧ . . .∧ηn) = ξ(ω(η1∧η2∧ . . .∧ηn))−
n∑
i=1

ω(η1∧ . . .∧ [ξ, ηi]∧ . . .∧ηn).

Let ξ and ξ′ be local vector fields on U . Then

([Lξ, Lξ′ ]ω)(η1 ∧ . . . ∧ ηn) = ξ((Lξ′ω)(η1 ∧ . . . ∧ ηn))− ξ′((Lξω)(η1 ∧ . . . ∧ ηn))

−
n∑
i=1

(Lξ′ω)(η1 ∧ . . . ∧ [ξ, ηi] ∧ . . . ∧ ηn) +

n∑
i=1

(Lξω)(η1 ∧ . . . ∧ [ξ′, ηi] ∧ . . . ∧ ηn)

= [ξ, ξ′](ω(η1 ∧ . . . ∧ ηn)) +

n∑
i=1

ω(η1 ∧ . . . ∧ [ξ′, [ξ, ηi]] ∧ . . . ∧ ηn)

−
n∑
i=1

ω(η1 ∧ . . . ∧ [ξ, [ξ′, ηi]] ∧ . . . ∧ ηn) = [ξ, ξ′](ω(η1 ∧ . . . ∧ ηn))

−
n∑
i=1

ω(η1 ∧ . . . ∧ [[ξ, ξ′], ηi] ∧ . . . ∧ ηn) = (L[ξ,ξ′]ω)(η1 ∧ . . . ∧ ηn),

showing that this is an action of a sheaf of Lie algebras.
Also, for a regular function f on U an a vector field ξ we have

Lξ(fω)(η1 ∧ . . . ∧ ηn) = ξ(fω(η1 ∧ . . . ∧ ηn))−
n∑
i=1

fω(η1 ∧ . . . ∧ [ξ, ηi] ∧ . . . ∧ ηn)

= (ξ(f)ω + fLξ(ω))(η1 ∧ . . . ∧ ηn).

This immediately implies that [Lξ, f ] = ξ(f), i.e. Lξ is a first order differential
operator on ωX .

Taking a small U , we can assume that TU is a free OU -module, i.e. we can find
local vector fields η1, η2, . . . , ηn on U which form a OU -basis of TU . Then we can
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represent ξ as ξ =
∑n
i=1 giηi for some gi ∈ OU . This implies that

(Lfξω)(η1 ∧ . . . ∧ ηn) = fξ(ω(η1 ∧ . . . ∧ ηn))−
n∑
i=1

ω(η1 ∧ . . . ∧ [fξ, ηi] ∧ . . . ∧ ηn)

= fξ(ω(η1 ∧ . . . ∧ ηn))−
n∑
i=1

fω(η1 ∧ · · · ∧ [ξ, ηi] ∧ . . . ∧ ηn)

+

n∑
i=1

ω(η1∧. . .∧ηi(f)ξ∧. . .∧ηn) = fLξ(ω)(η1∧. . .∧ηn)+

n∑
i=1

ηi(f)giω(η1∧. . .∧ηn)

= (fLξ(ω) + ξ(f)ω)(η1 ∧ . . . ∧ ηn)Lξ(fω)(η1 ∧ η2 ∧ . . . ∧ ηn),

i.e. Lfξ = Lξf . This implies that the map λ : ξ 7→ −Lξ is an OX -module morphism
from TX into DωX , considered as an OX -module for the right multiplication. It has
the property that

λ([ξ, η]) = [λ(η), λ(ξ)]

for ξ, η ∈ TX . Therefore, it extends, by [9], to a morphism of the sheaf of k-algebras
DX into D◦ωX , which is the identity on OX . By 1.1, this implies that it is actually
an isomorphism.

Hence, we have the following result.

1.12. Lemma. Let X be a smooth algebraic variety of dimension n. Let ωX be
the invertible OX-module of differential n-forms on X. Then the pair (D◦X , iX) is
naturally isomorphic to (DωX , iωX ).

This result immediately implies 1.11. Therefore, we can calculate the isomor-
phism class of D◦.

1.13. Proposition. Let X be a smooth algebraic variety and D a twisted sheaf
of differential operators on X. Then

t(D◦) = −t(D) +H1(d log)(i(ωX)).

Proof. Let U = (Ui; 1 ≤ i ≤ n) be an open cover of X, and ψi : (D, i)|Ui −→
(DUi , iUi) corresponding isomorphisms. As before, for 1 ≤ j < k ≤ n, denote by
φjk the automorphisms of (DUj∩Uk , iUj∩Uk) such that ψj = φjk ◦ ψk. Let ωjk be
the closed 1-form determined by φjk by 1.2, i.e. such that φjk(ξ) = ξ − ωjk(ξ) for
any local vector field ξ on Uj ∩ Uk. Then ψi, 1 ≤ i ≤ n, are also isomorphisms of
(D◦, i)|Ui onto (D◦X , iX)|Ui. The composition with the map λ which we introduced
in the proof of 1.11 gives us isomorphisms τi : (D◦, i)|Ui −→ (DωX , iωX )|Ui, 1 ≤
i ≤ n. Also, the automorphisms φjk define, by σjk = λ ◦ φjk ◦ λ−1, automorphisms
of (DωX , iωX )|Uj ∩ Uk such that τj = σjk ◦ τk, 1 ≤ j < k ≤ n. Evidently, σjk is
determined by

σjk(λ(ξ)) = λ(φjk(ξ)) = λ(ξ − ωjk(ξ)) = λ(ξ)− ωjk(ξ)

for any local vector field ξ on Uj ∩ Uk. We can assume that, the open sets Ui are
so small that there exist OUi -module isomorphisms αi : ωUi −→ OUi , 1 ≤ i ≤ n.
Then they define isomorphisms βi : (DωUi , iωUi ) −→ (DUi , iUi), 1 ≤ i ≤ n, by

βi(η) = αi ◦ η ◦ α−1
i for any η ∈ DωUi . Also, as in the proof of 1.4, we put

sjk = αj(α
−1
k (1)) for all 1 ≤ j < k ≤ n. The composition γi = βi ◦ τi is an
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isomorphism of (D◦, i)|Ui onto (DUi , iUi) for 1 ≤ i ≤ n. The automorphisms
δjk = βj ◦ σjk ◦ β−1

k , 1 ≤ j < k ≤ n, satisfy

γj = βj ◦ τj = βj ◦ σjk ◦ τk = δjk ◦ γk.

Let ξ be a local vector field on Uj ∩ Uk. Then, for f ∈ OX ,

βi(λ(ξ))(f) = αi(λ(ξ)α−1
i (f)) = αi(λ(ξ)(fα−1

i (1)))

= −αi(Lξ(fα−1
i (1))) = −ξ(f) + βi(λ(ξ))(1),

hence, we have

β−1
i (ξ) = −λ(ξ) + βi(λ(ξ))(1).

This leads to

δjk(ξ) = βj(σjk(β−1
k (ξ)) = −βj(σjk(λ(ξ))) + βk(λ(ξ))(1)

= −βj(λ(φjk(ξ))) + βk(λ(ξ))(1) = −βj(λ(ξ)) + ωjk(ξ) + βk(λ(ξ))(1)

= ξ + ωjk(ξ)− βj(λ(ξ))(1) + βk(λ(ξ))(1).

As in the proof of 1.4, we see that βj(λ(ξ)) = sjkβk(λ(ξ))s−1
jk , what implies that

βj(λ(ξ))(1) = sjkβk(λ(ξ))(s−1
jk ) = −sjkξ(s−1

jk ) + βk(λ(ξ))(1),

and finally

δjk(ξ) = ξ + ωjk(ξ)− βj(λ(ξ))(1) + βk(λ(ξ))(1)

= ξ + ωjk(ξ)− s−1
jk dsjk(ξ) = ξ − (−ωjk + s−1

jk dsjk)(ξ).

�

2. Homogeneous twisted sheaves of differential operators

Let G be a connected algebraic group over an algebraically closed field k of
characteristic zero and X its homogeneous space. By differentiation of the action
of G on the structure sheaf OX of X we get an algebra homomorphism τ : U(g) −→
Γ(X,DX). Clearly, this map is G-equivariant.

Let D be a twisted sheaf of differential operators on X with an algebraic action
γ of G and a morphism of algebras α : U(g) −→ Γ(X,D) such that

(i) the multiplication in D is G-equivariant;
(ii) the differential of the G-action on D agrees with the action T −→ [α(ξ), T ]

for ξ ∈ g and T ∈ D.
(iii) the map α : U(g) −→ Γ(X,D) is a morphism of G-modules.

Then the triple (D, γ, α) is called a homogeneous twisted sheaf of differential op-
erators on X. In this section we shall classify all homogeneous twisted sheaves of
differential operators on X.

Clearly, DX with the natural action of G and the homomorphism τ defines a
homogeneous twisted sheaf of differential operators on X.

On the sheaf U◦ = OX ⊗k U(g) of vector spaces on X we can define a structure
of the tensor product of U(g)-modules by putting

ξ(f ⊗ η) = τ(ξ)f ⊗ η + f ⊗ ξη,
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for ξ ∈ g, η ∈ U(g) and f ∈ OX . On the other hand, U◦ = OX ⊗k U(g) has a
structure of an OX -module, by multiplication on the first factor. Moreover,

[ξ, g](f ⊗ η) = ξ(gf ⊗ η)− gξ(f ⊗ η) = τ(ξ)(g)f ⊗ η = [τ(ξ), g]f ⊗ η
for ξ ∈ g, η ∈ U(g) and f, g ∈ OX . This implies that U(g) acts by differential
operators on U◦, and the corresponding homomorphism Ψ of U(g) into the ring of
differential operators Diff(U◦) on U◦ is compatible with the filtrations by degree.
We can extend Ψ to a OX -module morphism of OX ⊗k U(g) into Diff(U◦) which
attaches to f ⊗ξ, f ∈ OX and ξ ∈ U(g), the differential operator fΨ(ξ) ∈ Diff(U◦).
For f ∈ OX and ξ ∈ U(g) we have

Ψ(f ⊗ ξ)(1⊗ 1) = fΨ(ξ)(1⊗ 1) = f ⊗ ξ,
what implies that Ψ : OX ⊗k U(g) −→ Diff(U◦) is injective. We claim that its
image is a sheaf of subrings of Diff(U◦). Clearly, it is an OX -module for the left
multiplication and a right Ψ(U(g))-module for the right multiplication. Therefore,
it remains to show that for any f ∈ OX , ξ ∈ g, the differential operator Ψ(ξ)f is
in the image of Ψ. On the other hand,

Ψ(ξ)f = [Ψ(ξ), f ] + fΨ(ξ) = τ(ξ)f + fΨ(ξ)

and the last expression is evidently in Ψ(OX ⊗k U(g)). This implies that U◦ has a
natural structure of a sheaf of rings such that Ψ : U◦ −→ Diff(U◦) is a homomor-
phism. Moreover, the multiplication is given by

(f ⊗ ξ)(g ⊗ η) = fτ(ξ)g ⊗ η + fg ⊗ ξη
for any f, g ∈ OX , ξ ∈ g and η ∈ U(g). From this it follows that τ extends to a
homomorphism of the sheaf of rings U◦ into DX . Let g◦ = OX ⊗k g, considered as
OX -submodule of U◦. Then

[f ⊗ ξ, g ⊗ η] = fτ(ξ)g ⊗ η − gτ(η)f ⊗ ξ + fg ⊗ [ξ, η]

for any f, g ∈ OX and ξ, η ∈ g; what implies that g◦ is a sheaf of Lie algebras with
this operation. By this calculation, we see that τ defines a homomorphism of g◦

into the sheaf of local vector fields TX on X, which we denote by τ too.

2.1. Lemma. The morphism τ : g◦ −→ TX is an epimorphism.

Proof. Both OX -modules g◦ and TX are locally free, hence the statement
follows from the fact that the linear map Tx(τ) the morphism τ induces on geometric
fibres of g◦ and TX at any x ∈ X is surjective. �

We can define an increasing filtration on U◦ by putting

Fp U◦ = OX ⊗k Fp U(g) for any p ∈ Z+,

where FU(g) is the standard filtration of the enveloping algebra U(g). Clearly, this
filtration is compatible with the algebra structure on U◦ and with the homomor-
phism τ : U◦ −→ DX . Also,

F0 U◦ = OX , F1 U◦ = OX ⊕ g◦,

and F1 U◦ generates U◦ as a sheaf of algebras.
Denote by b◦ the kernel of τ : g◦ −→ TX . Then b◦ is a sheaf of ideals in g◦.

Moreover, if
∑
fi ⊗ ξi ∈ b◦ and g ∈ OX , we have[∑

fi ⊗ ξi, g ⊗ 1
]

=
∑

fiτ(ξi)g ⊗ 1 = 0;
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and this implies that J0 = b◦U◦ is a sheaf of two-sided ideals in U◦.

2.2. Proposition. (i) The morphism τ : U◦ −→ DX is an epimorphism.
(ii) The kernel of τ : U◦ −→ DX is the sheaf of ideals J0.

Proof. (i) Follows from 1.1 and the fact that DX is generated by OX and TX .
(ii) Clearly, J0 = b◦U◦ is contained in the kernel of τ . Also, for any x ∈ X,

the geometric fibre Tx(J0) = bxU(g) is the kernel of the linear map Tx(τ) from the
geometric fibre Tx(U◦) = U(g) of U◦ into the geometric fibre of DX at x. �

Now we want to prove an analogous result for homogeneous twisted sheaves of
differential operators on X.

Let (D, γ, α) be a homogeneous twisted sheaf of differential operators on X.
Then, by (ii), for any ξ ∈ g and f ∈ OX ,

[α(ξ), f ] = [τ(ξ), f ] = τ(ξ)f.

In particular, we see that [[α(ξ), f ], g] = 0 for arbitrary f, g ∈ OX , hence α(ξ) is
of degree ≤ 1 for any ξ ∈ g. We define a map U◦ −→ D by f ⊗ T 7−→ fα(T ) for
f ∈ OX and T ∈ U(g), and by abuse of notation, denote it by α again. Then

α((f ⊗ ξ)(g ⊗ η)) = α(fτ(ξ)g ⊗ η + fg ⊗ ξη) = fτ(ξ)(g)α(η) + fgα(ξη)

= f [α(ξ), g]α(η) + fgα(ξ)α(η) = fα(ξ)gα(η) = α(f ⊗ ξ)α(g ⊗ η),

for any f, g ∈ OX and ξ, η ∈ g. Therefore, α extends to a morphism of sheaves
of rings which is compatible with the natural filtrations. Since GrD = S(TX) =
GrDX and it is generated by Gr1D as an OX -algebra, we immediately conclude
that Grα = Gr τ and Grα : GrU◦ −→ GrD is an epimorphism of sheaves of rings.
This implies that α(b◦) ⊂ OX , i.e. α defines a G-equivariant morphisms σ of the
G-homogeneous OX -module b◦ into OX .

Fix a base point x0 ∈ X. Its stabilizer B0 acts in on the dual space b∗0 of b0.
Denote by I(b∗0) the subspace of B0-invariants in b∗0. Then we have the natural
linear isomorphism between I(b∗0) and the space of all G-equivariant morphisms σ
of the G-homogeneous OX -module b◦ into OX . Therefore, (D, γ, α) determines an
element of I(b∗0).

To each λ ∈ I(b∗0) we can associate a G-equivariant morphism σλ of the G-
homogeneous OX -module b◦ into OX . Let ϕλ : b◦ −→ U◦ given by ϕλ(s) =
s − σλ(s), s ∈ b◦. Then imϕλ generates a sheaf of two-sided ideals Jλ in U◦. We
put

DX,λ = U◦/Jλ.
This is a sheaf of algebras on X.

2.3. Proposition. The sheaf of algebras DX,λ is a twisted sheaf of differential
operators on X.

We say that DX,λ is the homogeneous twisted sheaf of differential operators on
X associated to λ.

As a consequence of the preceding discussion and 2.2, we have the following
result.

2.4. Theorem. The map λ 7−→ DX,λ is an isomorphism of I(b∗0) onto the set
of isomorphism classes of homogeneous twisted sheaves of differential operators on
X.



2. HOMOGENEOUS TWISTED SHEAVES OF DIFFERENTIAL OPERATORS 13

Proof. Let (D, γ, α) be a homogeneous twisted sheaf of differential operators
on X. Then, by the preceding discussion it determines a unique λ ∈ I(b∗0). More-
over, Jλ is in the kernel of the homomorphism α : U◦ −→ D. This implies that
α induces a homomorphism β : DX,λ −→ D of sheaves of rings which is com-
patible with the filtrations of DX,λ and D, and with the natural maps of U(g)
into Γ(X,DX,λ) and Γ(X,D) respectively. Also, Grβ is an isomorphism of graded
sheaves of rings. This implies that β is an isomorphism too. �

To prove 2.3, by 2.2 and the G-homogeneity, it is enough to find a neighborhood
U of the base point x0 and a local automorphism Ψλ of U◦|U such that Ψλ|OU = 1
and Ψλ(J0|U) = Jλ|U .

Let U be an open set in X. Now we want to describe some automorphisms ρ
of U◦|U with the following properties:

(i) ρ(f) = f for any f ∈ OU ,
(ii) Gr ρ is the identity.

Clearly, ρ is completely determined by its values on 1 ⊗ ξ, ξ ∈ g. Moreover, (ii)
implies that ρ(1⊗ ξ) = 1⊗ ξ − ω(ξ)⊗ 1 where ω(ξ) ∈ O(U). By (i) we also have

ρ(f ⊗ ξ) = f ⊗ ξ − fω(ξ)⊗ 1

for any f ∈ OU and ξ ∈ g. To be an automorphism, ρ has to satisfy also

ρ([1⊗ ξ, 1⊗ η]) = [ρ(1⊗ ξ), ρ(1⊗ η)] = 1⊗ [ξ, η]− τ(ξ)ω(η)⊗ 1 + τ(η)ω(ξ)⊗ 1,

i.e.

ω([ξ, η]) = τ(ξ)ω(η)− τ(η)ω(ξ) (1)

for any ξ, η ∈ g. Therefore, ω is a linear map from g into O(U) which is annihilated
by the differential of the Lie algebra cohomology of g with coefficients in O(U).
Moreover, we can extend ω to an OU -module morphism of g◦|U into OU given by

ω(f ⊗ ξ) = fω(ξ) for f ∈ OU and ξ ∈ g.

The relation (1) implies that

ω([f ⊗ ξ, g ⊗ η]) = fgω([ξ, η]) + fτ(ξ)(g)ω(η)− gτ(η)(f)ω(ξ)

= fτ(ξ)(gω(η))− gτ(η)(fω(ξ)) = τ(f ⊗ ξ)(ω(g ⊗ η))− τ(g ⊗ η)(ω(f ⊗ ξ));

i.e. for any two sections s, s′ ∈ g◦|U we have

ω([s, s′]) = τ(s)(ω(s′))− τ(s′)(ω(s)). (2)

Also, we remark that ω is local, i.e. if s ∈ g◦ is such that s(x) = 0 for some x ∈ U
it follows that ω(s)(x) = 0. Moreover, by (2), for s ∈ b◦ and s′ ∈ g◦|U , we have

ω([s′, s]) = τ(s′)(ω(s)),

what implies that the map ω from b◦|U into OU is g◦|U -module morphism.
We shall need the following result.

2.5. Lemma. Let ζ : b◦|U −→ OU be a local g◦|U -module morphism and x ∈ U .
If ζ(s)(x) = 0 for any s ∈ b◦, there exists a neighborhood V ⊂ U of x such that
ζ|V = 0.
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Proof. Let ξ ∈ g. Then,(
τ(ξ)(ζ(s))

)
(x) = ζ([1⊗ ξ, s])(x) = 0.

It follows that all derivatives of ζ(s) at x vanish, hence the germ of ζ(s) at x is
zero. By the coherence of b◦ we see that ζ vanishes in a neighborhood of x. �

On the other hand, if we have a linear map ω : g −→ O(U) satisfying the
relation (1), it defines an automorphism ρω of U◦|U , which satisfies (i) and (ii), by

ρω(f ⊗ ξ) = f ⊗ ξ − fω(ξ)⊗ 1

for any f ∈ OU and ξ ∈ g.
Clearly, all such ω form a vector space.
Now we want to construct some maps ω satisfying the above properties.
(I) Let χ be a character of B0. Let s be a section of the homogeneous invertible

OX -module O(χ) over U . For ξ ∈ g we put

ξs = ω(ξ)s.

Then

ω([ξ, η])s = [ξ, η]s = ξ(ηs)− η(ξs) = ξ(ω(η)s)− η(ω(ξ)s)

= τ(ξ)(ω(η))s− τ(η)(ω(ξ))s+ ω(η)ξs− ω(ξ)ηs =
(
τ(ξ)(ω(η))− τ(η)(ω(ξ))

)
s,

i.e. ω satisfies our conditions.
(II) Let

0 −→ k −→ V −→ k −→ 0

be an exact sequence of algebraic representations of B0, where B0 acts trivially on
k. Let

0 −→ OX −→ V −→ OX −→ 0

be the corresponding exact sequence of G-homogeneous locally free OX -modules.
Let s′ be the section of V which is the image of the section 1 of OX , and s′′ a local
section of V such that its germ at x0 maps into the germ of 1. Then there is a
neighborhood U of x0 such that s′ and s′′ form a basis of V|U as an OU -module,
and

ξs′′ = ω(ξ)s′ and ξs′ = 0

for any ξ ∈ g. Then

ω([ξ, η])s′ = [ξ, η]s′′ = ξ(ω(η)s′)− η(ω(ξ)s′) =
(
τ(ξ)(ω(η))− τ(η)(ω(ξ))

)
s′.

Hence, ω again has the required property.
Now, we want to prove 2.3. First, any B0-invariant linear form λ on b0 vanishes

on [b0, b0]. Let C0 be the identity component of the commutator subgroup of B0.
Then C0 is a closed normal subgroup of B0. The quotient group D0 = B0/C0 is
an algebraic group with commutative identity component, and Lie algebra d0 =
b0/[b0, b0]. Let D0 = L0U0 be a Levi decomposition of D0. Then U0 is an abelian
unipotent subgroup, and the identity component of L0 is the torus consisting of all
semisimple elements in the identity component of D0. Therefore, we have a direct
sum decomposition d0 = l0⊕u0, and both summands are D0-invariant. This implies
that the D0-invariant linear form µ on d0, defined by λ, can be written as a sum of
two D0-invariant linear forms µ1 and µ2 which vanish on l0, resp. u0. By composing
these linear forms with the projection of b0 onto d0 we get the decomposition of λ
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into the sum of λ1 and λ2. We can define a representation of U0 on k2 such that
u ∈ U0 acts via the matrix [

1 µ1(log u)
0 1

]
;

evidently it extends to a representation of D0 in which L0 acts trivially. Moreover,
we can interpret it as a representation of B0. Applying the construction from (II)
we construct in a neighborhood U of x0 a linear map ω1 from g into O(U) which
satisfies (1) and such that ω1|b0 = λ1.

On the other hand, any linear form on l0 is a linear combination of differentials
of characters of the identity component of L0. By averaging, using the component
group of L0, we conclude that every L0-invariant linear form on l0 is a linear com-
bination of L0-invariant characters, i. e. of differentials of one-dimensional repre-
sentations of L0. Applying the construction from (I) we get in a neighborhood U of
x0 a linear map ω2 from g into O(U) which satisfies (1) and such that ω2|b0 = λ2.
Therefore, we get in a neighborhood U of x0, a linear map ω from g into O(U)
which satisfies (1) and such that ω|b0 = λ. The corresponding g◦|U -morphism
ω : b◦|U −→ OU agrees, by 2.5, with σλ on some smaller neighborhood V of x0.
This in turn implies that ρω is an automorphism of U◦|V such that ρω|OV = 1 and
ρω(J0|V ) = Jλ|V .





CHAPTER 2

Cohomology of Dλ-modules

1. Homogeneous twisted sheaves of differential operators on flag
varieties

In this section we want to specialize our construction of homogeneous twisted
sheaves of differential operators from Ch. 1 to the case of a connected semisimple
algebraic group G acting on its flag variety X.

Let g be a complex semisimple Lie algebra, and G the group of inner automor-
phisms of the Lie algebra g. Then the flag variety X of g can be identified with the
variety of Borel subalgebras of g. The group G acts naturally on the trivial vector
bundle X×g −→ X, and the tautological vector bundle B of Borel subalgebras is a
homogeneous vector subbundle of it. We denote, for each x ∈ X, the corresponding
Borel subalgebra of g by bx, and by nx the nilpotent radical of bx. Hence, we have
the homogeneous vector subbundle N of B of nilpotent radicals. Moreover, let Bx
be the Borel subgroup of G corresponding to bx. Then Bx is the stabilizer of x in
G.

Let H = B/N . Then H is a homogeneous vector bundle over X with the fiber
hx = bx/nx over x ∈ X. The group Bx acts trivially on bx/nx, hence H is a trivial
vector bundle over X with global sections h naturally isomorphic to bx/nx for any
x ∈ X. We call the abelian Lie algebra h the Cartan algebra for g.

Let OX be the structure sheaf of the algebraic variety X. As in Ch. 1, §2, let
g◦ = OX⊗Cg be the sheaf of local sections of the trivial bundle X×g. Denote by b◦

and n◦ the corresponding subsheaves of local sections of B and N , respectively. If
we denote by τ the natural homomorphism of the Lie algebra g into the Lie algebra
of vector fields on X, we define a structure of a sheaf of complex Lie algebras on
g◦ by putting

[f ⊗ ξ, g ⊗ η] = fτ(ξ)g ⊗ η − gτ(η)f ⊗ ξ + fg ⊗ [ξ, η]

for f, g ∈ OX and ξ, η ∈ g. If we extend τ to the natural homomorphism of g◦ into
the sheaf of Lie algebras of local vector fields on X, ker τ is exactly b◦. In addition,
we have the following result.

1.1. Lemma. (i) The sheaf b◦ is a sheaf of ideals in g◦. The commutator
on b◦ is OX-linear.

(ii) The sheaf n◦ is a sheaf of ideals in g◦.

Proof. The first assertion in (i) follows from the fact that b◦ = ker τ . More-
over, if

∑
fi ⊗ ξi ∈ b◦, g ∈ OX and η ∈ g we have

[
∑
fi⊗ξi, g⊗η] =

∑
fig⊗[ξi, η]+

∑
fiτ(ξi)g⊗η−

∑
gτ(η)fi⊗ξi = g[

∑
fi⊗ξi, 1⊗η];

this proves immediately the second assertion. Also, by this formula, to prove (ii)
we need only to check that for any

∑
fi ⊗ ξi ∈ n◦ and η ∈ g, the commutator

17
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[
∑
fi⊗ ξi, 1⊗ η] is in n◦. By the homogeneity, g(

∑
fi⊗ ξi) ∈ n◦ for any g ∈ G. By

differentiation, this implies that∑
τ(η)fi ⊗ ξi +

∑
fi ⊗ [η, ξi] ∈ n◦

for any η ∈ g; and, by definition of the bracket, this expression is equal to [1 ⊗
η,
∑
fi ⊗ ξi]. �

The quotient sheaf h◦ = b◦/n◦ is the sheaf of local sections ofH, and is therefore
equal to the sheaf of abelian Lie algebras OX ⊗C h.

Similarly, we defined in Ch. 1, §2, a multiplication in the sheaf U◦ = OX⊗CU(g)
by

(f ⊗ ξ)(g ⊗ η) = fτ(ξ)g ⊗ η + fg ⊗ ξη
where f, g ∈ OX and ξ ∈ g, η ∈ U(g). In this way U◦ becomes a sheaf of complex
associative algebras on X. Evidently, g◦ is a subsheaf of U◦, and the natural
commutator in U◦ induces the bracket operation on g◦. It follows from 1.1 that the
sheaf of right ideals n◦U◦ generated by n◦ in U◦ is a sheaf of two-sided ideals in U◦.
Therefore, the quotient Dh = U◦/n◦U◦ is a sheaf of complex associative algebras
on X.

The natural morphism of g◦ into Dh induces a morphism of the sheaf of Lie
subalgebras h◦ into Dh, hence there is a natural homomorphism φ of the enveloping
algebra U(h) of h into the global sections of Dh. The action of the group G on the
structure sheaf OX and U(g) induces a natural G-action on U◦ and Dh. On the
other hand, the triviality of H implies that the induced G-action on h is trivial. It
follows that φ maps U(h) into the G-invariants of Γ(X,Dh).

1.2. Lemma. (i) The natural morphism φ of U(h) into the subalgebra of
all G-invariants in Γ(X,Dh) is injective.

(ii) The image of φ is in the center of Dh.

Proof. (i) Let x ∈ X. Then the geometric fibre Tx(Dh) of the OX -module
Dh at x is equal to U(g)/nxU(g). The composition of φ with the evaluation of a
section at x corresponds to the natural map

U(h) −→ U(bx)/nxU(bx) −→ U(g)/nxU(g),

which is injective by the Poincaré-Birkhoff-Witt theorem. Therefore, φ is injective.
(ii) Differentiating the G-action we see that elements of φ(U(h)) commute with

the image of g in Dh. Since Dh is generated by OX and the image of g, the assertion
follows. �

Let x ∈ X and bx the Borel subalgebra corresponding to x. Let n̄ be the
nilpotent radical of a Borel subalgebra opposite to bx, and N̄ the corresponding
connected subgroup of G. Then, by Bruhat decomposition [2, 14.11], the orbit map
N̄ −→ X defined by n̄ −→ n̄x is an isomorphism of the variety N̄ onto an open
neighborhood U of x ∈ X. Let s : U −→ N̄ be the inverse map. Clearly, the
inclusion of U(n̄) into U(g) induces a injective morphism of the sheaf of algebras
OU ⊗C U(n̄) into U◦|U . It follows that we have a natural morphism of the sheaf
of algebras OU ⊗C U(n̄) into Dh. Moreover, if we consider the tensor product
(OU ⊗C U(n̄))⊗C U(h) as a sheaf of algebras, by the previous discussion we have a
natural morphism of sheaves of algebras ψ from (OU ⊗C U(n̄))⊗C U(h) into Dh|U .
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1.3. Lemma. The morphism

ψ : (OU ⊗C U(n̄))⊗C U(h) −→ Dh|U

is an isomorphism of sheaves of algebras.

Proof. As in the proof 1.2.(i), we conclude that the composition of ψ with the
evaluation map at u ∈ U corresponds to the evaluation map of (OU⊗CU(n̄))⊗CU(h)
at u composed with the natural linear map of U(n̄)⊗C U(h) into U(g)/nuU(g). By
the Poincaré-Birkhoff-Witt theorem, the last map is an injection. This implies the
injectivity of ψ. It remains to show its surjectivity. Clearly, Dh|U is generated,
as a sheaf of algebras, by OU and the image of g in Dh|U . On the other hand,
as a vector space, g = n̄ ⊕ bu for any u ∈ U , hence we have a well-defined linear
isomorphism ζ(u) of g into itself, which is the identity on n̄ and Ad s(u) on bx.
Therefore, any ξ ∈ g determines a section ζξ : u −→ ζ(u)ξ of g◦ on U . It follows
that Dh|U is generated by OU and the images of the sections u −→ ζ(u)ξ in Dh|U
for ξ ∈ g. But, if ξ ∈ n̄, we have ζ(u)ξ = ξ for any u ∈ U , hence this section is in
the image of ψ, and if ξ ∈ bx, the corresponding section is in the image of ψ either.
It follows that ψ is also surjective. �

In particular, if we view Dh as an U(h)-module, we have the following conse-
quence.

1.4. Corollary. The U(h)-module Dh is locally free.

Also, we can improve 1.2.(i).

1.5. Lemma. The natural morphism φ of U(h) into the subalgebra of all G-
invariants in Γ(X,Dh) is an isomorphism.

Proof. By 1.2.(i) we know that φ is injective. If s is a G-invariant global
section of Dh, its value at x must be Bx-invariant. This implies that, if we fix
a Cartan subalgebra c in bx, s(x) must be of weight zero with respect to c in
U(g)/nxU(g). Therefore it is in the image of U(h), i.e. there is a section t in φ(U(h))
such that t− s is a G-invariant section which vanishes at x. By G-invariance, this
implies that t − s vanishes at any point of X. By 1.3, Dh is locally free as an
OX -module for the left multiplication, hence this implies that t − s = 0, and
s = t ∈ φ(U(h)). �

On the other hand, we have the natural homomorphism of U(g) into Dh, which
induces a natural homomorphism of the center Z(g) of U(g) into Γ(X,Dh). Its
image is contained in the subalgebra of G-invariants of Γ(X,Dh), hence, by 1.5,
it is in φ(U(h)). Finally, we have the canonical Harish-Chandra homomorphism
γ : Z(g) −→ U(h) [5, Ch. VII, §6, no. 4], defined in the following way. First, for
any x ∈ X, the center Z(g) is contained in the sum of the subalgebra U(bx) and
the right ideal nxU(g) of U(g). Therefore, we have the natural projection of Z(g)
into

U(bx)/(nxU(g) ∩ U(bx)) = U(bx)/nxU(bx) = U(hx).

Its composition with the natural isomorphism of U(hx) with U(h) is independent
of x and, by definition, equal to γ.
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1.6. Proposition. The diagram

Z(g)
γ //

!!

U(h)

φ

��
Γ(X,Dh)

of natural algebra homomorphisms is commutative.

Proof. By 1.3, Dh is locally free as the OX -module for the left multiplication.
Therefore it is enough to show that the compositions of φ ◦ γ and the canonical
homomorphism of Z(g) into Dh with the evaluation map are equal for any x ∈ X.
But this follows immediately from Tx(Dh) = U(g)/nxU(g). �

Let x ∈ X. Fix a Cartan subalgebra c in bx. Let R be the root system of g in
c∗ and

gα = {ξ ∈ g | [η, ξ] = α(η)ξ for η ∈ c}
the root subspace of g determined by the root α ∈ R. We define the ordering on R
by choosing the set R+ of positive roots by

R+ = {α ∈ R | gα ⊂ nx}.

Then the canonical isomorphism c −→ hx −→ h induces an isomorphism of the
triple (c∗, R,R+) with the triple (h∗,Σ,Σ+), where Σ is a root system in h∗ and
Σ+ a set of positive roots in Σ. Clearly, Σ and Σ+ are independent of the choice
of x ∈ X. We call the triple (h∗,Σ,Σ+) the Cartan triple of g; and the inverse
isomorphism of the Cartan triple (h∗,Σ,Σ+) onto (c∗, R,R+) a specialization at x.

Let W be the Weyl group of Σ. Denote by ρ the half-sum of all positive roots
in Σ. The enveloping algebra U(h) of h is naturally isomorphic to the algebra of
polynomials on h∗, and therefore any λ ∈ h∗ determines a homomorphism of U(h)
into C. Let Iλ be the kernel of the homomorphism ϕλ : U(h) −→ C determined by
λ+ρ. Then γ−1(Iλ) is a maximal ideal in Z(g), and, by a result of Harish-Chandra
[5, Ch. VIII, §8, Cor. 1 of Th. 2], for λ, µ ∈ h∗,

γ−1(Iλ) = γ−1(Iµ) if and only if wλ = µ for some w ∈W.

For any λ ∈ h∗, by 1.3, the sheaf IλDh is a sheaf of two-sided ideals in Dh; therefore
Dλ = Dh/IλDh is a sheaf of complex associative algebras on X. In the case when
λ = −ρ, we have I−ρ = hU(h), hence D−ρ = U◦/b◦U◦, i.e. it is the sheaf of local
differential operators on X. In general Dλ, λ ∈ h∗, are homogeneous twisted sheaves
of differential operators on X. This follows from ... or directly from 1.3. In the
parametrization of twisted sheaves of differential operators which we used in ... we
have

Dλ = DX,λ+ρ, λ ∈ h∗.

Let θ be a Weyl group orbit in h∗ and λ ∈ θ. Denote by Jθ = γ−1(Iλ) the
maximal ideal in Z(g) determined by θ. We denote by χλ the homomorphism of
Z(g) into C with kerχλ = Jθ. As we remarked before, χλ depends only on the Weyl
group orbit θ of λ. The elements of Jθ map into the zero section of Dλ. Therefore,
we have a canonical morphism of Uθ = U(g)/JθU(g) into Γ(X,Dλ). We shall see
in §6 that this morphism is actually an isomorphism.
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The objects of the category M(Uθ) of Uθ-modules can also be viewed as U(g)-
modules with infinitesimal character χλ.

The categoryM(Dλ) of all Dλ-modules has enough injective objects [8, III.2.2].
Moreover, injective Dλ-modules are flasque [8, III.2.4]. This implies that the coho-
mology modules Hi(X,V) of a Dλ-module V have natural structures of Γ(X,Dλ)-
modules. In particular, by the previous remark, they can be viewed as Uθ-modules.
It follows that we have a family of functors

Hi(X,−) :M(Dλ) −→M(Uθ) for 0 ≤ i ≤ dimX.

In next few sections we shall study their basic properties.

2. Translation principle for Dλ-modules

In this section we collect certain technical results we need to study the coho-
mology of Dλ-modules.

Let Q(Σ) be the root lattice in h∗. For any λ ∈ h∗, we denote by Wλ the
subgroup of the Weyl group W given by

Wλ = {w ∈W | wλ− λ ∈ Q(Σ)}.
Let Σˇ be the root system in h dual to Σ; and for any α ∈ Σ, we denote by αˇ∈ Σˇ
the dual root of α. Then, by [5, Ch. VI, §2, Ex. 2], we know that Wλ is the Weyl
group of the root system

Σλ = {α ∈ Σ | α (̌λ) ∈ Z}.
We define the order on Σλ by putting Σ+

λ = Σ+ ∩ Σλ. This defines a set of simple
roots Πλ of Σλ, and the corresponding set of simple reflections Sλ. Let `λ be the
length function on (Wλ, Sλ). We say that λ ∈ h∗ is regular if α (̌λ) is different from
zero for any α ∈ Σ and that λ is antidominant if α (̌λ) is not a strictly positive
integer for any α ∈ Σ+. We put

n(λ) = min{`λ(w) | w ∈Wλ, wλ is antidominant }.
In particular, n(λ) = 0 is equivalent to λ being antidominant. Let P (Σ) be the
weight lattice in h∗. Clearly, µ ∈ P (Σ) determines naturally a homogeneous
invertible OX -module O(µ) on X. If V is a Dλ-module on X, then its twist
V(µ) = V ⊗OX O(µ) by the invertible OX -module O(µ) is a Dλ+µ-module on
X (...). This construction defines a covariant functor from the category M(Dλ)
into the categoryM(Dλ+µ). We call this functor the geometric translation functor.
It is evidently an equivalence of categories, and it induces also an equivalence of
Mqc(Dλ), resp. Mcoh(Dλ), with Mqc(Dλ+µ), resp. Mcoh(Dλ+µ).

Geometric translation is closely related to another construction. Let F be a
finite-dimensional g-module. Then the sheaf F = OX ⊗C F has a natural structure
of a U◦-module. We shall define its filtration which is related to the weight structure
of the module F .

Fix a base point x0 ∈ X. The bx0
-module F has a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm,
where m = dimF , such that

dim(Fi/Fi−1) = 1 and nx0
Fi ⊂ Fi−1 for 1 ≤ i ≤ m.

Therefore, bx0
/nx0

acts naturally on Fi/Fi−1 and this action induces, by special-
ization, an action of the Cartan algebra h on Fi/Fi−1 given by a weight νi ∈ P (Σ).
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Clearly, νi < νj implies that i > j. The sheaf F is the sheaf of local sections of
the trivial homogeneous vector bundle X ×F −→ X. The filtration of F induces a
filtration of this vector bundle by the homogeneous vector subbundles with fibres
Fi, 1 ≤ i ≤ m, at the base point x0. Let Fi, 1 ≤ i ≤ m, be the sheaves of local
sections of these subbundles. They are locally free coherent OX -modules and also
U◦-modules. On the other hand, Fi/Fi−1 = O(νi) as a U◦-module, i.e. Fi/Fi−1 is
naturally a Dνi−ρ-module. Let V be a quasi-coherent Dλ-module on X. Then the
OX -module V ⊗OX F has a natural structure of a U◦-module given by

ξ(v ⊗ s) = ξv ⊗ s+ v ⊗ ξs
for ξ ∈ g, and local sections v and s of V and F , respectively. We can define its
U◦-module filtration by the submodules V ⊗OX Fi, 1 ≤ i ≤ m. By the previous
discussion, the corresponding graded module is the direct sum of V(νi), 1 ≤ i ≤ m.
Therefore, for any ξ ∈ Z(g), the product

∏
1≤i≤m(ξ−χλ+νi(ξ)) annihilates V⊗OXF .

By the elementary linear algebra, V ⊗OX F decomposes into the direct sum of its
generalized Z(g)-eigensheaves.

Let V be a U◦-module and λ ∈ h∗. Denote by V[λ] the generalized Z(g)-
eigensheaf of V corresponding to χλ.

2.1. Lemma. Let λ ∈ h∗, µ ∈ P (Σ) and w ∈ W be such that wλ and −wµ are
antidominant. Let F be the irreducible finite-dimensional g-module with the highest
weight wµ. Then, V −→ (V(−µ) ⊗OX F)[λ] is a covariant functor from M(Dλ)
into itself, naturally equivalent to the identity functor.

Proof. The filtration of V(−µ) ⊗OX F has V(−µ + ν) as its composition
factors, where ν ranges over the set of all weights of F . Therefore, Z(g) acts on
them with the infinitesimal character χλ−µ+ν . Assume that

sλ = λ− µ+ ν

for some s ∈W . Then, if we put s′ = wsw−1 and λ′ = wλ, we have

s′λ′ − λ′ = wν − wµ,
and since wµ and wν are weights of F , s′λ′ − λ′ ∈ Q(Σ). Therefore, s′ ∈ Wλ′ .
Now, since wµ is the highest weight of F , wν − wµ is a sum of negative roots. On
the other hand, since λ′ is antidominant, s′λ′−λ′ is a sum of roots from Σ+

λ ⊂ Σ+.
Therefore, sλ = λ and µ = ν, and the generalized eigensheaf of V(−µ) ⊗OX F
corresponding to χλ is isomorphic to V. �

2.2. Lemma. Let λ ∈ h∗, µ ∈ P (Σ) and w ∈ W be such that wλ and −wµ
are antidominant. Assume that the stabilizers of λ and λ − µ in W are equal.
Let F be the irreducible finite-dimensional g-module with the lowest weight −wµ.
Then, V −→ (V(µ)⊗OX F)[λ−µ] is a covariant functor from M(Dλ−µ) into itself,
naturally equivalent to the identity functor.

Proof. The filtration of V(µ)⊗OX F has V(µ+ ν) as its composition factors,
where ν varies over the set of all weights of F . Therefore Z(g) acts on them with
the infinitesimal character χλ+ν . Assume that

λ− µ = s(λ+ ν)

for some s ∈W . Then, if we put s′ = wsw−1 and λ′ = wλ, we have

λ′ − s′λ′ = s′wν + wµ,
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and, since −wµ is the lowest weight of F , s′wν + wµ is a sum of positive roots.
Therefore, s ∈ Wλ′ , and since wλ is antidominant, it follows that sλ = λ. By our
assumption, s stabilizes λ−µ, what implies that ν = −µ. Therefore, the generalized
eigensheaf of V(µ)⊗OX F corresponding to χλ−µ is V. �

Let λ ∈ h∗ be such that n(λ) = k, k > 0. Then there exists w ∈ Wλ such that
`λ(w) = k and wλ is antidominant. Let

w = sβ1
sβ2

. . . sβk

be a reduced expression of w in (Wλ, Sλ). Let α = w−1β1, and w′ = sβ1
w. Then

we have w′ = sβ2
. . . sβk and `λ(w′) = k − 1. It follows that

w′sαλ = sβ1wsαλ = sβ1swαwλ = wλ

is antidominant, which implies that

n(sαλ) ≤ `λ(w′) = k − 1.

Now, the antidominance of wλ implies that β1̌(wλ) ∈ −Z+; also, β1̌(wλ) = 0
would imply that w′λ = sβ1

wλ = wλ is antidominant, contradicting the choice of
w. Therefore,

p = −β1̌(wλ) ∈ N.
Let Cλ be the Weyl chamber corresponding to Σ+

λ , then the equation β1̌(τ) = 0
determines a wall of Cλ. Evidently, the Σ-regular points of Cλ are partitioned in
finitely many Weyl chambers for Σ, and at least one of them shares this wall with
Cλ. Let C be one of such Weyl chambers.

Let σ ∈ P (Σ) ∩ C, such that β1̌(σ) = p. Then wλ − sβ1
σ is in the wall

determined by β1̌. Also, because of

Σλ = Σwλ = Σwλ−sβ1
σ

and

sβ1(Σ+
λ − {β1}) = Σ+

λ − {β1},
we see that, for β ∈ Σ+

λ − {β1}, we have

β (̌wλ− sβ1
σ) = β (̌wλ)− (sβ1

β)̌ (σ) ∈ −Z+,

and wλ− sβ1
σ is antidominant. Hence, because of

w′(λ− sαw−1σ) = sβ1
w(λ− sαw−1σ) = sβ1

(wλ− sβ1
σ) = wλ− sβ1

σ,

it follows that

n(λ− sαw−1σ) ≤ `λ(w′) = k − 1.

Now, let V be a Dλ-module. Then its translation V(pα) is a Dλ+pα-module.
Also, we have

λ+ pα = λ− β1̌(wλ)α = λ− α (̌λ)α = sαλ.

Analogously, the translation V(−sαw−1σ) is a Dλ−sαw−1σ-module.
Let F be the irreducible finite-dimensional g-module with extremal weight σ.

Let

G = (V(−sαw−1σ)⊗OX F)[λ].

Then the filtration of V(−sαw−1σ)⊗OX F induces the filtration

Gi = G ∩ (V(−sαw−1σ)⊗OX Fi), 1 ≤ i ≤ m,
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of G. This filtration has the property that Gi = Gi−1, except in the case when λ and
λ − sαw−1σ + νi lie in the same Weyl group orbit θ. If this condition is satisfied,
we have

Gi/Gi−1 = V(−sαw−1σ + νi).

Therefore, to get a better insight into the structure of G we have to find all weights
ν of F such that

λ− sαw−1σ + ν = sλ

for some s ∈W . This implies that

sλ− λ = ν − sαw−1σ ∈ Q(Σ),

hence s ∈Wλ. Therefore s′ = wsw−1 satisfies

s′wλ− wλ = w(sλ− λ) = w(ν − sαw−1σ) = wν − sβ1σ,

and since wλ is antidominant,

s′(wλ)− wλ =
∑
β∈Πλ

mββ, mβ ∈ Z+.

It follows that
sβ1

σ − wν = −
∑
β∈Πλ

mββ.

By the choice of C, the set of all positive roots Σ+(C) in Σ (with respect to the
order defined by C) contains Σ+

λ . Hence, if we denote by Π(C) the set of simple
roots in Σ determined by C, wν− sβ1

σ is a sum of roots from Π(C). Since the root
β1 is in Π(C), sβ1

wν − σ = sβ1
(wν − sβ1

) is the difference of a sum of roots from
Π(C) and rβ1, r ∈ Z+. On the other hand, sβ1

wν is a weight and σ the highest
weight of F for the order defined by C, hence σ − sβ1wν is a sum of roots from
Π(C). This finally implies that σ − sβ1wν = qβ1 for some q ∈ Z+. Therefore,

s′wλ− wλ = wν − sβ1
σ = −sβ1

(σ − sβ1
wν) = qβ1;

and, if we introduce the standard W -invariant bilinear form on h∗, we get

‖λ‖2 = ‖s′wλ‖2 = ‖wλ+ qβ1‖2 = ‖λ‖2 + 2q(wλ|β1) + q2‖β1‖2;

what implies that either q = 0 or q = −β1̌(wλ) = p.
In the first case, ν = sαw

−1σ is an extremal weight of F . It follows that
Gi/Gi−1 = V when νi = ν, and this happens for only one i, 1 ≤ i ≤ m. In the
second case,

wν = sβ1
σ + pβ1 = sβ1

(σ − pβ1) = σ,

hence ν = w−1σ is an extremal weight of F again. Now

−sαw−1σ + ν = −sαw−1σ + w−1σ = α (̌w−1σ)α = β1̌(σ)α = pα,

what implies that Gj/Gj−1 = V(pα) when νj = ν, and this happens for only one
j, 1 ≤ j ≤ m. Therefore, the U◦-module G has a composition series of length two,
and the corresponding subquotients are V and V(pα). Finally,

α = w−1β1 = sβk . . . sβ1β1 = −sβk . . . sβ2β1 ∈ −Σ+
λ ⊂ −Σ+,

by [5, Ch. VI, Cor. 2 of Prop. 17], what leads to

νj = w−1σ < w−1σ − pα = w−1σ − β1̌(σ)α = w−1σ − α (̌w−1σ)α = sαw
−1σ = νi,

and, by a previous remark, i < j. This gives us the exact sequence

0 −→ V −→ G −→ V(pα) −→ 0.
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of U◦-modules. Clearly, the whole construction is functorial, therefore we have the
following result.

2.3. Lemma. There exists a covariant functor from M(Dλ) into the category
of short exact sequences of U◦-modules which maps any V ∈ M(Dλ) into

0 −→ V −→ G −→ V(pα) −→ 0.

3. A vanishing theorem for cohomology of Dλ-modules

In this section we shall discuss some vanishing results for cohomology of quasi-
coherent Dλ-modules .

3.1. Theorem. Let V be a quasi-coherent Dλ-module on the flag variety X.
Then the cohomology groups Hi(X,V) vanish for i > n(λ).

This, in particular, includes the vanishing of all Hi(X,V), i > 0, for antidomi-
nant λ ∈ h∗, i.e. we have the following consequence.

3.2. Corollary. Let λ ∈ h∗ be antidominant. Then the functor Γ is an exact
functor from Mqc(Dλ) into M(Uθ).

First we shall prove 2, and later use the induction in n(λ) to complete the proof
of 1.

Let G be any OX -module, and µ ∈ P (Σ) a dominant weight. Denote by
F the finite-dimensional irreducible g-module with highest weight µ. In 2. we
defined a filtration of the OX -module F = OX⊗CF by locally free OX -submodules
(Fi; 0 ≤ i ≤ dimF ) such that F1 = O(µ). Therefore, we have a monomorphism iG
of G = G(−µ)⊗OX O(µ) = G(−µ)⊗OX F1 into G(−µ)⊗OX F .

Let λ ∈ h∗ be antidominant, V a quasi-coherent Dλ-module, and ϕ : G −→ V
a morphism of OX -modules. Then it induces the morphism ϕ(−µ) : G(−µ) −→
V(−µ), and also ϕ(−µ) ⊗ 1 : G(−µ) ⊗OX F −→ V(−µ) ⊗OX F . Also, we have
natural imbeddings iG : G −→ G(−µ) ⊗OX F and iV : V −→ V(−µ) ⊗OX F such
that the following diagram commutes:

G
ϕ //

iG

��

V

iV

��
G(−µ)⊗OX Fϕ(−µ)⊗1

// V(−µ)⊗OX F

jV

SS

Therefore on the level of cohomology, we have

Hi(ϕ(−µ)⊗ 1) ◦Hi(iG) = Hi(iV) ◦Hi(ϕ)

for 0 ≤ i ≤ dimX. Also,

Hi(X,G(−µ)⊗OX F) = Hi(X,G(−µ))⊗C F,

since F is a free OX -module. Assume, in addition, that G is a coherent OX -module.
The invertibleOX -moduleO(−2ρ) is ample, hence, we can find a dominant weight µ
such that Hi(X,G(−µ)) = 0 for 1 ≤ i ≤ dimX. It follows that for such µ ∈ P (Σ),
we have Hi(iV) ◦ Hi(ϕ) = 0 for 1 ≤ i ≤ dimX. By 2.1, V(−µ) ⊗OX F is a



26 2. COHOMOLOGY OF Dλ-MODULES

direct sum of V and its Z(g)-invariant complement, i.e. iV has a left inverse jV :
V(−µ)⊗OXF −→ V. Hence, we conclude that Hi(ϕ) = Hi(jV)◦Hi(iV)◦Hi(ϕ) = 0
for 1 ≤ i ≤ dimX.

Any quasi-coherent OX -module is a direct limit of its coherent submodules [7,
I.6.9.9], and the cohomology commutes with direct limits [8, III.2.9], what implies
that Hi(j) = 0, 1 ≤ i ≤ dimX, for the identity morphism j : V −→ V. This finally
implies that Hi(X,V) = 0 for 1 ≤ i ≤ dimX, and finishes the proof of 2.

To prove 1. we use 2.3. Assume that λ ∈ h∗ and n(λ) = k. Then, we have the
exact sequence

0 −→ V −→ G −→ V(pα) −→ 0,

where

G = (V(−sαw−1σ)⊗OX F)[λ].

As we have shown there, n(λ+ pα) < k and n(λ− sαw−1σ) < k. Therefore, by the
induction assumption, we have

Hi(X,G) = Hi(X,V(sαw
−1σ)⊗OX F)[λ] = (Hi(X,V(sαw

−1σ))⊗C F )[λ] = 0

and

Hi(X,V(pα)) = 0

for i > k − 1. The long exact sequence of cohomology, applied to the above short
exact sequence, implies that Hi(X,V) = 0 for i > k.

4. A nonvanishing theorem for cohomology of Dλ-modules

Let λ ∈ h∗ and θ = W ·λ. The category of quasi-coherent Dλ-modulesMqc(Dλ)
is a thick subcategory in M(Dλ), therefore we can consider the full subcategory
Dqc(M(Dλ)) of the derived category D(M(Dλ)) of Dλ-modules which consists of
complexes with quasi-coherent cohomology. Let D(Uθ) be the derived category of
Uθ-modules. The categoryM(Dλ) has sufficiently many injective objects, and they
are flasque sheaves. Moreover, the right cohomological dimension of the functor
Γ of global sections is less than or equal to dimX. Therefore, one can define the
derived functor RΓ from D(M(Dλ)) into D(Uθ).

Our main goal in this section is

4.1. Theorem. Let λ ∈ h∗ be regular. Let C·,D· ∈ Dqc(M(Dλ)) and f : C· −→
D· a morphism. Then the following conditions are equivalent:

(i) f is a quasi-isomorphism,
(ii) RΓ(f) is a quasi-isomorphism.

Clearly, (i) implies (ii). The other implication follows from the following special
case of 1.

4.2. Lemma. Let λ ∈ h∗ be regular and C· ∈ Dqc(M(Dλ)) be such that RΓ(C·) =
0. Then C· = 0.
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First, let’s show that 2. implies 1. Let C·f be the mapping cone of f . Then we
have the standard triangle

C·f

[1]

��
C·

f
// D·

[[

and, by applying RΓ, to this triangle, we get the distinguished triangle

RΓ(C·f )

[1]

��
RΓ(C·)

RΓ(f)
// RΓ(D·)

^^

If RΓ(f) is a quasi-isomorphism, from the long exact sequence of cohomology we
conclude that Hi(RΓ(C·f )) = 0 for i ∈ Z, i. e. RΓ(C·f ) = 0. By 2, we conclude that
C·f = 0, and f is a quasi-isomorphism.

It remains to prove 2. The proof is by induction in n(λ).
Assume that n(λ) = 0. Then, by 3.2, Γ is exact on Mqc(Dλ). Also we can

assume that C· consists of Γ-acyclic Dλ-modules. In this case RΓ(C·) = Γ(C·).
Assume that Hi(C·) is a quasi-coherent Dλ-module different from zero. Because
O(−2ρ) is ample, we conclude that there is a dominant weight µ ∈ P (Σ) such that
Hi(C·)(−µ) has nontrivial global sections. By 2.2, if we denote by F the irreducible
finite-dimensional g-module with lowest weight −µ and F = OX ⊗C F , we see that

Γ(X,Hi(C·))⊗C F = Γ(X,Hi(C·)⊗OX F) 6= 0.

Hence, Γ(X,Hi(C·)) 6= 0. On the other hand, if we consider the short exact se-
quences

0 −→ ker di −→ Ci −→ im di −→ 0,

and
0 −→ im di−1 −→ ker di −→ Hi(C·) −→ 0,

by the long exact sequence of cohomology we conclude that

Hn(X, im di) = Hn+1(X, ker di) for n ≥ 1,

and
Hn(X, im di−1) = Hn(X, ker di) for n ≥ 2.

Hence, it follows that

Hn(X, im di) = Hn+1(X, im di−1) for n ≥ 1,

and by finiteness of right cohomological dimension of Γ, Hn(X, im di) = 0 for n > 0
and arbitrary i ∈ Z. This in turn yields Hn(X, ker di) = 0 for n > 0 and arbitrary
i ∈ Z. Finally we get

Γ(X,Hi(C·)) = Hi(Γ(C·)) for i ∈ Z,
what contradicts Hi(Γ(C·)) = 0. This implies that Hi(C·) = 0 for all i ∈ Z.
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Assume now that n(λ) = k > 0. We can assume again that C· consists of
Γ-acyclic Dλ-modules. Then, 0 = RΓ(C·) = Γ(C·). Now, we shall use the notation
from discussion preceding 2.3. Put µ = λ − sαw−1σ. What we have shown there
is that wλ and wµ are antidominant. Also, wλ − wµ = sβ1

σ ∈ P (Σ). Let τ be a
regular dominant weight such that η = τ+w(µ−λ) is dominant. Denote by F−τ the
finite-dimensional representation with lowest weight −τ . Let F−τ = OX ⊗C F−τ .
Then, by 2.2, we have

C·(−w−1τ) = (C· ⊗OX F−τ )[wλ−τ ],

and

Hi(X, Cj(−w−1τ)) = Hi(X, Cj ⊗OX F−τ )[wλ−τ ] = (Hi(X, Cj)⊗C F−τ )[wλ−τ ] = 0

for i > 0, i.e. the complex C·(−w−1τ) consists of Γ-acyclic Dλ−w−1τ -modules. This
implies that

RΓ(C·(−w−1τ)) = Γ(C·(−w−1τ))

= Γ(C· ⊗OX F−τ )[wλ−τ ] = (Γ(C·)⊗C F−τ )[wλ−τ ] = 0.

On the other hand, if we take F η to be the finite-dimensional representation with
highest weight η and Fη = OX ⊗C F

η, by 2.1. it follows that

(C·(−w−1τ)⊗OX Fη)[µ] = C·(−w−1(τ − η)) = C·(µ− λ).

Applying the same argument as before we see that C·(µ − λ) consists of Γ-acyclic
Dµ-modules and get that

Γ(C·(−sαw−1σ)) = Γ(C·(µ− λ)) = 0.

Now, let

G· = (C·(−sαw−1σ)⊗OX F)[λ].

Clearly, G· consists of Γ-acyclic U◦-modules and Γ(G·) = 0. Applying 2.3, we
conclude that C·(pα) consists of Γ-acyclic Dsαλ-modules and Γ(C·(pα)) = 0. This
implies that RΓ(C·(pα)) = 0. By our construction n(sαλ) < k, hence we can apply
the induction assumption. It follows that C·(pα) = 0, and finally that C· = 0. This
completes the proof of 2.

4.3. Corollary. Let λ ∈ h∗ be regular and V ∈ Mqc(Dλ) such that all its
cohomology modules Hi(X,V), i ∈ Z+, vanish. Then V = 0.

4.4. Corollary. Let λ ∈ h∗ be antidominant and regular. Then any V ∈
Mqc(Dλ) is generated by its global sections.

Proof. Denote byW the Dλ-submodule of V generated by all global sections.
Then, by 3.2, we have an exact sequence

0 −→ Γ(X,W) −→ Γ(X,V) −→ Γ(X,V/W) −→ 0,

of Uθ-modules, and therefore Γ(X,V/W) = 0. Hence, by 3, V/W = 0, and V is
generated by its global sections. �
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5. Borel-Weil-Bott theorem

Let n = dimX. Let λ ∈ P (Σ) and O(λ) the corresponding invertible OX -
module. Then O(λ) is a Dλ−ρ-module, coherent as an OX -module. By the general
results from algebraic geometry (see, for example, [8, Ch. III]), we know that

(i) Hi(X,O(λ)) are finite-dimensional g-modules,
(ii) if we denote by O(λ)̌ the dual of the invertible sheaf O(λ) and by ωX

the sheaf of local n-forms on X, then the Serre duality implies that the
dual of the vector space Hi(X,O(λ)) is isomorphic to the vector space
Hn−i(X,O(λ)̌ ⊗OX ωX).

Of course, O(λ)̌ ⊗OX ωX = O(−λ+ 2ρ). Let w0 be the longest element in W .
Denote by w one of the longest elements in W such that w(λ− ρ) is antidominant.
Then `(w) ≥ n(λ − ρ) and the strict inequality holds if and only if λ − ρ is not
regular. On the other hand, w0w(−λ+ ρ) is antidominant too, hence

n(−λ+ ρ) ≤ `(w0w) = `(w−1w−1
0 ) = `(w−1w0) = `(w0)− `(w) = n− `(w),

by ([5], Ch. VI, Cor. 3 of Prop. 17). It follows that

n(λ− ρ) ≤ `(w) ≤ n− n(−λ+ ρ). (1)

Suppose thatHi(X,O(λ)) 6= 0. Then, 3.1. applied toO(λ) implies that i ≤ n(λ−ρ);
on the other hand, if we also use (ii), n− i ≤ n(−λ+ ρ). Therefore,

n− n(−λ+ ρ) ≤ i ≤ n(λ− ρ). (2)

We see from (1) and (2) that i = `(w) = n(λ − ρ). By the previous remark, this
implies that λ− ρ is regular.

It remains to study H`(w)(X,O(λ)) in the case of regular λ − ρ. Then µ =
w(λ − ρ) is a regular antidominant weight. In the following we use the notation
and results from 2.3. If we put V = O(λ), then V(−sαw−1σ) = O(λ − sαw−1σ)
and λ− sαw−1σ − ρ is not regular. Therefore, all cohomology groups of it vanish.
This implies that all cohomology groups of G vanish either. Therefore, the exact
sequence

0 −→ O(λ) −→ G −→ O(λ+ pα) −→ 0

implies that Hi(X,O(λ + pα)) = Hi+1(X,O(λ)) as a g-module for i ∈ Z+. Now
p = −α (̌λ− ρ), so

λ+ pα = sα(λ− ρ) + ρ = w−1sβ1
w(λ− ρ) + ρ = w−1sβ1

µ+ ρ = w′
−1
µ+ ρ.

It follows, by the induction in length of w, that

H`(w)(X,O(λ)) = Γ(X,O(µ+ ρ)).

By 2.2, if Fµ+ρ is the irreducible g-module with lowest weight µ + ρ and we put
Fµ+ρ = OX ⊗C Fµ+ρ, we have

O(µ+ ρ) = (Fµ+ρ)[µ].

Hence,

Γ(X,O(µ+ ρ)) = Γ(X, (Fµ+ρ)[µ]) = Γ(X,OX ⊗C Fµ+ρ)[µ]

= (Γ(X,OX)⊗C Fµ+ρ)[µ] = Fµ+ρ.

This ends the proof of the Borel-Weil-Bott theorem.

5.1. Theorem. Let λ ∈ P (Σ). Then
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(i) if λ− ρ is not regular, Hi(X,O(λ)) = 0 for i ∈ Z+,
(ii) if λ − ρ is regular and µ ∈ P (Σ) an antidominant weight such that λ −

ρ = wµ for some w ∈ W , then Hi(X,O(λ)) = 0 for i 6= `(w) and
H`(w)(X,O(λ)) is the irreducible finite-dimensional g-module with lowest
weight µ+ ρ.

Denote, as in 1, by N the vector bundle of nilpotent radicals over the flag
variety X and by n◦ the locally free OX -module of local sections of N . Let

W (j) = {w ∈W | `(w) = j}, 0 ≤ j ≤ dimX.

5.2. Lemma. Let 0 ≤ j ≤ dimX. Then

Hi(X,∧jn◦) = 0 if i 6= j

and Hj(X,∧jn◦) is the trivial g-module of dimension CardW (j).

Proof. Choose a base point x0 ∈ X. Evidently, ∧jn◦ is the OX -module of
local sections of the G-homogeneous vector bundle ∧jN which is determined by the
natural representation of the Borel subgroup Bx0 on Fj = ∧jnx0 . The Bx0 -action
on Fj defines a natural Jordan-Hölder filtration by Bx0

-invariant subspaces Fjk,
0 ≤ k ≤ dimFj , such that dimFjk = k, nx0

Fjk ⊂ Fjk−1 and the Cartan algebra h
acts on Fjk/Fjk−1 by a weight νjk which is a sum of j different roots from Σ+ for
0 ≤ k ≤ dimFj . This filtration induces a filtration of the vector bundle ∧jN by
G-homogeneous subbundles. We denote by Fjk, 0 ≤ k ≤ dimFj , the corresponding
coherent OX -modules of local sections. It is evident that Fjk/Fjk−1 = O(νjk) for
0 ≤ k ≤ dimFj . To calculate the cohomology of ∧jn◦ we have to understand better
the structure of the family {νjk | 0 ≤ k ≤ dimFj , 0 ≤ j ≤ dimX} which is equal
to the family of sums of roots from all subsets of Σ+. For each Φ ⊂ Σ+ we denote
by ν(Φ) the sum of all roots from Φ. Let

S = {ν(Φ)− ρ | Φ ⊂ Σ+}.
Then, because ν(Φ)− ρ is the difference of the half-sum of roots from Φ and half-
sum of roots from Σ+ −Φ, it is evident that S is invariant under the action of the
Weyl group W . Let S− be the set of antidominant weights in S. Then, clearly
S = W · S−. Let µ be a regular element of S−. Denote by ωα the fundamental
weight corresponding to simple root α ∈ Π. Then µ is a linear combination of
ωα, α ∈ Π, with strictly negative integral coefficients. Therefore, µ + ρ is still
antidominant. On the other hand it also must be a sum of positive roots. This
implies that it is equal to 0, hence µ = −ρ. It follows that the only regular elements
of S are −wρ, w ∈W . In these cases

ρ− wρ = ν(Σ+ ∩ (−w(Σ+))).

Also, we remark that `(w) = Card(Σ+ ∩ (−w(Σ+))). From the Borel-Weil-Bott
theorem we know that

Hi(X,O(νjk)) = 0 for all 0 ≤ i ≤ dimX

if νjk−ρ is singular. On the other hand, if νjk−ρ is regular, by previous discussion
νjk = ρ− wρ for some w ∈W (j). Hence, in this case, we have

Hi(X,O(νjk)) = 0 for i 6= j

and
Hj(X,O(νjk)) = Hj(X,O(ρ− wρ)) = Γ(X,OX) = C.
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Using this information and the long exact sequence of cohomology, the induction
in k, 0 ≤ k ≤ dimFj , applied to the short exact sequence

0 −→ Fjk−1 −→ Fjk −→ O(νjk) −→ 0

implies easily our assertion. �

6. Cohomology of Dλ
In this section we want to prove

6.1. Theorem. (i) The natural map of Uθ into Dλ induces an isomor-
phism of Uθ onto Γ(X,Dλ).

(ii) Hi(X,Dλ) = 0 for i > 0.

Let C· be the graded module U◦⊗OX ∧n◦, i.e. Ci = U◦⊗OX ∧−in◦ for all i ∈ Z.
First we remark that C· has a structure of a left g-module, by left multiplication
on the first factor. The exterior algebra ∧n◦ has a natural structure of a left g-
module. Also, U◦ is a right g-module for right multiplication, so we can define
another structure of a left g-module on C· by

κ(ξ)(u⊗ v) = −uξ ⊗ v + u⊗ ξ · v,

for ξ ∈ g, u ∈ U◦ and v ∈ ∧n◦. To see that this definition makes sense, we remark
that if we consider the biadditive map ϕ(ξ), ξ ∈ g, from U◦×∧n◦ into U◦⊗OX ∧n◦
given by

ϕ(ξ)(u, v) = −uξ ⊗ v + u⊗ ξ · v
for u ∈ U◦ and v ∈ ∧n◦, we have

ϕ(ξ)(uf, v)− ϕ(ξ)(u, fv) = −(uf)ξ ⊗ v + uf ⊗ ξ · v + uξ ⊗ fv − u⊗ ξ · (fv)

= uξ(f)⊗ v + uf ⊗ ξ · v − u⊗ ξ(f)v − u⊗ fξ · v = 0

for any f ∈ OX , u ∈ U◦ and v ∈ ∧n◦; hence it factors through U◦ ⊗OX ∧n◦ and
induces κ(ξ). By the construction it is evident that the two left g-module actions
on C◦ commute. Therefore, we can consider C· as a left g× g-module via

(ξ, η)w = ξw + κ(η)w

for ξ, η ∈ g and w ∈ C·. Also, the group G acts on C· with the tensor product of
the adjoint action on U(g) with the adjoint action on ∧g. The differential of this
action is equal to the restriction of the g× g-action to the diagonal. Therefore. we
can view C· as a (g× g, G)-module. Consider map

d(u⊗ v1 ∧ v2 ∧ · · · ∧ vk) =

k∑
i=1

(−1)i+1uvi ⊗ v1 ∧ v2 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

+
∑

1≤i<j≤k

(−1)i+ju⊗ [vi, vj ] ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk,

for u ∈ U◦ and v1, v2, . . . , vk ∈ n◦. It is well-defined, because sections of OX and
n◦ commute in U◦, and it maps Ci into Ci+1. Also, by definition it commutes with
the g-action given by left multiplication and the G-action. Since the difference of
the differential of the G-action and the left multiplication action gives the action
given by κ, d is a morphism of (g× g, G)-modules. By calculation one also checks
that d2 = 0, i. e. C· is a complex of (g× g, G)-modules.
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6.2. Lemma. The complex C· is acyclic.

Proof. First we introduce a filtration of the complex C·. The sheaf of algebras
U◦ has a natural filtration (Fp U◦; p ∈ Z). We put Fp C· = 0 for p < 0 and

Fp C· =

0∑
q=−p

Fp+q U◦ ⊗OX ∧−qn◦ if p ∈ Z+.

The differential d maps Fp C· into itself for any p ∈ Z; hence, C· is a filtered complex.
The corresponding graded bicomplex has the form

Grp,q C· = Fp(U◦ ⊗OX ∧−qn◦)/Fp−1(U◦ ⊗OX ∧−qn◦) = Sp+q(g◦)⊗OX ∧−qn◦,

with the differential δ = Gr d of bidegree (0, 1) given by the formula

δ(u⊗ v1 ∧ v2 ∧ · · · ∧ vk) =

k∑
i=1

(−1)i+1uvi ⊗ v1 ∧ v2 ∧ · · · ∧ v̂i ∧ · · · ∧ vk,

for u ∈ Sp−k(g◦) and v1, v2, . . . , vk ∈ n◦.
Let U be a sufficiently small affine open set, such that g◦|U and n◦|U are free

OU -modules. Then, using the standard results on Koszul complexes [3, Ch. X, §9,
no. 3], it follows that Gr C·|U is acyclic. Therefore, Gr C· is acyclic.

It follows that for any p ∈ Z we have an exact sequence of complexes

0 −→ Fp−1 C· −→ Fp C· −→ Grp C· −→ 0

with Grp C· acyclic. This implies that Hk(Fp−1 C·) = Hk(Fp C·) for k ∈ −N and
p ∈ Z. Now, Fp C· = 0 for p < 0 implies that

Hk(Fp C·) = 0 for all k ∈ −N and p ∈ Z,

i.e. all Fp C· are acyclic.
Let ξ ∈ U◦ ⊗OX ∧kn◦, k > 0, be such that dξ = 0. Since the filtration of C· is

exhaustive, there exists p ∈ Z+ such that ξ ∈ Fp C·. Therefore, by the acyclicity of
Fp C·, there exists η ∈ Fp−k−1 U◦ ⊗OX ∧k+1n◦ such that ξ = dη. �

Putting everything together we get the following result.

6.3. Proposition. The complex C· = U◦ ⊗OX ∧n◦ is a left resolution of the
(g× g, G)-module Dh.

Clearly,

Hi(X,U◦ ⊗OX ∧jn◦) = Hi(X,U(g)⊗C ∧jn◦) = U(g)⊗C H
i(X,∧jn◦) for i, j ∈ Z+,

as a (g × g, G)-module. By 5.2, the action of g × g on U(g) is the natural action
given by left and right multiplication, i.e.

(ξ1, ξ2)η = ξ1η − ηξ2, for ξ1, ξ2 ∈ g, η ∈ U(g),

the group G acts on U(g) by the adjoint action, and the actions on the second
factors are trivial. Moreover, Hi(X,U◦⊗OX ∧jn◦) vanishes for i 6= j and is a direct
sum of CardW (j) copies of U(g) for i = j. This implies that the spectral sequence
([6, 2.4, Remark 3] which calculates the cohomology of Dh using this resolution,
converges in its E2-term, and we conclude that

(i) Hi(X,Dh) = 0 for i > 0,
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(ii) Γ(X,Dh), considered as a (g× g, G)-module, has a finite increasing filtra-
tion

0 = F0 Γ(X,Dh) ⊂ F1 Γ(X,Dh) ⊂ · · · ⊂ Fn Γ(X,Dh) = Γ(X,Dh)

such that Fk Γ(X,Dh)/Fk−1 Γ(X,Dh) is a direct sum of CardW (k) copies
of U(g) equipped with the (g× g, G)-module structure described above.

By the construction, the filtration F Γ(X,Dh) is a G-module filtration for the nat-
ural G-module structure on Dh and it induces a filtration on the subalgebra of G-
invariants of Γ(X,Dh). By 1.5, this subalgebra is isomorphic to U(h) via the map
φ. Since the group G is semisimple and its action on Γ(X,Dh) is algebraic, the G-
module Γ(X,Dh) is semisimple. This implies that the G-invariants of Gr Γ(X,Dh)
are equal to Grφ(U(h)). By taking the G-invariants in the statement (ii) above, we
see immediately that:

(iii) Fk φ(U(h))/Fk−1 φ(U(h)) is a direct sum of CardW (k) copies of Z(g).

We can view U(h) as a Z(g)-module via the Harish-Chandra homomorphism.
This immediately implies the following result.

6.4. Lemma. The universal enveloping algebra U(h) is a free Z(g)-module of
rank CardW .

On the other hand, we can form U(g)⊗Z(g)U(h), which has a natural structure
of an associative algebra. It has a natural G-action given by the adjoint action
on the first factor and the trivial action on the second factor. Clearly, U(h) is the
subalgebra of G-invariants of this algebra. By 1.6, there exists a natural algebra
homomorphism

Ψ : U(g)⊗Z(g) U(h) −→ Γ(X,Dh)

given by the tensor product of the natural homomorphism of U(g) into Γ(X,Dh)
and φ.

We transfer, via the isomorphism φ, the filtration of φ(U(h)) to U(h) and define
a filtration on U(g)⊗Z(g) U(h) by

Fp(U(g)⊗Z(g) U(h)) = U(g)⊗Z(g) Fp(U(h)).

The map Ψ is evidently compatible with the filtrations. Consider the correspond-
ing graded morphism Gr Ψ from U(g) ⊗Z(g) Gr U(h) into Gr Γ(X,Dh). By the
previous discussion we know that Gr Γ(X,Dh), considered as a (g× g, G)-module,
is the direct sum of CardW copies of U(g). Hence, there exist G-invariant el-
ements e1, e2, . . . , eq, q = Card W , such that Gr Γ(X,Dh) = ⊕1≤k≤qU(g)ek and
Gr φ(U(h)) = ⊕1≤k≤qZ(g)ek. Hence, Gr Ψ is evidently an isomorphism. This im-
plies in turn that Ψ is also an isomorphism. Therefore, we proved the following
result.

6.5. Theorem. (i) Γ(X,Dh) = U(g)⊗Z(g) U(h).

(ii) Hi(X,Dh) = 0 for i > 0.

Now, let V a h-module. Then, by 1.6, we have the natural map from U(g)⊗Z(g)

V into Γ(X,Dh ⊗U(h) V ). Let

· · · −→ F−p −→ F−p+1 −→ · · · −→ F−1 −→ F 0 −→ V −→ 0

be a left free U(h)-module resolution of V . Then, by tensoring with Dh over U(h)
we get

· · · −→ Dh ⊗U(h) F
−p −→ · · · −→ Dh ⊗U(h) F

0 −→ Dh ⊗U(h) V −→ 0.
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By 1.4, Dh is locally U(h)-free, hence this is an exact sequence. Therefore, by 5.(ii),
it is a left resolution of Dh ⊗U(h) V by Γ(X,−)-acyclic sheaves. This implies first
that all higher cohomologies of Dh ⊗U(h) V vanish. Also, it gives, using 5.(i), the
exact sequence

· · · −→ U(g)⊗Z(g) F
−p −→ · · · −→ U(g)⊗Z(g) F

0 −→ Γ(X,Dh ⊗U(h) V ) −→ 0,

which combined with 4, implies that U(g)⊗Z(g)V = Γ(X,Dh⊗U(h)V ) and TorZ(g)
p (U(g), V ) =

0 for p ∈ N. Therefore, we have the following result.

6.6. Corollary. Let V be an arbitrary U(h)-module. Then

(i) Γ(X,Dh ⊗U(h) V ) = U(g)⊗Z(g) V ;

(ii) Hi(X,Dh ⊗U(h) V ) = 0 for i > 0.

In particular, if λ ∈ h∗ and Cλ+ρ the one-dimensional h-module on which h
acts via λ+ ρ, we finally get 1.



CHAPTER 3

Localization of Uθ-modules

1. Localization of Uθ-modules

Let λ ∈ h∗ and θ the corresponding Weyl group orbit. Then we can define a
right exact covariant functor ∆λ from M(Uθ) into Mqc(Dλ) by

∆λ(V ) = Dλ ⊗Uθ V

for any V ∈M(Uθ). It is called the localization functor. Since

Γ(X,W) = HomDλ(Dλ,W)

for any W ∈ M(Dλ), it follows that ∆λ is a left adjoint functor to the functor of
global sections Γ, i.e.

HomDλ(∆λ(V ),W) = HomUθ (V,Γ(X,W)),

for any V ∈ M(Uθ) and W ∈ M(Dλ). In particular, there exists a functorial
morphism ϕ from the identity functor into Γ ◦∆λ. For any V ∈M(Uθ), it is given
by the natural morphism ϕV : V −→ Γ(X,∆λ(V )).

Assume first that λ ∈ h∗ is antidominant.

1.1. Lemma. λ ∈ h∗ be antidominant. Then the natural map ϕV of V into
Γ(X,∆λ(V )) is an isomorphism of g-modules.

Proof. If V = Uθ this follows from C.6.1. Also, by C.3.2, we know that Γ is
exact in this situation. This implies that Γ ◦∆λ is a right exact functor. Let

(Uθ)(J) −→ (Uθ)(I) −→ V −→ 0

be an exact sequence of g-modules. Then we have the commutative diagram

(Uθ)(J) −−−−→ (Uθ)(I) −−−−→ V −−−−→ 0y y y
Γ(X,∆λ(Uθ))(J) −−−−→ Γ(X,∆λ(Uθ))(I) −−−−→ Γ(X,∆λ(V )) −−−−→ 0

with exact rows, and the first two vertical arrows are isomorphisms. This implies
that the third one is also an isomorphism. �

On the other hand, the adjointness gives also a functorial morphism ψ from
∆λ ◦ Γ into the identity functor. For any V ∈ M(Dλ), it is given by the natural
morphism ψV of ∆λ(Γ(X,V)) = Dλ⊗UθΓ(X,V) into V. Assume that V ∈ Mqc(Dλ).
Let K be the kernel and C the cokernel of ψV . Then we have the exact sequence of
quasi-coherent Dλ-modules

0 −→ K −→ ∆λ(Γ(X,V)) −→ V −→ C −→ 0

35
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and by applying Γ and using C.3.2. we get the exact sequence

0 −→ Γ(X,K) −→ Γ(X,∆λ(Γ(X,V))) −→ Γ(X,V) −→ Γ(X, C) −→ 0.

Hence, by 1. we see that Γ(X,K) = 0 and Γ(X, C) = 0. This implies the following
result.

Denote by QMqc(Dλ) the quotient category of Mqc(Dλ) with respect to the
subcategory of all quasi-coherent Dλ-modules with no global sections [6, 1.11].
Let Q be the quotient functor from Mqc(Dλ) into QMqc(Dλ). Clearly, Γ induces
an exact functor from QMqc(Dλ) into M(Uθ) which we also denote, by abuse of
notation, by Γ.

1.2. Theorem. Let λ ∈ h∗ be antidominant. Then the functor Q ◦ ∆λ from
M(Uθ) into QMqc(Dλ) is an equivalence of categories. Its inverse is Γ.

If λ is antidominant and regular, by C.4.4, all objects inMqc(Dλ) are generated
by their global sections. Therefore, in this case, QMqc(Dλ) =Mqc(Dλ).

1.3. Corollary. Let λ ∈ h∗ be antidominant and regular. Then the functor
∆λ from M(Uθ) into Mqc(Dλ) is an equivalence of categories. Its inverse is Γ.

As the first application of this equivalence of categories we shall prove a result
on homological dimension of the ring Uθ.

1.4. Theorem. Let θ be a Weyl group orbit in h∗ consisting of regular elements.
Then the homological dimension hd(Uθ) of Uθ is ≤ dimX + 1

2 Card Σλ.

Proof. Let λ ∈ θ be antidominant. By [1, VI.1.10(ii)], we know that the
homological dimension of DX,x is equal to dimX. Since Dλ is a twisted sheaf of
differential operators, we conclude that hd(Dλ,x) = dimX. Moreover, by [6, 4.2.2],
we have

ExtiDλ(V,U)x = ExtiDλ,x(Vx,Ux)

for any i ∈ Z+, V ∈ Mcoh(Dλ) and U ∈ Mqc(Dλ). This implies that

ExtiDλ(V,U) = 0 for i > dimX.

On the other hand, we have the spectral sequence

Hp(X, ExtqDλ(V,U)) =⇒ Extp+qDλ (V,U)

[6, 4.2.1], and cohomology of any sheaf of abelian groups vanishes in all degrees
above dimX [8, III.2.7]. It follows that ExtiDλ(V,U) = 0 for i > 2 dimX. Now,
by 3, M(Uθ) is equivalent to Mqc(Dλ) and localization of any finitely generated

Uθ-module is in Mcoh(Dλ). This implies that ExtiUθ (V,U) = 0 for i > 2 dimX for
any V ∈ Mfg(Uθ) and U ∈ M(Uθ). By [3, Ch. X, §8, no. 3, Cor. of Prop. 4], we
see that hd(Uθ) ≤ 2 dimX.

If V is any coherent Dλ-module, ExtiDλ(V,Dλ), i ∈ Z+, are coherent D−λ-

modules [9]. Since λ is regular antidominant, n(−λ) = 1
2 Card Σλ ≤ dimX,

and by C.3.1. the cohomology of ExtiDλ(V,Dλ) vanishes above 1
2 Card Σλ. There-

fore, as in the preceding argument, we conclude that ExtiDλ(V,Dλ) = 0 for i >

dimX + 1
2 Card Σλ. By the equivalence of categories this immediately implies that

ExtiUθ (V,Uθ) = 0 for any V ∈Mfg(Uθ) and i > dimX + 1
2 Card Σλ.

Assume now that V and U are in Mfg(Uθ). Since Uθ is left noetherian, we
have an exact sequence

0 −→ U ′ −→ Upθ −→ U −→ 0
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with finitely generated Uθ-module U ′. From the corresponding long exact sequence
of Ext·Uθ (V,−) we see that the connecting morphism ExtjUθ (V,U) −→ Extj+1

Uθ (V,U ′)

is an isomorphism for j > dimX + 1
2 Card Σλ. Since the homological dimension

of Uθ is finite, by downward induction in j we see that ExtjUθ (V,U) = 0 for j >

dimX + 1
2 Card Σλ. By [3, Ch. X, §8, no. 3, Cor. of Prop. 4], it follows that

hd(Uθ) ≤ dimX + 1
2 Card Σλ. �

1.5. Remark. We shall see later in 2.8 that, contrary to 4, if θ contains singular
elements of h∗, the homological dimension of Uθ is infinite.

Also, for any W -orbit θ of an regular integral weight λ the preceding estimate
of homological dimension of Uθ is sharp. To see this, assume that λ ∈ P (Σ) is
regular antidominant and let F be the irreducible finite-dimensional g-module with
lowest weight λ+ ρ. Then, by the Borel-Weil-Bott theorem and 1.2, we know that
∆λ(F ) = O(λ+ ρ). Therefore, by ..., we have

ExtpDλ(O(λ+ ρ),Dλ) = 0

for p 6= dimX and

ExtdimX
Dλ (O(λ+ ρ),Dλ) = O(−λ+ ρ)

as a left D−λ-module. Therefore, applying again the Borel-Weil-Bott theorem, we
see that

Hp(X, ExtdimX
Dλ (O(λ+ ρ),Dλ)) = 0

for p 6= dimX and

HdimX(X, ExtdimX
Dλ (O(λ+ ρ),Dλ)) 6= 0.

By the Grothendieck spectral sequence relating ExtDλ to ExtDλ , this implies that

ExtpUθ (F,Uθ) = ExtpDλ(O(λ+ ρ),Dλ) = 0

if p 6= 2 dimX, and

Ext2 dimX
Uθ (F,Uθ) = Ext2 dimX

Dλ (O(λ+ ρ),Dλ) 6= 0.

Hence, in this case hd(Uθ) = 2 dimX = Card Σ.
As a second application, we want to consider various derived categories of Dλ-

modules on X. As before, let D(M(Dλ)) be the derived category of Dλ-modules,
Dqc(M(Dλ)) its full subcategory consisting of complexes with quasi-coherent coho-
mology. Also, we can consider the derived category D(Dλ) = D(Mqc(Dλ)) of quasi-
coherent Dλ-modules. As we remarked before, for any µ ∈ P (Σ), the geometric
translation functor V −→ V(µ) is an equivalence of M(Dλ) with M(Dλ+µ), which
also induces an equivalence of subcategories Mqc(Dλ) and Mqc(Dλ+µ). More-
over, it induces equivalencies of the corresponding derived categories D(M(Dλ)),
Dqc(M(Dλ)) and D(Dλ) with D(M(Dλ+µ)), Dqc(M(Dλ+µ)) and D(Dλ+µ) respec-
tively. In addition, the canonical functor Φλ from D(Dλ) into Dqc(M(Dλ)) satisfies
the natural commutativity property with respect to these translation functors.

1.6. Theorem. The functor Φλ : D(Dλ) −→ Dqc(M(Dλ)) is an equivalence of
categories.

Proof. First, by the preceding discussion, by translation we can assume that λ
is antidominant and regular. In this situation, the localization functor ∆λ is exact.
Therefore, it induces a functor ∆λ : V · −→ Dλ ⊗Uθ V · from the derived category
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D(Uθ) of Uθ-modules into the category D(Dλ). On the other hand, by C.3.1. every
object in Mqc(Dλ) is Γ-acyclic, what in combination with 3. immediately implies
that the functor Γ : D(Dλ) −→ D(Uθ) is an equivalence of categories and its inverse
is the localization functor ∆λ. Moreover, by the finiteness of right cohomological di-
mension of Γ onM(Dλ), we have the derived functor RΓ : Dqc(M(Dλ)) −→ D(Uθ),
and clearly RΓ ◦Φλ = Γ. Also, we can replace any C· ∈ Dqc(M(Dλ)) with a quasi-
isomorphic complex A· consisting of Γ-acyclic objects from M(Dλ). Therefore,
RΓ(C·) = Γ(A·). Let D· = Dλ ⊗Uθ Γ(A·). We have the natural homomorphism
φ : D· −→ A·. We claim that it is a quasi-isomorphism. Clearly, by definition
of φ and 1, RΓ(φ) is a quasi-isomorphism. Hence, by C.4.1. we see that φ is a
quasi-isomorphism. It follows that Φλ ◦ (∆λ ◦ RΓ) is isomorphic to the identity
functor on Dqc(M(Dλ)). On the other hand, (∆λ ◦ RΓ) ◦ Φλ is isomorphic to the
identity functor on D(Dλ). Therefore, Φλ is an equivalence of categories. �

Analogous statements hold for derived categories of complexes bounded above
and below.

Let λ ∈ h∗ and θ = W · λ. Denote by D−(Uθ) the derived category of Uθ-
modules consisting of complexes bounded from above. We define the localization
functor L∆λ from D−(Uθ) into D(Dλ) by

L∆λ(V ·) = Dλ
L
⊗ Uθ V · for V · ∈ D−(Uθ).

If λ is regular, 4. implies that the left cohomological dimension of the localization
functor ∆λ is ≤ 2 dimX. Therefore, one can extend L∆λ to a functor from D(Uθ)
into D(Dλ).

1.7. Lemma. Let P ∈ M(Uθ) be projective. Then, its localization ∆λ(P ) is
Γ-acyclic, and the morphism ϕP : P −→ Γ(X,∆λ(P )) is an isomorphism.

Proof. By C.6.1. we know that this statement is valid for free Uθ-modules,
and any projective Uθ-module is a direct summand of a free Uθ-module. �

Let V · ∈ D−(Uθ), then there exists a complex P · ∈ D(Uθ) of projective Uθ-
modules, a quasi-isomorphism αV · : P · −→ V · and L∆λ(V ·) = ∆λ(P ·). By 7. it
follows that there is a natural isomorphism from P · into Γ(∆λ(P ·)) = RΓ(∆λ(P ·)).
This implies that the following result holds.

1.8. Lemma. The functor RΓ ◦ L∆λ from D−(Uθ) into itself is isomorphic to
the identity functor on D−(Uθ).

Let D : M(Uθ) −→ D−(Uθ) be the functor which maps any V ∈ M(Uθ) into
the complex D(V ) ∈ D−(Uθ) which is zero in all degrees except 0, where it is
equal to V . If we denote, for any V ∈ M(Uθ), by Lj∆λ(V ) the jth cohomology
of the complex L∆λ(D(V )), we get the functor V −→ Lj∆λ(V ) form M(Uθ) into
Mqc(Dλ) which is just the (−j)th left derived functor of ∆λ. Therefore, 8. implies
the following result.

1.9. Corollary. Let V ∈ M(Uθ). Then there exists a cohomological spectral
sequence with E2-term

Ep,q2 = Hp(X,Lq∆λ(V ))

which converges to V .

1.10. Corollary. Let F ∈ M(Uθ) be a flat module. Then, its localization
∆λ(F ) is Γ-acyclic, and the morphism ϕF : F −→ Γ(X,∆λ(F )) is an isomorphism.
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Proof. By definition, Lq∆λ(F ) = 0 for q 6= 0. Therefore the spectral sequence
from 9. degenerates and we see that Hi(X,∆λ(F )) = 0 for i > 0 and ϕF : F −→
Γ(X,∆λ(F )) is an isomorphism. �

Assume now that λ ∈ h∗ is regular. Then the homological dimension of Uθ
is finite, hence any V · ∈ D(Uθ) is quasi-isomorphic with a complex P · ∈ D(Uθ)
consisting of projective Uθ-modules [10]. Now, using 7. again, we can prove the
following version of 8.

1.11. Lemma. Let λ ∈ h∗ be regular. Then the functor RΓ ◦ L∆λ from D(Uθ)
into itself is isomorphic to the identity functor on D(Uθ).

This finally leads to the following analogue of 3.

1.12. Theorem. Let λ ∈ h∗ be regular. Then the functor L∆λ from D(Uθ) into
D(Dλ) is an equivalence of categories. Its inverse is RΓ.

Proof. Let V · ∈ Dqc(M(Dλ)). Then, there exists a complex C· ∈ Dqc(M(Dλ))
consisting of Γ-acyclic Dλ-modules, a quasi-isomorphism βV· : V · −→ C· and
RΓ(V ·) = Γ(C·). Moreover, there exists a complex P · ∈ D(Uθ) consisting of
projective Uθ-modules and a quasi-isomorphism αΓ(C·) : P · −→ Γ(C·) such that
L∆λ(Γ(C·)) = ∆λ(P ·). Therefore, we get a natural morphism of L∆λ(RΓ(V ·))) =
∆λ(P ·) into C·. This gives a functorial morphism of L∆λ ◦ RΓ into the identity
functor on Dqc(M(Dλ)). By 6, the composition with Φλ gives a morphism ψ of
functor L∆λ ◦ RΓ into the identity functor on D(Dλ). It follows that, for any
complex V · ∈ D(Dλ), there exists a morphism ψV· of L∆λ(RΓ(V ·)) into V ·, and by
checking its definition and using 11, we see that RΓ(ψV·) is an quasi-isomorphism.
Now, C.4.1. implies that ψ is an isomorphism of functors. �

This implies, in particular, that L∆λ is an equivalence of category Db(Uθ) with
Db(Dλ) and RΓ is its inverse.

1.13. Theorem. Let λ ∈ h∗ be regular. Then the left cohomological dimension
of ∆λ is ≤ n(λ).

Proof. Let V · ∈ D(Dλ) and k ∈ Z. Then the truncated complex σ≤k(V ·):

. . . −→ Vp −→ . . . −→ Vk−2 −→ Vk−1 −→ ker dk −→ 0 −→ . . .

maps naturally into V · and this morphism of complexes induces isomorphisms
Hp(σ≤k(V ·)) −→ Hp(V ·) for p ≤ k. Let V ∈ M(Uθ) and V · = L∆λ(D(V )).
Assume that −k > n(λ). Then we have a cohomological spectral sequence

Hp(X,Hq(σ≤k(V ·))) =⇒ Hp+q(RΓ(σ≤k(V ·)))

([6], II.2.4). By C.3.1, we conclude that Hp(RΓ(σ≤k(V ·))) = 0 for p ∈ Z+. Hence,
by 12,

HomD(Dλ)(σ≤k(V ·),V ·) = HomD(Uθ)(RΓ(σ≤k(V ·)), RΓ(V ·))
= HomD(Uθ)(RΓ(σ≤k(V ·)), D(V )) = 0.

Therefore, Lp∆λ(V ) = Hp(V ·) = 0 for p ≤ −k. �

1.14. Remark. On the contrary, we shall see in 2.7. that if λ is singular the
left cohomological dimension of ∆λ is infinite.
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Let A be an abelian category and Db(A) its derived category of bounded com-
plexes. For s ∈ Z, we have the truncation functors τ≥s and τ≤s from Db(A) into
itself [10]. If A· is a complex in Db(A), τ≥s(A

·) is a complex which is zero in degrees
less than s, τ≥s(A

·)s = coker ds−1 and τ≥s(A
·)q = Aq for q > s, with the differen-

tials induced by the differentials of A·. On the other hand, τ≤s(A
·) is a complex

which is zero in degrees greater than s, τ≤s(A
·)s = ker ds and τ≤s(A

·)q = Aq for
q < s, with the differentials induced by the differentials of A·. The natural mor-
phisms τ≤s(A

·) −→ A· and A· −→ τ≥s(A
·) induce isomorphisms on cohomology in

degrees ≤ s and ≥ s respectively.

1.15. Lemma. Let C · and D· be in Db(A). Assume that

(i) Hq(C ·) = 0 for q > 0,
(ii) Hq(D·) = 0 for q < 0.

Then

H0 : HomDb(A)(C
·, D·) −→ HomA(H0(C ·), H0(D·))

is an isomorphism.

Proof. By hypothesis, τ≤0(C ·) −→ C · and D· −→ τ≥0(D·) are quasiisomor-
phisms, and by composing them with φ we can assume that Cq = 0 for q > 0 and
Dq = 0 for q < 0. Therefore, each element of HomA(H0(C ·), H(D·)) defines a
morphism of the complex C · into the complex D· and our mapping is surjective.

To prove injectivity, consider a morphism φ ∈ HomDb(A)(C
·, D·) such that

H0(φ) = 0. By the definition of a morphism in derived categories, there exist a
complex B· ∈ Db(A) and morphisms of complexes q : B· −→ C ·, f : B· −→ D·,
where q is a quasiisomorphism, which represent φ. By composing them with the
truncation morphism τ≤0(B·) −→ B·, we see that we can assume in addition that
B· satisfies Bq = 0 for q > 0. But this implies that fq = 0 for q 6= 0, im f0 ⊂ ker d0

and im d−1 ⊂ ker f0. Hence H0(φ) = 0 implies f0 = 0. �

The next result is a weak generalization of 1. to arbitrary regular λ ∈ h∗.

1.16. Lemma. Let λ ∈ h∗ be regular and θ = W · λ. Let V be a Uθ-module and
p = min{q ∈ Z | L−q∆λ(V ) 6= 0}. Assume that Hq(X,L−p∆λ(V )) = 0 for q < p.
Then there exists a nontrivial morphism of V into Hp(X,L−p∆λ(V )).

Proof. Consider the truncation morphism

L∆λ(D(V )) −→ τ≥−p(L∆λ(D(V ))) = D(L−p∆λ(V ))[p].

By equivalence of derived categories, it leads to a nontrivial morphism φ of D(V )
into RΓ(D(L−p∆λ(V )[p]) = RΓ(D(L−p∆λ(V ))[p]. It induces zero morphisms be-
tween the cohomology modules of both complexes, except in degree zero where
we get a morphism of V into Hp(X,L−p∆λ(V )). Since cohomology modules of
L−p∆λ(V ) vanish below degree p, the complex RΓ(D(L−p∆λ(V ))[p] satisfies the
condition (ii). Hence, by 15, the morphismH0(φ) of V intoRΓ(D(L−p∆λ(V )))[p]0 =
Hp(X,L−p∆λ(V )) is nonzero. �

Now we want to study some finiteness results.
LetMfg(Uθ) be the full subcategory ofM(Uθ) consisting of finitely generated

Uθ-modules. Clearly, for any λ ∈ θ, the localization of V ∈ Mfg(Uθ) is a coherent
Dλ-module. Conversely, we have the following result.
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1.17. Lemma. Let λ ∈ h∗ be antidominant and regular. Then for any V ∈
Mcoh(Dλ), the Uθ-module Γ(X,V) is finitely generated.

Proof. Let V = Γ(X,V) for a coherent Dλ-module V. Assume that (Vn;n ∈
N) is an increasing sequence of finitely generated Uθ-submodules of V . By localizing
it, we get an increasing sequence (Vn = ∆λ(Vn); n ∈ N) of coherent Dλ-submodules
of V. Since Dλ is a noetherian sheaf of rings, it follows that the sequence (Vn; n ∈ N)
stabilizes. By applying Γ and 3. we get the same conclusion for the original sequence
(Vn; n ∈ N). This implies that V is finitely generated. �

This implies the following ramification of 3.

1.18. Proposition. Let λ ∈ h∗ be antidominant and regular. Then the functor
∆λ from Mfg(Uθ) into Mcoh(Dλ) is an equivalence of categories. Its inverse is Γ.

Now we want to extend these results to regular λ ∈ θ. First,Mfg(Uθ) is a thick
subcategory of M(Uθ), therefore we can consider the full subcategory Db

fg(Uθ) of

Db(Uθ) consisting of all bounded complexes with finitely generated cohomology
modules.

1.19. Lemma. The natural functor i from Db(Mfg(Uθ)) into Db
fg(Uθ) is an

equivalence of categories.

Proof. First we claim that i : Db(Mfg(Uθ)) −→ Db
fg(Uθ) is fully faithful. Let

A·, B· ∈ Db(Mfg(Uθ)) and ϕ ∈ HomDb(Uθ)(A
·, B·). Then there exists a complex

C · ∈ Db
fg(Uθ), a quasi-isomorphism s : C · −→ A· and a morphism of complexes

f : C · −→ B· which define ϕ. By ... we can find a complex D· ∈ Db(Mfg(Uθ))
and a quasi-isomorphism s′ : D· −→ C ·. It follows that D·, s ◦ s′ and f ◦ s′ define
also ϕ, what implies that ϕ is a morphism in Db(Mfg(Uθ)). This proves that i is
fully faithful. Also, by ... it is essentially surjective. �

This result in particular implies that for any V · ∈ Db
fg(Uθ) its localization

L∆λ(V ·) ∈ D−(Dλ) is a complex with coherent cohomology. To discuss this more
precisely we first introduce several subcategories of Db(Dλ). Since the category
Mcoh(Dλ) is a thick subcategory of M(Dλ), we can define the category Db

coh(Dλ)
which is the full subcategory of Db(Dλ) consisting of all bounded complexes with
coherent cohomology and the derived category Db(Mcoh(Dλ)) of coherent Dλ-
modules. There is a natural functor Ψλ from Db(Mcoh(Dλ)) into Db

coh(Dλ), and it
satisfies the natural commutativity property with respect to the translation func-
tors.

1.20. Lemma. The natural functor Ψλ from Db(Mcoh(Dλ)) into Db
coh(Dλ) is

an equivalence of categories.

Proof. Using translation functors we can assume that λ is antidominant and
regular. By 3. and 6, this result follows from 19. �

Therefore, for regular λ ∈ h∗, we can view the functor L∆λ as the functor from
Db
fg(Uθ) into Db

coh(Dλ). Moreover, we have the following result.

1.21. Theorem. Let λ ∈ h∗ be regular. Then the functor L∆λ from Db
fg(Uθ)

into Db
coh(Dλ) is an equivalence of categories. Its inverse is RΓ.
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To prove this statement we only need to show that RΓ(V ·) ∈ Db
fg(Uθ) for any

V · ∈ Db
coh(Dλ). This is a consequence of the following generalization of 17. First

we need a simple lemma.

1.22. Lemma. Let V be a finitely generated g-module and F a finite-dimensional
g-module. Then V ⊗C F is a finitely generated g-module.

Proof. Let U be a finite-dimensional subspace of V which generates V as an
g-module. We claim that U ⊗C F generates V ⊗C F as a g-module. Let W be
the g-submodule of V ⊗C F generated by U ⊗C F . Define V ′ to be the subset of
V consisting of all v such that v ⊗ f ∈ W for all f ∈ F . Clearly, V ′ is a linear
subspace of V . Moreover, for any ξ ∈ g and v ∈ V ′,

ξv ⊗ f = ξ(v ⊗ f)− v ⊗ ξf ∈W,

for all f ∈ F , what implies that ξv ∈ V ′, and V ′ is a g-submodule of V . On the
other hand, V ′ contains U , hence it is equals V . This in turn gives W = V ⊗CF . �

1.23. Lemma. Let λ ∈ h∗. Then for any V ∈ Mcoh(Dλ), Uθ-modules Hi(X,V),
i ∈ Z+, are finitely generated.

Proof. The proof is by induction in i, 0 ≤ i ≤ dimX. We can find a dominant
weight µ such that λ−µ is antidominant and regular. Then the translation V(−µ)
of V is a coherent Dλ−µ-module, and, by 17, Γ(X,V(−µ)) is a finitely generated
g-module. Let F be the irreducible finite-dimensional g-module with the highest
weight µ. Now

Hi(X,V(−µ)⊗OX F) = Hi(X,V(−µ))⊗C F

for all i, 0 ≤ i ≤ dimX; therefore it vanishes for i > 0. On the other hand, the
filtration of F studied in C.2. gives an injection of F1 = O(µ) into F . It follows
that, by tensoring with V, we get the exact sequence of U◦-modules

0 −→ V −→ V(−µ)⊗OX F −→ K −→ 0.

Applying Γ to this exact sequence we see that Γ(X,V) is a g-submodule of the
tensor product Γ(X,V(−µ))⊗CF , which is finitely generated by 20. This proves our
assertion for i = 0. Assume that the assertion holds for k−1, k ≥ 1. Then the long
exact sequence of cohomology implies that Hk(X,V) is a quotient of Hk−1(X,K).
On the other hand, from the definition of the filtration of F , it follows that K has
a natural U◦-module filtration such that the corresponding graded module GrK
is equal to

⊕
V(−µ + ν), where the sum is taken over all weights ν of F different

from µ. By the induction assumption, Hk−1(X,V(−µ+ν)) are finitely generated g-
modules. An induction in the length of the filtration of K implies that Hk−1(X,K)
is a finitely generated g-module. �

Finally, the equivalence of derived categories (12.) and the Borel-Weil-Bott
theorem (C.5.1.) have the following immediate consequence.

1.24. Proposition. Let F be the finite-dimensional irreducible g-module with
lowest weight λ. Then, for any µ = w(λ − ρ), w ∈ W , we have Lp∆µ(F ) = 0 for

p 6= −`(w) and L−`(w)∆µ(F ) = O(µ+ ρ).
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2. Localization and n-homology

Let M(U(g)) be the category of U(g)-modules. Fix a point x ∈ X. For
V ∈M(U(g)), put

Vnx = V/nxV = C⊗U(nx) V,

where we view C as a module with the trivial action of nx. We say that Vnx is
the module of nx-coinvariants in V . It has a natural structure of an hx-module.
Therefore, we can view it as an h-module. It follows that V −→ Vnx is a right
exact covariant functor from the category M(U(g)) into the category M(U(h)) of
U(h)-modules. If we compose it with the forgetful functor from M(U(h)) into the
category of vector spaces, we get the functor H0(nx,−) of zeroth nx-homology. By
the Poincaré-Birkhoff-Witt theorem, free U(g)-modules are also U(nx)-free, what
implies the equality for the left derived functors. Therefore, with some abuse of
language, we shall call the (−p)th left derived functor of V −→ Vnx the pth nx-

homology functor and denote it by Hp(nx,−) = TorU(nx)
p (C,−). There is a simple

relationship between these functors and the localization functors which we shall
explain in the following.

First we need a technical result.

2.1. Lemma. Uθ is free as U(nx)-module.

Proof. Fix a specialization c of h and a nilpotent subalgebra n̄ opposite to nx.
Then we have g = nx⊕ c⊕ n̄, and by the Poincaré-Birkhoff-Witt theorem it follows
that U(g) = U(nx) ⊗C U(c) ⊗C U(n̄) as a left U(nx)-module for left multiplication.
Let Fp U(c), p ∈ Z+, be the degree filtration of U(c). Then we define a filtration
Fp U(g), p ∈ Z+, of U(g) via

Fp U(g) = U(nx)⊗C Fp U(c)⊗C U(n̄).

This is clearly a U(nx)-module filtration. The corresponding graded module is

GrU(g) = U(nx)⊗C S(c)⊗C U(n̄).

This filtration induces a filtration on the submodule JθU(g) and the quotient module
Uθ. The Harish-Chandra homomorphism γ : Z(g) −→ U(h) is compatible with the
degree filtrations and the homomorphism Gr γ is an isomorphism of GrZ(g) onto
the subalgebra I(h) of all W -invariants in S(h) [5, Ch. VIII, §8, no. 5]. Denote by
I+(h) the homogeneous ideal spanned by the elements of strictly positive degree in
I(h). Then

Gr JθU(g) = U(nx)⊗C I+(c)S(c)⊗C U(n̄).

By [4, Ch. III, §2, no. 4, Prop. 2], it follows that

GrUθ = (GrU(g))/(Gr JθU(g))

= (U(nx)⊗C S(c)⊗C U(n̄))/(U(nx)⊗C I+(c)S(c)⊗C U(n̄))

= U(nx)⊗C S(c)/(I+(c)S(c))⊗C U(n̄),

i.e. it is a free U(nx)-module. Moreover, by [5, Ch. V, §5, no. 2, Th. 1], we know
that the dimension of the complex vector space S(h)/(I+(h)S(h)) is CardW . It
follows that Uθ has a finite filtration by U(nx)-submodules such that GrUθ is a
free U(nx)-module. By induction in length, this implies that Uθ is a free U(nx)-
module. �
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Let ϕ : U(h) −→ U(h) be the automorphism given by ϕ(ξ) = ξ+ ρ(ξ) for ξ ∈ h.
Then, by [5, Ch. VIII, §8, no. 5, Th. 2], ϕ(γ(Z(g))) is the algebra of W -invariants in
U(h). In addition, by [5, Ch. V, §5, no. 2, Th. 1], the dimension of the vector space
U(h)/ϕ(γ(Jθ))U(h) is equal to CardW . This implies that Vθ = U(h)/γ(Jθ)U(h) is
an U(h)-module of dimension CardW .

2.2. Lemma. Let λ ∈ h∗ and θ = W · λ. Then:

(i) Vθ is a U(h)-module of dimension CardW ,
(ii) the characteristic polynomial of the action of ξ ∈ h on Vθ is

P (ξ) =
∏
w∈W

(ξ − (wλ+ ρ)(ξ));

(iii) H0(nx,Uθ) is a direct sum of countably many copies of Vθ.

Proof. We already proved (i). Clearly, Iµ ⊃ ϕ(γ(Jθ))U(h) is equivalent to
µ = wλ for some w ∈ W . Hence the linear transformation of U(h)/ϕ(γ(Jθ))U(h)
induced by multiplication by ξ has eigenvalues (wλ)(ξ), w ∈W , and by symmetry
they all have the same multiplicity. This in turn implies that

ϕ(P (ξ)) =
∏
w∈W

ϕ(ξ − (wλ+ ρ)(ξ)) =
∏
w∈W

(ξ − (wλ)(ξ))

is the characteristic polynomial for the action of ξ on U(h)/ϕ(γ(Jθ))U(h). This
proves (ii).

(iii) As in the proof of 1, we fix a specialization c of h and choose a nilpotent
subalgebra n̄ opposite to nx. By Poincaré-Birkhoff-Witt theorem, it follows that as
a vector space U(g) = U(nx)⊗C U(c)⊗C U(n̄). Moreover,

H0(nx,Uθ) = U(g)/(Jθ U(g) + nx U(g)).

Denote by γx : Z(g) −→ U(c) the composition of the specialization map with the
Harish-Chandra homomorphism γ. Then

Jθ U(g) + nx U(g) = Jθ U(c)U(n̄) + nx U(g) = γx(Jθ)U(c)U(n̄) + nx U(g),

which implies that under the above isomorphism,

Jθ U(g) + nx U(g) =
(
C⊗C γx(Jθ)U(c)⊗C U(n̄)

)
⊕
(
nxU(nx)⊗C U(c)⊗C U(n̄)

)
.

This yields

H0(nx,Uθ) = U(c)/(γx(Jθ)U(c))⊗C U(n̄) = Vθ ⊗C U(n̄)

and the action of h is given by multiplication in the first factor. �

2.3. Corollary. Let λ ∈ h∗, θ = W · λ and V ∈M(Uθ). If we put

P (ξ) =
∏
w∈W

(ξ − (wλ+ ρ)(ξ)) for ξ ∈ h,

P (ξ) annihilates Hp(nx, V ) for any ξ ∈ h and p ∈ Z+.

Proof. By 1, we can calculate nx-homology of V using a left resolution of V
by free Uθ-modules. The assertion follows from 2. �

In particular, if V ∈ M(Uθ), Hp(nx, V ) is a direct sum of generalized U(h)-
eigenspaces corresponding to wλ+ ρ, w ∈W . If U is a U(h)-module, we denote by
U(λ) the eigenspace corresponding to λ ∈ h∗.
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2.4. Corollary. Let λ ∈ h∗ be regular. Then, for V ∈ M(Uθ), the nx-
homology modules Hp(nx, V ) are semisimple as U(h)-modules. More precisely,

Hp(nx, V ) =
∑
w∈W

Hp(nx, V )(wλ+ρ)

for any p ∈ Z+.

This implies, in particular, that for regular λ ∈ h∗, we can view the functor
Hp(nx,−)(wλ+ρ) as the pth left derived functor of the right exact functorH0(nx,−)(wλ+ρ)

from M(Uθ) into M(U(h)).
In general situation, we can view Vθ as a semilocal ring and Hp(nx, V ) as Vθ-

modules. Also, for any λ ∈ θ, Cλ+ρ is a Vθ-module.
For any OX -module F on X we denote by Tx(F) its geometric fibre, i.e.

Tx(F) = Fx/mxFx.

Then Tx is a right exact covariant functor fromM(OX) into complex vector spaces.
If F is a Dλ-module, we can view Tx(F) as the inverse image of F for the inclusion
i of the one-point space {x} into X.

2.5. Theorem. Let λ ∈ h∗, θ = W · λ and x ∈ X. Then the functors LTx ◦
L∆λ and D(Cλ+ρ)

L
⊗ Vθ (D(C)

L
⊗ U(nx)−) from D−(Uθ) into the derived category of

complexes of complex vector spaces are isomorphic.

Proof. By 1, we know that Uθ is acyclic for the functor H0(nx,−) = C⊗U(nx)

−. By 2, we also know that C⊗U(nx) Uθ is acyclic for the functor Cλ+ρ ⊗Vθ −. Let
F · be a complex isomorphic to V · consisting of free Uθ-modules. Then, since the
functors commute with infinite direct sums, we get

D(Cλ+ρ)
L
⊗ Vθ (D(C)

L
⊗ U(nx) V

·) = Cλ+ρ ⊗Vθ (C⊗U(nx) F
·).

On the other hand, the localization ∆λ(Uθ) = Dλ is a locally free OX -module, and
therefore acyclic for Tx. This implies that

LTx(L∆λ(V ·)) = Tx(∆λ(F ·)).

Hence, to complete the proof it is enough to establish the following identity

Tx(∆λ(Uθ)) = Cλ+ρ ⊗Vθ (C⊗U(nx) Uθ).

First, we have Tx(∆λ(Uθ)) = Tx(Dλ). Moreover, from the construction of Dh it
follows that

Tx(Dh) = U(g)/nxU(g),

what yields, by using the properties of the Harish-Chandra homomorphism,

Tx(Dλ) = Tx(Dh)⊗U(h) Cλ+ρ = (U(g)/nxU(g))/(Iλ+ρ(U(g)/nxU(g)))

= Cλ+ρ ⊗Vθ (U(g)/nxU(g))/(γ(Jθ)(U(g)/nxU(g)))

= Cλ+ρ ⊗Vθ (U(g)/(JθU(g) + nxU(g))) = Cλ+ρ ⊗Vθ H0(nx,Uθ).

�

2.6. Corollary. Let λ ∈ h∗ be regular and θ = W ·λ. Then for any V ∈M(Uθ)
we have the spectral sequence

LpTx(Lq∆λ(V )) =⇒ H−(p+q)(nx, V )(λ+ρ).
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Proof. As we remarked before, in this case all Vθ-modules are semisimple and
Cλ ⊗Vθ − is an exact functor. Therefore, the spectral sequence corresponding to
the second functor in 5. collapses, and we get

H−p(D(Cλ+ρ)
L
⊗ Vθ (D(C)

L
⊗ U(nx)D(V )))

= H−p(Cλ+ρ ⊗Vθ (D(C)
L
⊗ U(nx)D(V ))) = H−p((D(C)

L
⊗ U(nx)D(V ))(λ+ρ))

= H−p(D(C)
L
⊗ U(nx)D(V ))(λ+ρ) = Hp(nx, V )(λ+ρ)

for p ∈ Z+. Therefore, the asserted spectral sequence is just the Grothendieck
spectral sequence attached to the composition of LTx and L∆λ. �

The behavior at singular λ is more obscure as we see from the following result.

2.7. Proposition. Let λ ∈ h∗ be singular. Then there exists V ∈M(Uθ) such
that L∆λ(D(V )) is not a bounded complex.

In particular, the left cohomological dimension of ∆λ is infinite.

Proof. Since the functor Tx has finite left cohomological dimension, it is
enough to find a Uθ-module V such that LTx(L∆λ(V )) is not a bounded complex
for some x ∈ X. By 5, this is equivalent to the fact that

D(Cλ+ρ)
L
⊗ Vθ (D(C)

L
⊗ U(nx)D(V ))

is not a bounded complex.
To finish the proof we use some elementary results about Verma modules which

are discussed later in V.1. Fix a Borel subalgebra b0, put n0 = [b0, b0] and consider
the Verma module

M(w0λ) = U(g)⊗U(b0) Cw0λ−ρ.

Pick x so that nx is opposite to n0. Then, by Poincaré-Birkhoff-Witt theorem,
M(w0λ) is, as U(nx)-module, isomorphic to U(nx) ⊗C Cw0λ−ρ. This implies, since
nx is opposite to n0, that

H0(nx,M(w0λ)) = Cλ+ρ,

and Hp(nx,M(w0λ)) = 0 for p ∈ N. Therefore,

D(C)
L
⊗ U(nx)D(M(w0λ)) = D(Cλ+ρ),

and

D(Cλ+ρ)
L
⊗ Vθ (D(C)

L
⊗ U(nx)D(M(w0λ))) = D(Cλ+ρ)

L
⊗ Vθ D(Cλ+ρ).

Clearly, we have

H−p(D(Cλ+ρ)
L
⊗ Vθ D(Cλ+ρ)) = TorVθp (Cλ+ρ,Cλ+ρ), p ∈ Z+.

Let W (λ) be the stabilizer of λ in W . By 2, the maximal ideals in Vθ are the
projections of the ideals Iwλ+ρ, w ∈W/W (λ). Since Vθ is an artinian ring, it is the
product of local rings Rwλ, w ∈ W/W (λ), obtained by localizing Vθ at Iwλ+ρ [4,
Ch. IV, §2, no. 5, Cor. 1 of Prop. 9)]. This implies that

TorVθp (Cλ+ρ,Cλ+ρ) = TorRλp (C,C), p ∈ Z+.



3. INTERTWINING FUNCTORS 47

Since Rwλ are mutually isomorphic,

CardW = dimC Vθ =
∑

w∈W/W (λ)

dimCRwλ = Card(W/W (λ)) dimCRλ,

i.e. dimCRλ = CardW (λ) 6= 1. Therefore, Rλ is not a regular local ring, its

homological dimension is infinite [7, 17.3.1], and TorRλp (C,C) 6= 0 for p ∈ Z+ [7,
17.2.11]. �

This immediately implies the following result.

2.8. Proposition. Let θ be a Weyl group orbit in h∗ consisting of singular
elements. Then the homological dimension of Uθ is infinite.

From 1.22. we can deduce the following consequence. As before, we put W (p) =
{w ∈W | `(w) = p}.

2.9. Proposition. Let F be a finite-dimensional irreducible g-module with low-
est weight λ. Then

Hp(nx, F ) =
∑

w∈W (p)

Cw(λ−ρ)+ρ

for any p ∈ Z+.

Proof. Clearly, λ−ρ is regular, hence we can apply 6. From 1.22. we know that
the localizations of F are locally free OX -modules. Therefore, all higher geometric
fibres vanish on them and the spectral sequence degenerates. The formula follows
immediately from 1.22. �

3. Intertwining functors

Let θ be a Weyl group orbit in h∗. If θ consists of regular elements, by 1.12,
the category D(Uθ) is equivalent to the category D(Dλ). This implies in particular,
that for any two λ, µ ∈ θ, the categories D(Dλ) and D(Dµ) are equivalent. This
equivalence is given by the functor L∆µ ◦ RΓ from D(Dλ) into D(Dµ). In this
section we want to construct, in geometric terms, a functor isomorphic to this
functor.

We start with some geometric preliminaries. Define the action of G on X ×X
by

g · (x, x′) = (g · x, g · x′)
for g ∈ G and (x, x′) ∈ X ×X. The G-orbits in X ×X can be parametrized in the
following way.

First we need to introduce a relation between Borel subalgebras in g. Let b and
b′ be two Borel subalgebras in g, n and n′ their nilpotent radicals and N and N ′

the corresponding subgroups of G. Let c be a Cartan subalgebra of g contained in
b∩b′. Denote by R the root system of (g, c) in c∗ and by R+ the set of positive roots
determined by b. This determines a specialization of the Cartan triple (h∗,Σ,Σ+)
into (c∗, R,R+). On the other hand, b′ determines another set of positive roots in
R, which corresponds via this specialization to w(Σ+) for some uniquely determined
w ∈ W . Since c is a Levi subalgebra of b ∩ b′, all Cartan subalgebras in b ∩ b′ are
conjugate by elements of N ∩ N ′. This implies that the element w ∈ W doesn’t
depend on the choice of c, and we say that b′ is in relative position w with respect to
b. Let s : h∗ −→ c∗ be the specialization determined by b. Then the specialization
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s′ determined by b′ is equal to s′ = s ◦w. This implies that b is in relative position
w−1 with respect to b′.

Let

Zw = {(x, x′) ∈ X ×X | bx′ is in the relative position w with respect to bx}
for w ∈W .

3.1. Lemma. (i) Sets Zw, w ∈W , are smooth subvarieties of X ×X.
(ii) The map w −→ Zw is a bijection of W onto the set of G-orbits in X×X.

Proof. Fix w ∈ W . The set Zw is G-invariant, hence it contains a G-orbit
O. Let x ∈ X. Since G acts transitively on X, every G-orbit in X ×X intersects
{x} × X, hence there exists x′ ∈ X such that (x, x′) ∈ O. Let (x, x′′) ∈ Zw.
Fix a Cartan subalgebra c′ in bx ∩ bx′ , and c′′ in bx ∩ bx′′ . Then, there exists
n ∈ Nx such that (Adn)(c′) = c′′. Since both (x, x′) and (x, x′′) are in Zw, we have
(Adn)(bx′) = bx′′ . Hence x′ and x′′ are in the same Bx-orbit in X. This in turn
implies that O = Zw. �

Denote by p1 and p2 the projections of Zw onto the first and second factor in
X ×X, respectively.

3.2. Lemma. The fibrations pi : Zw −→ X, i = 1, 2, are locally trivial with
fibres isomorphic to `(w)-dimensional affine spaces. The projections pi, i = 1, 2,
are affine morphisms.

Proof. It is enough to discuss p1. Let (x, x′) ∈ Zw and denote by B, resp. B′,
the stabilizers of x, resp. x′, in G. Then, by 2, instead of p1 : Zw −→ X we
can consider the the projection p1 : G/(B ∩B′) −→ G/B. Let N̄ be the unipotent
radical of a Borel subgroup of G opposite to B. Then, by the Bruhat decomposition,
the natural map of N̄ × B into G is an isomorphism onto an open neighborhood
of the identity [2, 14.13]. This implies that the orbit map g −→ g · x induces an
isomorphism of N̄ onto an open neighborhood U of x ∈ X. Moreover, the orbit
map g −→ g · (x, x′) induces an isomorphism of N̄× (B/(B∩B′)) onto p−1

1 (U) such
that the diagram

N̄ × (B/(B ∩B′)) −−−−→ p−1
1 (U)

pr1

y p1

y
N̄ −−−−→ U

commutes. The fibres of p1 are isomorphic to B/(B ∩B′) = N/(N ∩N ′), and this
is an affine space of dimension

Card(Σ+)− Card(Σ+ ∩ w(Σ+)) = Card(Σ+ ∩ (−w(Σ+)) = `(w)

[5, Ch. VI, §1, no. 6, Cor. 2. of Prop. 17]. �

Let ΩZw|X be the invertibleOZw -module of top degree relative differential forms
for the projection p1 : Zw −→ X. Let Tw be its inverse. Since the tangent space at
(x, x′) ∈ Zw to the fibre of p1 can be identified with nx/(nx ∩ nx′), and ρ − wρ is
the sum of roots in Σ+ ∩ (−w(Σ+)), we conclude that

Tw = p∗1(O(ρ− wρ)).

3.3. Lemma. (i) Let ν ∈ P (Σ). Then

p∗1(O(wν)) = p∗2(O(ν)).
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(ii) Let λ ∈ h∗. Then

(Dwλ)p1 = (Dp2

λ )Tw .

Proof. Let (x, x′) ∈ Zw. The stabilizer Bx ∩ Bx′ of (x, x′) in G contains a
Cartan subgroup T of G, which is therefore its Levi factor. It follows that Bx∩Bx′
is a connected group. Evidently, we have canonical morphisms

bx ∩ bx′ −→ (bx ∩ bx′)/(nx ∩ bx′) −→ bx/nx

and
bx ∩ bx′ −→ (bx ∩ bx′)/(bx ∩ nx′) −→ bx′/nx′ ;

and bx/nx and bx′/nx′ are naturally isomorphic to h. These two natural morphisms
of bx ∩ bx′ onto h differ by the action of w−1. The homogeneous invertible OZw -
modules p∗1(O(wν)) and p∗2(O(ν)) correspond therefore to the same character of the
stabilizer of (x, x′). This proves (i).

By definition (Dwλ)p1 and (Dp2

λ )Tw are G-homogeneous twisted sheaves of dif-
ferential operators on the G-homogeneous space Zw. Then, as we know from ..., the
G-homogeneous twisted sheaves of differential operators on Zw are parametrized
by (Bx ∩ Bx′)-invariant linear forms on bx ∩ bx′ . The twisted sheaf of differential
operators (Dwλ)p1 corresponds to the linear form on bx∩bx′ induced by wλ+ρ ∈ h∗

under the first morphism, and the twisted sheaf of differential operators Dp2

λ cor-
responds to the linear form on bx ∩ bx′ induced by λ + ρ ∈ h∗ under the second
isomorphism. Hence to get (Dwλ)p1 from Dp2

λ , we have to twist it by a homogeneous
invertible OZw -module corresponding to the weight wλ + ρ − w(λ + ρ) = ρ − wρ
under the first isomorphism. �

Let w ∈ W and λ ∈ h∗. The morphism p2 : Zw −→ X is a surjective
submersion, hence p+

2 is an exact functor from Mqc(Dλ) into Mqc((Dλ)p2) ([8],
III.10.4.). By 3, twisting by Tw defines an exact functor V −→ Tw⊗OZw p

+
2 (V) from

Mqc(Dλ) intoMqc((Dwλ)p1). Therefore, we have a functor V · −→ Tw⊗OZw p
+
2 (V ·)

from Db(Dλ) into Db((Dwλ)p1). By composing it with the direct image functor
Rp1+ : Db((Dwλ)p1) −→ Db(Dwλ), we get the functor Jw : Db(Dλ) −→ Db(Dwλ)
by the formula

Jw(V ·) = Rp1+(Tw ⊗OZw p
+
2 (V ·))

for any V · ∈ Db(Dλ). Let V ∈ Mqc(Dλ). Since p1 is an affine morphism with
`(w)-dimensional fibres by 2, we see that Hi(Jw(D(V))) vanish for i < −`(w) and
i > 0 (...). Moreover, the functor

Iw(V) = R0p1+(Tw ⊗OZw p
+
2 (V))

from Mqc(Dλ) into Mqc(Dwλ) is right exact. We call it the intertwining functor
attached to w ∈ W between Mqc(Dλ) and Mqc(Dwλ). The reason for this will
become apparent later.

3.4. Lemma. The category Mqc(Dλ) has enough projective objects.

Proof. By twisting we can clearly assume that λ is antidominant and regular.
But in this situation, Mqc(Dλ) is equivalent to M(Uθ), by 1.3. �

Therefore, for any w ∈W , we can define the left derived functor

LIw : D−(Dλ) −→ D−(Dwλ)

of Iw. We shall see later that this functor, restricted to Db(Dλ), agrees with Jw.
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Now we study some basic properties of these functors. We start with an analysis
of their behavior under geometric translation.

3.5. Lemma. Let w ∈W , λ ∈ h∗ and ν ∈ P (Σ). Then

(i)

Jw(V ·(ν)) = Jw(V ·)(wν)

for any V · ∈ Db(Dλ);
(ii)

LIw(V ·(ν)) = LIw(V ·)(wν)

for any V · ∈ D−(Dλ).

Proof. We start with the proof of the first relation. By 3.(i), for any V ∈
Mqc(Dλ),

p+
2 (V(ν)) = p+

2 (V ⊗OX O(ν)) = p+
2 (V)⊗OZw p

∗
2(O(ν)) = p+

2 (V)⊗OZw p
∗
1(O(wν))

as (Dλ+ν)p2-module. Since the direct image functor is local with respect to the
target variety,

Jw(V ·(ν)) = Rp1+(Tw ⊗OZw p
+
2 (V ·(ν)))

= Rp1+(Tw ⊗OZw p
+
2 (V ·)⊗OZw p

∗
1(O(wν)))

= Rp1+(Tw ⊗OZw p
+
2 (V ·))⊗OX O(wν) = Jw(V ·)(wν),

for any V · ∈ Db(Dλ). This, in particular, implies

Iw(V(ν)) = Iw(V)(wν)

for any V ∈ Mqc(Dλ). Since twists preserve projective objects, the lemma follows.
�

The next step is a “product formula” for functors Jw, w ∈ W . First, we
need some additional geometric information on G-orbits in X × X. Let w,w′ ∈
W . Denote by p1 and p2 the projections of Zw into X, and by p′1 and p′2 the
corresponding projections of Zw′ into X. Let Zw′ ×X Zw be the fibre product of
Zw′ and Zw with respect to the morphisms p′2 and p1. Denote by q′ : Zw′ ×X
Zw −→ Zw′ and q : Zw′ ×X Zw −→ Zw the corresponding projections to the
first, resp. second factor. Then, by 2, q and q′ are affine morphisms. Finally, the
morphisms p′1 ◦ q′ : Zw′ ×X Zw −→ X and p2 ◦ q : Zw′ ×X Zw −→ X determine a
morphism r : Zw′×XZw −→ X×X. Therefore, we have the following commutative
diagram.

X ×X

Zw′ ×X Zw

r

OO

q′

yy

q

%%
Zw′

p′1}} p′2 %%

Zw

p1

yy
p2   

X X X
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Moreover, all morphisms in the diagram are G-equivariant. From the construction
it follows that the image of r is contained in Zw′w. Hence by the G-equivariance of
r, it is a surjection of Zw′ ×X Zw onto Zw′w.

3.6. Lemma. Let w,w′ ∈ W be such that `(w′w) = `(w′) + `(w). Then r :
Zw′ ×X Zw −→ Zw′w is an isomorphism.

Proof. By 2. we know that

dim(Zw′ ×X Zw) = dimX + `(w) + `(w′) = dimX + `(w′w),

and
dimZw′w = dimX + `(w′w).

By the G-equivariance of r any G-orbit O in Zw′×X Zw projects onto Zw′w. Hence,
dimO = dimX + `(w′w) = dim(Zw′ ×X Zw), and O is open in Zw′ ×X Zw. On
the other hand, Zw′ ×X Zw is irreducible, and it follows that O = Zw′ ×X Zw.
This implies that Zw′ ×X Zw is a G-homogeneous space covering Zw′w. Since the
stabilizer of a base point in Zw′w is connected, r is an isomorphism. �

Therefore, if we assume that w,w′, w′′ ∈ W satisfy w′′ = w′w and `(w′′) =
`(w′) + `(w), we can identify Zw′′ and Zw′ ×X Zw. Under this identification the
projections p′′1 and p′′2 of Zw′′ into X correspond to the maps p′1 ◦ q′ and p2 ◦ q.
Moreover, we have the following result.

3.7. Lemma. Let w,w′ ∈W be such that `(w′w) = `(w′) + `(w). Then

Jw′ ◦ Jw = Jw′w.

Proof. Let w′′ = w′w. By 3.(i), we have

q′
∗
(Tw′)⊗OZ

w′×XZw
q∗(Tw)

= (p′1 ◦ q′)∗(O(ρ− w′ρ))⊗OZ
w′×XZw

(p1 ◦ q)∗(O(ρ− wρ))

= (p′1 ◦ q′)∗(O(ρ− w′ρ))⊗OZ
w′×XZw

(p′2 ◦ q′)∗(O(ρ− wρ))

= q′
∗
(p′1
∗
(O(ρ− w′ρ))⊗OZ

w′
p′2
∗
(O(ρ− wρ)))

= q′
∗
(p′1
∗
(O(ρ− w′ρ))⊗OZ

w′
p′1
∗
(O(w′ρ− w′wρ)))

= q′
∗
(p′1
∗
(O(ρ− w′′ρ))) = (p′1 ◦ q′)∗(O(ρ− w′′ρ)) = Tw′′ ,

under the identification of Zw′ ×X Zw with Zw′′ . Then, by the base change (...),

Jw′(Jw(V ·)) = Rp′1+(Tw′ ⊗OZ
w′
p′

+
2 (Rp1+(Tw ⊗OZw p

+
2 (V ·))))

= Rp′1+(Tw′ ⊗OZ
w′
Rq′+(q+(Tw ⊗OZw p

+
2 (V ·))))

= R(p′1 ◦ q′)+(q′
∗
(Tw′)⊗OZ

w′×XZw
(p2 ◦ q)+(V ·)) = Jw′′(V ·)

for any V · ∈ Db(Dλ). �

3.8. Corollary. Let w,w′ ∈W be such that `(w′w) = `(w′) + `(w). Then

Iw′ ◦ Iw = Iw′w.

Now we want to analyze in more details functors attached to simple reflections.
Fix a simple root α ∈ Π. To simplify the notation in the following, we put Z = Zsα
and T = Tsα . In this situation, by 2, the fibres of the projection p1 : Z −→ X
are affine lines. Hence one can view T as the invertible OZ-module of local vector
fields tangent to the fibres of p1.
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3.9. Lemma. Let α ∈ Π and λ ∈ h∗. Then

Hi(Jsα(D(Dλ))) = 0 for i 6= 0.

The proof of 9. will be a consequence of the following discussion, which will also
lead to more detailed information about the action of the intertwining functor Isα .
The basic idea is to reduce the analysis to the case of g = sl(2,C). This reduction
is based on a local trivialization result. Let Xα be the generalized flag variety of
all parabolic subalgebras of type α. Any Borel subalgebra bx in g is contained in
a unique parabolic subalgebra py of type α, y ∈ Xα; hence we have the canonical
projection pα : X −→ Xα. For any x ∈ X, the fibre p−1

α (pα(x)) consists of x and
all x′ ∈ X such that bx′ is in relative position sα with respect to bx.

3.10. Lemma. The projection pα : X −→ Xα is locally trivial. Its fibers are
isomorphic to the projective line P1.

Proof. Fix points y ∈ Xα and x ∈ X such that pα(x) = y. Denote by B,
resp. P , the stabilizers of x, resp. y, in G. Let P ′ be a parabolic subgroup opposite
to P and N ′ its unipotent radical. Then the natural map N ′ × P −→ G is an
isomorphism onto an open neighborhood of the identity in G ([?], 4.2). Therefore,
the natural morphism of N ′ into Xα induced by the orbit map g −→ g · y is an
isomorphism of N ′ onto an open neighborhood U of y. Moreover, the orbit map
g −→ g · x induces an isomorphism of N ′ × (P/B) with p−1

α (U) such that the
diagram

N ′ × (P/B) −−−−→ p−1
α (U)

pr1

y pα

y
N ′ −−−−→ U

commutes. This implies that the fibres are isomorphic to P/B. Let R be the radical
of P . Then R ⊂ B, hence P/B = (P/R)/(B/R). Since P/R is a cover of PSL(2,C)
and B/R is its Borel subgroup, P/B is isomorphic to P1. �

We remark that p−1
α (U) is a homogeneous space for P ′ and, if we denote by

L the common Levi factor of P ′ and P , we see that p−1
α (U) is identified with

N ′ × (L/(L ∩ B)). Let M be the quotient of L with respect to its center, m its
Lie algebra and Xm the corresponding flag variety. Clearly, M is isomorphic to
PSL(2,C) and Xm is isomorphic to P1. Choosing base points b and b ∩ m in X
resp. Xm determines a canonical inclusion of the Cartan algebra hm into h which
identifies the root system Σm in h∗m with the restrictions of α and −α, and the
positive root β in Σm corresponds to α. We can identify the dual space of hm with
C via the map µ −→ β (̌µ). From the discussion of homogeneous twisted sheaves
(...), we see that, for any λ ∈ h∗,

Dλ|p−1
α (U) = DN ′ �Dαˇ(λ);

here we denoted by Dαˇ(λ) the homogeneous twisted sheaf on P1 = Xm determined
by α (̌λ) ∈ C under the above correspondence. By definition, pα ◦ p1 = pα ◦ p2,
hence

p−1
1 (p−1

α (U)) = p−1
2 (p−1

α (U)),

as an open subset of Z. Moreover, under the above identifications, it is isomorphic
to N ′ × ((Xm ×Xm) −∆m), where we denoted by ∆m the diagonal in Xm ×Xm.
Let q1, resp. q2, be the morphism of the variety Zm = (Xm ×Xm) −∆m into Xm
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induced by the projection to the first, resp. second factor. Then, using the above
identifications, we have

Rip1+(T ⊗OZ p+
2 (Dλ))|p−1

α (U) = DN ′ �Riq1+(Tm ⊗OZm
q+
2 (Dαˇ(λ))),

where we denoted by Tm the invertible OZm
-module of local vector fields on Zm tan-

gent to the fibres of q1. Now we can prove 9. The preceding discussion reduces the
calculations to the case g = sl(2,C). Hence, we assume this in the following discus-
sion. Clearly, Dλ is a G-homogeneous OX -module, what implies that T ⊗OZ p+

2 (Dλ)
is a G-homogeneous OZ-module. Its direct images under p1 are G-homogeneous
OX -modules. Hence they are completely determined, as OX -modules, by their geo-
metric fibres at the base point x ∈ X, and their higher geometric fibres vanish. Let
F = X − {x}. Then p−1

1 (x) is a smooth closed subvariety of Z equal to {x} × F .
Let iF : {x} × F −→ Z and ix : {x} −→ X be the natural inclusions and r the
projection of {x} × F into x. Then we have the following commutative diagram:

{x} × F iF−−−−→ Z

r

y p1

y
{x} ix−−−−→ X

By the base change [1, 8.4],

Tx(Rip1+(T ⊗OZ p+
2 (Dλ))) = i+x (Rip1+(T ⊗OZ p+

2 (Dλ)))

= Rir+(i+F (T ⊗OZ p+
2 (Dλ))) = Rir+(i+F (T )⊗OF (p2 ◦ iF )+(Dλ))

= Rir+(TF ⊗OF Dλ|F ).

In addition, F is the orbit of an one-dimensional unipotent subgroup of G, hence
the homogeneous invertible OF -module TF is isomorphic to OF and Dλ|F is iso-
morphic to DF as a homogeneous twisted sheaf of differential operators. Finally,
Rir+(DF ) = 0 for i < 0. This ends the proof of 9.

Now we return to the general situation. The next step is critical for our analysis
of the intertwining functor attached to a simple root α ∈ Π. Since the morphism
p1 is an affine surjective submersion, we can use the de Rham complex (...) to
calculate Isα(V) as OX - and U(g)-module. For V ∈ Mqc(Dλ), Isα(V) is the 0th

cohomology of the complex p1∗(CZ|X(V)), where CZ|X(V) denotes the complex

. . . −→ 0 −→ T ⊗OZ p+
2 (V) −→ p+

2 (V) −→ 0 −→ . . . .

In particular, Isα(V) is a quotient of p1∗(p
∗
2(V)). Therefore, there is a natural U(g)-

module morphism of the global sections of p1∗(p
∗
2(V)) into Γ(X, Isα(V)). Since

Γ(X, p1∗(p
∗
2(V))) = Γ(Z, p∗2(V)),

this gives a natural Uθ-module morphism of Γ(X,V) into Γ(X, Isα(V)). It induces
a natural Dsαλ-module morphism of ∆sαλ(Γ(X,V)) into Isα(V), i.e. we have a
morphism of the functor ∆sαλ ◦ Γ into Isα . Applying this discussion to the special
case V = Dλ, we get, by C.6.1.(i), a natural Dsαλ-module morphism of Dsα into
Isα(Dλ).

For a root α ∈ Π, we say that λ ∈ h∗ is α-antidominant if α (̌λ) is not a strictly
positive integer.

3.11. Lemma. Let α ∈ Π and λ ∈ h∗ be α-antidominant. Then the natural
morphism of Dsαλ into Isα(Dλ) is an isomorphism of Dsαλ-modules.
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Proof. The assertion is local, so we can apply the previous discussion. It
reduces the problem to the corresponding result in the case of sl(2,C). In this case
there exists only one simple root α and sα = −1; hence we can put I = Isα .

We claim first that the natural morphism from D−λ into I(Dλ) is not zero. To
see this we consider the morphism of Γ(X,D−λ) into Γ(X, I(Dλ)). It is enough to
show that the section 1 ∈ Uθ = Γ(X,D−λ) always maps into a nonzero section of
Γ(X, I(Dλ)). We recall that I(Dλ) is the 0th cohomology of the complex

. . . −→ 0 −→ p1∗(T ⊗OZ p+
2 (Dλ)) −→ p1∗(p

+
2 (Dλ)) −→ 0 −→ . . . ,

and all other cohomologies of it vanish by 9. Since Z is an affine variety, by
the Leray spectral sequence we conclude that this is a left resolution of I(Dλ) by
Γ(X,−)-acyclic OX -modules. Therefore, the morphism

d : Γ(T ⊗OZ p+
2 (Dλ)) −→ Γ(Z, p+

2 (Dλ))

is injective and Γ(X, I(Dλ)) is the cokernel of d. The morphism of Uθ = Γ(X,D−λ)
into Γ(X, I(Dλ)) is induced by the natural morphism of Uθ = Γ(X,Dλ) into
Γ(Z, p+

2 (Dλ)). Therefore, 1 ∈ Uθ maps into the image of 1 ∈ Γ(Z, p+
2 (Dλ)) un-

der the quotient map, and it is enough to show that 1 ∈ Γ(Z, p+
2 (Dλ)) is not in the

image of d. To prove this we use the fact that d is G-equivariant, and analyze the
G-action on Γ(Z, T ⊗OZ p+

2 (Dλ)). If we filter Dλ by degree, we get a filtration by
G-homogeneous OX -modules FpDλ, p ∈ Z+, and GrDλ = S(TX). Therefore, we
have a filtration

Fp(T ⊗OZ p+
2 (Dλ)) = T ⊗OZ p∗2(FpDλ), p ∈ Z+,

of T ⊗OZ p+
2 (Dλ) by G-homogeneous OZ-modules and

Gr(T ⊗OZ p+
2 (Dλ)) = T ⊗OZ p∗2(S(TX)) = T ⊗OZ S(p∗2(TX)).

By induction in degree we see that higher cohomologies of T ⊗OZ p+
2 (Dλ) vanish,

hence the filtration of T ⊗OZ p+
2 (Dλ) induces a filtration of its global sections such

that
Gr Γ(Z, T ⊗OZ p+

2 (Dλ)) = Γ(Z, T ⊗OZ p∗2(S(TX))).

Because the group G is reductive, the algebraic G-modules Γ(Z, T ⊗OZ p+
2 (Dλ))

and Γ(Z, T ⊗OZ S(p∗2(TX))) are isomorphic. On the other hand, TX = O(−α),
hence, by 3.(i), S(p∗2(TX)) is the direct sum of p∗1(O(kα)) for k ∈ Z+. In addition,
T = p∗1(O(α)) and finally

Γ(Z, T ⊗OZ p+
2 (Dλ)) =

∞⊕
k=1

Γ(Z, p∗1(O(kα))).

By Frobenius reciprocity, G doesn’t act trivially on any submodule of the G-module
Γ(Z, T ⊗OZ p+

2 (Dλ)). This implies that 1 is not in the image of d.
Now we show that the natural morphism of D−λ into I(Dλ) is an isomor-

phism for α-antidominant λ. First, we remark that both D−λ and I(Dλ) are G-
homogeneous OX -modules and the natural morphism is G-equivariant. Hence it
is enough to show that the morphism induces an isomorphism of the geometric
fibres at a base point x0 of X. Right multiplication by elements of D−λ induces
on Tx(D−λ) a structure of a left U(g)-module isomorphic to U(g) ⊗U(bx0

) Cλ−ρ.
Therefore, Tx(D−λ) is a module which is the direct sum of one-dimensional weight
spaces corresponding to the weights {λ−ρ−kα | k ∈ Z+}, and it is irreducible if the
α-antidominance condition is satisfied. Moreover, right multiplication by elements
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of Γ(X,Dλ) induces on Tx(I(Dλ)) a structure of a left U(g)-module, and the map of
geometric fibres is a morphism of U(g)-modules. Therefore, if λ is α-antidominant,
the morphism of the geometric fibre Tx(D−λ) into Tx(I(Dλ)) is injective.

The argument from the proof of 9. also implies that

Tx(I(Dλ)) = R0r+(DF ) = Γ(F,OF )

as a vector space. On the other hand, it has the natural structure of U(bx0
)-

module, given by the linear form −λ+ ρ. In addition, the stabilizer Bx0
of x0 ∈ X

acts on this module and induces the natural action on Γ(F,OF ). Therefore, it is
the direct sum of one-dimensional weight subspaces corresponding to the weights
{−kα | k ∈ Z+}. The action by right multiplication by elements of U(bx0

) on Dλ|F
induces on Tx(I(Dλ)) a left U(bx0

)-action which is the difference of the second
and the first action. Hence, Tx(I(Dλ)) is the direct sum of one-dimensional weight
subspaces corresponding to the weights {λ − ρ − kα | k ∈ Z+}. It follows that the
morphism of geometric fibres is an isomorphism. �

For any S ⊂ Σ+, we say that λ ∈ h∗ is S-antidominant if it is α-antidominant
for all α ∈ S. Put

Σ+
w = {α ∈ Σ+ |wα ∈ −Σ+} = Σ+ ∩ (−w−1(Σ+))

for any w ∈W .

3.12. Lemma. (i) Σ+
w−1 = −w(Σ+

w).
(ii) Let w,w′ ∈W be such that `(w′w) = `(w′) + `(w). Then

Σ+
w′w = w−1(Σ+

w′) ∪ Σ+
w .

(iii) Let w,w′ ∈ W be such that `(w′w) = `(w′) + `(w). If λ ∈ h∗ is Σ+
w′w-

antidominant, then wλ is Σ+
w′-antidominant.

Proof. (i) follows directly from the definition of Σ+
w . (ii) follows from [5,

Ch. VI, §1, no. 6, Cor. 2. of Prop. 17]. (iii) follows immediately from (ii). �

3.13. Lemma. Let λ ∈ h∗ be antidominant. Then, for any w ∈W ,

Jw(D(Dλ)) = D(Dwλ).

Proof. By 11, the statement holds for simple reflections. We prove the general
statement by induction in `(w). Let `(w) = k + 1. Then there exist α ∈ Π and
w′ ∈ W such that w = sαw

′ and `(w′) = k. By 12.(iii), w′λ is α-antidominant,
hence

Jw(D(Dλ)) = Jsα(Jw′(D(Dλ))) = Jsα(D(Dw′λ)) = D(Dwλ),

by 7, 9, 11. and the induction hypothesis. �

3.14. Theorem. Let w ∈W and λ ∈ h∗. Then:

(i) For any V · ∈ Db(Dλ), we have

LIw(V ·) = Jw(V ·).
(ii) The left cohomological dimension of Iw is ≤ `(w).

Proof. Clearly, (ii) follows from (i). To prove (i) we have to show that for any
projective P ∈ Mqc(Dλ), Hi(Jw(D(P))) = 0 for i 6= 0. First we observe that, by
5, it is enough to consider the case of regular antidominant λ. In this situation, by
1.3, P is the localization of a projective Uθ-module, and therefore a direct summand
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of (Dλ)(J). It follows that it is enough to treat the case of P = Dλ, and we can
apply 13. �

As an immediate consequence, the intertwining functors LIw, w ∈ W , extend
to functors from D(Dλ) into D(Dwλ). We now prove a preliminary version of the
product formula for the intertwining functors.

3.15. Lemma. Let w,w′ ∈ W be such that `(w′w) = `(w′) + `(w). Then, for
any λ ∈ h∗, the functors LIw′ ◦LIw and LIw′w from D−(Dλ) into D−(Dw′wλ) are
isomorphic.

Proof. By 8, it is enough to show that, for any projective P ∈ Mqc(Dλ),
the Dwλ-module Iw(P) is Iw′ -acyclic. By 5, we can also assume that λ is regular
antidominant. In this situation, as in the proof of 14, we can assume that P = Dλ.
Therefore, by 13, Iw(Dλ) = Dwλ and the assertion follows by a repeated application
of 13. and 14. �

Finally, we have the following result which explains the role of intertwining
functors.

3.16. Theorem. Let w ∈ W and let λ ∈ h∗ be Σ+
w-antidominant. Then the

functors LIw ◦ L∆λ and L∆wλ from D−(Uθ) into D−(Dwλ) are isomorphic.

Proof. We prove this result by induction on `(w). Assume first that w is
the simple reflection corresponding to α ∈ Π. Any V · ∈ D−(Uθ) is isomorphic to
a complex F · of free Uθ-modules. Moreover, L∆λ(V ·) = ∆λ(F ·) and, by 9, 11,
14. and C.6.1.(i), the natural morphism we described before is an isomorphism of

L∆sαλ(V ·) = ∆sαλ(F ·) = ∆sαλ(Γ(X,∆λ(F ·))),

into

Isα(∆λ(F ·)) = LIsα(∆λ(F ·)) = LIsα(L∆λ(V ·)).

Assume that the statement holds for w′ ∈W such that `(w′) ≤ k. Take w ∈W
such that `(w) = k+1. Then w = sαw

′ for some α ∈ Π and w′ ∈W with `(w′) = k.
By 12.(iii), w′λ is α-antidominant. Moreover, by the induction hypothesis and 15,
we see that

LIw ◦ L∆λ = (LIsα ◦ LIw′) ◦ L∆λ = LIsα ◦ (LIw′ ◦ L∆λ)

is isomorphic to LIsα◦L∆w′λ. Hence the assertion follows by applying the statement
for simple reflections. �

3.17. Corollary. Let λ ∈ h∗ be Σ+
w-antidominant and let F ∈ M(Uθ) be a

flat Uθ-module. Then the localization ∆λ(F ) is an Iw-acyclic ∆λ-module.

Proof. Since F is a flat module, its higher localizations vanish. Therefore,
the assertion follows from the spectral sequence associated to 18. �

The next result is the final form of the product formula for intertwining func-
tors.

3.18. Theorem. Let w,w′ ∈W be such that `(w′w) = `(w′) + `(w). Then, for
any λ ∈ h∗, the functors LIw′ ◦ LIw and LIw′w from D(Dλ) into D(Dw′wλ) are
isomorphic.
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Proof. By 5, we can assume that λ is antidominant and regular. In this situ-
ation, by 1.4. and 1.12, we know that any complex V · ∈ D(Dλ) is quasi-isomorphic
to the localization ∆λ(P ·) of a complex P · ∈ D(Uθ) consisting of projective Uθ-
modules. Therefore, by 12, 16. and 17, we have

LIw(V ·) = LIw(∆λ(P ·)) = ∆wλ(P ·),

and ∆wλ(P ·) consists of Iw′ -acyclic Dwλ-modules. It follows that

LIw′(LIw(V ·)) = LIw′(∆wλ(P ·)) = Iw′(∆wλ(P ·))

= ∆w′wλ(P ·) = LIw′w(∆λ(P ·)) = LIw′w(V ·),
and the lemma follows. �

In addition, if we assume that λ is regular, we have:

3.19. Theorem. Let w ∈ W and λ ∈ h∗ be Σ+
w-antidominant and regular.

Then

(i) LIw is an equivalence of the category D(Dλ) with D(Dwλ) isomorphic to
L∆wλ ◦RΓ;

(ii) the functors LIw ◦ L∆λ and L∆wλ from D(Uθ) into D(Dwλ) are isomor-
phic.

Proof. First we prove (ii). Any complex V · ∈ D(Uθ) is quasi-isomorphic to
a complex P · consisting of projective Uθ-modules. Therefore, L∆λ(V ·) = ∆λ(P ·)
and, by 16. and 17,

LIw(L∆λ(V ·)) = Iw(∆λ(P ·)) = ∆wλ(P ·) = L∆wλ(V ·).

(i) follows from (ii) and 1.12. �

3.20. Theorem. Let w ∈W and λ ∈ h∗. Then:

(i) LIw is an equivalence of the category D(Dλ) with D(Dwλ);
(ii) LIw is an equivalence of the category Db(Dλ) with Db(Dwλ);
(iii) LIw is an equivalence of the category Db

coh(Dλ) with Db
coh(Dwλ).

Proof. Assume first that λ is regular antidominant.
In this situation, by 1.12 and 19.(i), we see that the functor LIw is equivalent

to the functor L∆wλ ◦RΓ and the inverse functor is equivalent to L∆λ ◦RΓ. This
proves (i). Since the functor Γ has finite right cohomological dimension, and the
localization functor ∆µ has finite left cohomological dimension for regular µ by
1.13, (ii) follows. The last statement follows from 1.16.

The general statement follows from 5. using geometric translation. �

Now we can improve the estimate of left cohomological dimension of intertwin-
ing functors.

3.21. Theorem. Let w ∈W and λ ∈ h∗. Then the left cohomological dimension
of Iw :Mqc(Dλ) −→Mqc(Dwλ) is ≤ Card(Σ+

w ∩ Σλ).

Proof. By 5. we can assume that λ is regular and antidominant. The proof
is by induction in `(w). Assume first that w is the reflection with respect to α ∈ Π.
Then the left cohomological dimension of Isα is ≤ 1. Assume in addition that
α (̌λ) /∈ Z. Then sα(λ) is also regular and antidominant. By 19.(i), LIsα is an
equivalence of category D(Dλ) with D(Dsαλ) isomorphic to L∆sαλ ◦ RΓ. Since,
by 1.3, functors Γ : Mqc(Dλ) −→ M(Uθ) and ∆sαλ : M(Uθ) −→ Mqc(Dsαλ) are
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equivalencies of categories, the functor Isα : Mqc(Dλ) −→ Mqc(Dsαλ) is also an
equivalence of categories. It follows that its left cohomological dimension is 0. This
ends the proof for simple reflections.

Assume that the statement holds for all w′ ∈ W such that `(w′) ≤ k. Let
w ∈ W with `(w) = k + 1. Then there exist α ∈ Π and w′ ∈ W such that
`(w′) = k. By 12.(ii),

Σ+
sαw′

∩ Σλ = ({w′−1
(α) } ∪ Σ+

w′) ∩ Σλ,

hence

Card(Σ+
w ∩ Σλ) = Card(Σ+

w′ ∩ Σλ) + Card({α} ∩ Σw′λ).

The lemma follows from 18, the case of simple reflections and the induction hy-
pothesis. �

3.22. Corollary. Let w ∈ W and λ ∈ h∗ be such that Σ+
w ∩ Σλ = ∅. Then

Iw :Mqc(Dλ) −→Mqc(Dwλ) is an equivalence of categories and Iw−1 is its inverse.

Proof. By 12.(i) and 21, Iw and Iw−1 are exact. Also, by 5, we can as-
sume that λ is regular and antidominant. This implies that wλ is regular and
antidominant. By 19.(i), LIw is an equivalence of category D(Dλ) with D(Dwλ)
isomorphic to L∆wλ ◦ RΓ. Since, by 1.3, the functors Γ : Mqc(Dλ) −→ M(Uθ)
and ∆wλ :M(Uθ) −→Mqc(Dwλ) are equivalencies of categories, Iw :Mqc(Dλ) −→
Mqc(Dwλ) is also an equivalence of categories. The same argument applies to Iw−1 .
This also implies that their compositions are isomorphic to the identity functor. �

3.23. Theorem. Let w ∈ W and λ ∈ h∗ be Σ+
w-antidominant. Then the func-

tors RΓ ◦ LIw and RΓ from D(Dλ) into D(Uθ) are isomorphic.

Proof. If λ is regular this follows from 1.12. For singular λ, we can find
w′ ∈ W and ν ∈ P (Σ) such that w′λ and −w′ν are antidominant, w′(λ − ν) is
antidominant and regular, and λ − ν is Σ+

w-antidominant. Let V · ∈ D(Dλ). Since
the left cohomological dimension of Iw is finite, V · is quasi-isomorphic to a complex
C· consisting of Iw-acyclicDλ-modules. Moreover, by 5, the complex C·(−ν) consists
of Iw-acyclic Dλ−ν-modules and

LIw(V ·(−ν)) = Iw(C·(−ν)) = Iw(C·(−ν)) = Iw(C·)(−wν) = LIw(V ·)(−wν).

In addition,

RΓ(LIw(V ·)(−wν)) = RΓ(LIw(V ·(−ν))) = RΓ(V ·(−ν)),

using the statement for regular λ − ν. On the other hand, by C.2.1, if we denote
by F the irreducible finite-dimensional g-module with highest weight w′ν, we have

RΓ(LIw(V ·)) = RΓ((LIw(V ·)(−wν)⊗OX F)[λ])

= (RΓ(LIw(V ·)(−wν))⊗C F )[λ] = (RΓ(V ·(−ν))⊗C F )[λ]

= RΓ((V ·(−ν)⊗OX F)[λ]) = RΓ(V ·).

�

We finally remark the following fact. It shows that, in general, the estimate of
left cohomological dimension of intertwining functors from 21. is the best possible.
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3.24. Proposition. Let w ∈W and λ ∈ P (Σ). Then

LiIw(O(λ+ ρ)) = 0 for i 6= −`(w)

and
L−`(w)Iw(O(λ+ ρ)) = O(wλ+ ρ).

Proof. By 5. we can assume that λ is antidominant and regular. In this
situation the assertion follows immediately from 16. and 1.22. �

4. The inverses of the intertwining functors

For any w ∈ W and λ ∈ h∗, the functor LIw : D(Dλ) −→ D(Dwλ) is an
equivalence of categories. It induces an equivalence LIw : Db

coh(Dλ) −→ Db
coh(Dwλ)

of the subcategories of bounded coherent complexes. In this section, we prove a
formula for quasiinverses of these functors.

Let λ ∈ h∗ and θ = W · λ. Denote by −θ the Weyl group of −λ.
First, we recall the duality functor D : Db

coh(Dλ) −→ Db
coh(D−λ) on bounded

coherent complexes. For any complex V ·, we have

D(V ·) = RHomDλ(V ·, D(Dλ))[dimX].

This duality operation behaves well with respect to tensoring.

4.1. Lemma. For any weight ν ∈ P (Σ), the following diagram of functors is
commutative

Db
coh(Dλ) −−−−→ Db

coh(D−λ)

−(ν)

y y−(−ν)

Db
coh(Dλ+ν) −−−−→ Db

coh(D−λ−ν)

.

Proof. Let V · be a bounded complex of coherent Dλ-modules. Then, V ·(ν)
is a bounded complex of coherent Dλ+ν-modules. Moreover,

D(V ·(ν)) = RHomDλ+ν
(V ·(ν), D(Dλ+ν))[dimX]

= RHomDλ+ν
(O(ν)⊗OX V ·,O(ν)⊗OX D(Dλ)⊗OX O(−ν))[dimX]

= RHomDλ+ν
(O(ν)⊗OX V ·,O(ν)⊗OX D(Dλ))[dimX]⊗OX O(−ν)

= RHomDλ(V ·, D(Dλ))[dimX]⊗OX O(−ν) = D(V ·)(−ν).

�

As in 3.4, we see that the category Mcoh(Dλ) has enough projective objects.
Let P be a projective object in Mcoh(Dλ). Then, from the spectral sequence

Hp(X, ExtqDλ(P,Dλ))⇒ Extp+qDλ (P,Dλ),

we conclude that
Hp(X,HomDλ(P,Dλ)) = 0, for p > 0;

i.e., HomDλ(P,Dλ) is acyclic for Γ(X,−).
Consider the functor V · 7−→ RHomDλ(V ·, D(Dλ)) fromD−coh(Dλ) intoD+

coh(D−λ)

and the functor RΓ from D+
coh(D−λ) into D+(Uθ). Then the above remark implies

that
RΓ(RHomDλ(V ·, D(Dλ))) = RHomDλ(V ·, D(Dλ)).

This leads to the following result.
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4.2. Lemma. We have the isomorphism

RΓ(D(V ·)) = RHomDλ(V ·, D(Dλ))[dimX]

of functors from Db
coh(Dλ) into Db(Uθ).

Let θ be a regular orbit. For such θ, the homological dimension of the ring Uθ is
finite. Moreover, the principal antiautomorphism of U(g) induces an isomorphism
of the ring opposite to Uθ with U−θ. Let Db

fg(Uθ) be the derived category of finitely
generated Uθ-modules. We define a contravariant duality functor

Dalg(V ·) = RHomUθ (V
·, D(Uθ))

from Db
fg(Uθ) into Db

fg(U−θ). Clearly, D2
alg
∼= 1.

Let V · be a complex of finitely generated Uθ-modules bounded from above.
Then there exists a complex F · bounded from above, consisting of free Uθ-modules
of finite rank and a morphism of complexes F · −→ V ·. Therefore,

RΓ(D(L∆λ(V ·))) = RΓ(D(∆λ(F ·))) = RHomDλ(∆λ(F ·), D(Dλ))[dimX]

= Hom·Dλ(∆λ(F ·), D(Dλ))[dimX] = Hom·Uθ (F
·, D(Uθ))[dimX]

= RHomUθ (F
·, D(Uθ))[dimX] = Dalg(V ·)[dimX].

Since L∆λ is an equivalence of Db
fg(Uθ) with Db

coh(Dλ) we get the following result.

4.3. Lemma. Let λ ∈ h∗ be regular, then the following diagram of functor
commutes

Db
coh(Dλ)

D−−−−→ Db
coh(D−λ)

RΓ

y yRΓ

Db
fg(Uθ) −−−−−−−→Dalg [dimX]

Db
fg(U−θ)

.

Let α be a simple root. If λ is α-antidominant, by 3.23, we have

RΓ(V ·) = RΓ(LIsα(V ·)).
Hence, we have

RΓ(D(V ·)) = Dalg(RΓ(V ·))[dimX]

= Dalg(RΓ(LIsα(V ·)))[dimX] = RΓ(D(LIsα(V ·))).

Here D(V ·) is in Db
coh(D−λ) and D(LIsα(V ·)) is in Db

coh(D−sαλ). Therefore, −sαλ
is α-antidominant. It follows that

RΓ(D(V ·)) = RΓ(LIsαD(LIsα(V ·))).
Since D(V ·) and LIsαD(LIsα(V ·)) are in Db

coh(D−λ) and RΓ is an equivalence of
categories, we have

D(V ·) = LIsα(D(LIsα(V ·))).
Therefore,

LIsα ◦ (D ◦ LIsα ◦ D) ∼= 1

on Db
coh(D−λ). Because all of these functors commute with twists, it follows that

this relation holds in general.
This implies that for arbitrary w ∈W we have

LIw ◦ (D ◦ LIw−1 ◦ D) ∼= 1.
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Therefore, we proved the following result.

4.4. Theorem. The quasiinverse of the intertwining functor LIw : Db
coh(Dλ) −→

Db
coh(Dwλ) is equal to

D ◦ LIw−1 ◦ D : Db
coh(Dwλ) −→ Db

coh(Dλ).

5. Global sections of irreducible Dλ-modules

Let λ ∈ h∗ be antidominant. Then for any quasi-coherent Dλ-module V, higher
cohomology modules Hi(X,V), i > 0, vanish. Therefore, we need to study only the
behavior of global sections Γ(X,V) of V. We start with the following simple result.

5.1. Proposition. Let λ ∈ h∗ be antidominant and V ∈ Mqc(Dλ) irreducible.
Then either

(i) Γ(X,V) = 0, or
(ii) V is generated by its global sections Γ(X,V) and they form an irreducible
Uθ-module.

Proof. As we remarked before, there is a natural morphism of ∆λ(Γ(X,V))
into V, and its image is a coherent Dλ-module. Therefore, it is equal to 0 or V. In
the first case we have Γ(X,V) = 0, and (i) holds. In the second case, V is generated
by its global sections. It remains to prove that Γ(X,V) is irreducible. Let K be
the kernel of the epimorphism of ∆λ(Γ(X,V)) onto V. Then we have the exact
sequence

0 −→ K −→ ∆λ(Γ(X,V)) −→ V −→ 0

and therefore

0 −→ Γ(X,K) −→ Γ(X,∆λ(Γ(X,V))) −→ Γ(X,V) −→ 0.

By 1.1, this implies that Γ(X,K) = 0.
Let U be a nonzero submodule of Γ(X,V). Then the inclusion i of U into

Γ(X,V) induces a homomorphism ∆λ(i) of ∆λ(U) into ∆λ(Γ(X,V)). Assume that
im ∆λ(i) is contained in K. By applying Γ we would get that Γ(∆λ(i)) = 0,
contradicting 1.1. Therefore, im ∆λ(i) is not contained in K. This implies that
the natural morphism of K ⊕ ∆λ(U) into ∆λ(Γ(X,V)) is an epimorphism. By
the exactness of Γ it follows that the natural morphism of Γ(X,K ⊕ ∆λ(U)) =
Γ(X,∆λ(U)) = U into Γ(X,∆λ(Γ(X,V))) = Γ(X,V) is surjective; hence, U =
Γ(X,V). �

The previous result allows the following converse.

5.2. Proposition. Let V be an irreducible module from M(Uθ). Let λ ∈ h∗ be
antidominant. Then there exists an irreducible Dλ-module V such that Γ(X,V) is
isomorphic to V . Such Dλ-module V is unique up to an isomorphism.

We start the proof with a lemma.

5.3. Lemma. Let λ ∈ h∗ be antidominant and V ∈ Mqc(Dλ). Then there exists
a largest quasi-coherent Dλ-submodule V ′ of V with no nonzero global sections.

Proof. Let S be the family of all quasi-coherent Dλ-modules U of V such that
Γ(X,U) = 0. We assume that S is ordered by inclusion. Let C be a chain in S. By
[7, Ch. I, 2.2.2], the union W of elements of C is a quasi-coherent Dλ-submodule of
V and Γ(X,W) = 0. Hence, by Zorn lemma, there exists a maximal element V ′ of
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S. Let U be any other element of S. Then U +V is a quasi-coherent Dλ-submodule
of V and it is a quotient of Dλ-module U ⊕V ′. By the exactness of Γ it follows that
Γ(X,U + V ′) = 0, i. e. U + V is in S. Therefore, U is a Dλ-submodule of V ′. �

Now we can prove 2. The localization ∆λ(V ) of V is a coherent Dλ-module
generated by its global sections. Let W be a coherent Dλ-submodule of ∆λ(V )
different from ∆λ(V ). Then we have an exact sequence

0 −→W −→ ∆λ(V ) −→ V −→ 0

of coherent Dλ-modules and, since λ is antidominant, we have

0 −→ Γ(X,W) −→ Γ(X,∆λ(V )) −→ Γ(X,V) −→ 0.

By 1.1, Γ(X,∆λ(V )) = V ; hence our assumption implies that it is irreducible. It
follows that Γ(X,W) is either 0 or equal to Γ(X,∆λ(V )). In the second case, all
global sections of ∆λ(V ) would already be in W. By the definition of ∆λ(V ), it is
generated by its global sections as a Dλ-module. Therefore, this would imply that
W is equal to ∆λ(V ), contrary to our assumption. It follows that Γ(X,W) = 0
and Γ(X,V) = V . Therefore, by 3, it follows that ∆λ(V ) has the largest coherent
Dλ-submodule W and corresponding V is irreducible. It is generated by its global
sections by 1.

It remains to show the uniqueness. Assume that U is an irreducible Dλ-module
such that Γ(X,U) = V . Then the image of the natural homomorphism of ∆λ(V )
into U is either 0 or U . In the first case, Γ(X,U) = 0, contrary to our assumption.
It follows that this homomorphism is onto, and by the first part of the proof its
kernel is W. This ends the proof of 2.

Now we want to study the necessary and sufficient conditions for vanishing of
global sections of irreducible Dλ-modules for antidominant λ ∈ h∗. We start with a
discussion of the action of intertwining functors, attached to reflections with respect
to the roots from Πλ, on irreducible modules. Let α ∈ Πλ. Then

Σ+
sα ∩ Σλ = Σ+

λ ∩ (−sα(Σ+
λ )) = Σ+

λ ∩ (−(Σ+
λ − {α}) ∪ {α}) = {α},

hence, by 3.21, we know that the left cohomological dimension of Isα is ≤ 1. As-
sume, in addition, that λ is antidominant. Then n(sαλ) ≤ 1 and, by C.3.1, we
see that the right cohomological dimension of Γ on Mqc(Dsαλ) is ≤ 1. By 3.23,
for any V ∈ Mqc(Dλ), we have a spectral sequence with E2-term Hp(X,LqIsα(V ))
converging to Γ(X,V). It follows that this spectral sequence converges at E2-stage
and

(a) Γ(X,L−1Isα(V )) = H1(X, Isα(V )) = 0,
(b) the Uθ-module Γ(X,V) is an extension of Γ(X, Isα(V )) andH1(X,L−1Isα(V )).

5.4. Lemma. Let α ∈ Πλ and λ ∈ h∗ be antidominant and such that α is
the only root from Πλ orthogonal to λ. Assume that V ∈ Mqc(Dλ) is such that
Γ(X,V) = 0. Then

(i) Isα(V) = 0,
(ii) L−1Isα(V) = V.

Proof. Let µ ∈ P (Σ) be a regular antidominant weight and F the irreducible
finite-dimensional g-module with lowest weight µ. Denote by F = OX⊗CF . Then,
as we discussed in C.2, the U◦-module G = (V ⊗OX F)[λ+µ] has a natural filtration
such that the corresponding graded module is the sum of V(ν) for all weights ν of
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F such that λ+µ = w(λ+ν). This condition implies that λ−wλ = wν−µ ∈ Q(Σ),
hence w ∈Wλ. In addition, since λ is antidominant, the left side of this equation is
negative of a sum of roots from Πλ. On the other hand, since µ is the lowest weight
of F , the right side is a sum of roots from Π. This is possible only if both sides are
equal to 0. Therefore, w = 1 or w = sα. Hence, we have an exact sequence

0 −→ V(sαµ) −→ G −→ V(µ) −→ 0.

Also,

Hi(X,G) = Hi(X,V ⊗OX F)[λ+µ] = (Hi(X,V)⊗C F )[λ+µ] = 0,

and the long exact sequence of cohomology implies that Γ(X,V(sαµ)) = 0, Γ(X,V(µ)) =
H1(X,V(sαµ)) and higher cohomology modules of V(sαµ) vanish. This finally im-
plies, by 3.23, that

RΓ(LIsα(D(V(µ)))) = RΓ(D(V(sαµ))[1]).

By the equivalence of derived categories (3.19), we conclude that

LIsα(D(V(µ))) = D(V(sαµ))[1],

i.e. that Isα(V(µ)) = 0 and L−1Isα(V(µ)) = V(sαµ). The assertions (i) and (ii)
follow from 3.5.(ii). �

5.5. Lemma. Let α ∈ Πλ and λ ∈ h∗ such that −α (̌λ) = p ∈ Z+. Let V be
a quasi-coherent Dλ-module such that Isα(V) = 0 and L−1Isα(V) = V(pα). Then
Γ(X,V(pα)) = 0.

Proof. By 3.23, we have

Hi(X,V) = Hi+1(X,L−1Isα(V)) = Hi+1(X,V(pα))

for all i ∈ Z. �

5.6. Lemma. Let λ ∈ h∗ and α ∈ Πλ. Put −α (̌λ) = p ∈ Z. Let V be an
irreducible Dλ-module. Then either

(i) L−1Isα(V) = 0, or
(ii) Isα(V) = 0 and L−1Isα(V) = V(pα).

Proof. By C.3.5.(ii) we can assume that λ is antidominant and regular. More-
over, because of irreducibility of V, Γ(X,V) is irreducible Uθ-module, and either
Γ(X, Isα(V)) = 0 or H1(X,L−1Isα(V)) = 0. By C.4.3, we conclude that Isα(V) = 0
in the first case, and L−1Isα(V) = 0 in the second case. Assume that Isα(V) = 0.
In this case, L−1Isα(V) 6= 0. By 3.5.(ii) we can now assume that λ is antidominant
and that α is the only root from Πλ orthogonal to it. In addition, from previous
discussion and antidominance of sαλ = λ we conclude that

Γ(X,V) = H1(X,L−1Isα(V)) = 0.

The assertion follows from 3.5.(ii) and 4.4. �

5.7. Lemma. Let λ ∈ h∗ and α ∈ Πλ. Put −α (̌λ) = p ∈ Z. Let V be an
irreducible Dλ-module such that L−1Isα(V) = 0. Then Isα(V) has a largest quasi-
coherent submodule U and

(i) we have an exact sequence

0 −→ U −→ Isα(V) −→ V(pα) −→ 0;
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(ii)

L−1Isα(U) = U(−pα)

and LpIsα(U) = 0 for p 6= −1.

Moreover, if p ≥ 0, Γ(X,U) = 0.

Proof. Again, to prove the first statement we can assume that λ is antidom-
inant and regular. As we remarked before, in this case all higher cohomology
modules of Isα(V) vanish. Let W be any quasi-coherent Dsαλ-submodule of Isα(V)
different from Isα(V). Then, by C.3.1. and the long exact sequence of cohomol-
ogy we conclude that higher cohomology modules of C = Isα(V)/W also vanish.
Therefore, by C.4.3, we conclude that Γ(X, C) 6= 0. The long exact sequence of
cohomology gives

0 −→ Γ(X,W) −→ Γ(X, Isλ(V)) −→ Γ(X, C) −→ H1(X,W) −→ 0.

We can choose ν ∈ P (Σ) such that λ+ν is antidominant and α is the only root from
Πλ orthogonal to λ+ν. This implies that α (̌λ+ν) = 0 and α (̌λ) = −α (̌ν) = −p.
Then, the sequence

0 −→W(sαν) −→ Isα(V)(sαν) −→ C(sαν) −→ 0

is exact and, since sα(λ+ ν) is antidominant, we get the exact sequence

0 −→ Γ(X,W(sαν)) −→ Γ(X, Isα(V)(sαν)) −→ Γ(X, C(sαν)) −→ 0.

Moreover, by 3.5.(ii) and 3.23, Isα(V)(sαν) = Isα(V(ν)) and

Γ(X, Isα(V)(sαν)) = Γ(X, Isα(V(ν))) = Γ(X,V(ν)),

hence it is either 0 or an irreducible Uθ-module by 1. We claim now that Γ(X, C(sαν)) 6=
0. Assume the contrary, i.e. Γ(X, C(sαν)) = 0. Then, by 4, we have

Isα(C(sαν)) = 0 and L−1Isα(C(sαν)) = C(sαν).

By 3.5.(ii) this leads to

Isα(C(−pα)) = 0 and L−1Isα(C(−pα)) = C.

Therefore, by 5, C has no global sections, contradicting the preceding discus-
sion. This in turn implies that Γ(X,W(sαν)) = 0 and by 4. and 5, we see that
Γ(X,W) = 0. We proved that any quasi-coherent Dsαλ-submoduleW of Isα(V) dif-
ferent from Isα(V) satisfies Γ(X,W(sαν)) = 0. Hence, by 3. we conclude that Isα(V)
contains a largest quasi-coherent Dλ-submodule U and that Γ(X,U) = 0. Moreover,
(Isα(V)/U)(sαν) is an irreducible Dλ+ν-module such that Γ(X, (Isα(V)/U)(sαν)) =
Γ(X,V(ν)). By 2. it follows that (Isα(V)/U)(sαν) = V(ν). This implies that
Isα(V)/U = V(pα). This porves (i).

We concluded already that Γ(X,U(sαν)) = 0. Hence, by 4, L−1Isα(U(sαν)) =
U(sαν) and LqIsα(U(sαν)) = 0 for q 6= −1. Hence, we have L−1Isα(U) = U(sαν −
ν) = U(−pα) and LpIsα(U)) = 0 for p 6= −1. This proves (ii).

By (ii), L−1Isα(U(−pα)) = U and all other derived intertwining functors vanish
on U(−pα). By 5. we see that Γ(X,U) = 0 if p ≥ 0. �

5.8. Corollary. Let λ ∈ h∗ and α ∈ Πλ be such that −α (̌λ) = p ∈ Z+. Let
V be an irreducible Dλ-module such that Γ(X,V) 6= 0 and L−1Isα(V) = 0. Then
Γ(X,V(pα)) 6= 0.
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Proof. By 3.23,
Γ(X, Isα(V)) = Γ(X,V) 6= 0.

Hence, by the left exactness of Γ and 7, Γ(X,V(pα)) 6= 0. �

5.9. Theorem. Let λ ∈ h∗ be antidominant and S subset of Πλ consisting
of roots orthogonal to λ. Let V be an irreducible Dλ-module. Then the following
conditions are equivalent:

(i) Γ(X,V) = 0,
(ii) there exists α ∈ S such that Isα(V) = 0.

Proof. (ii)⇒(i) By 4, L−1Isα(V) = V. Hence, by 5, Γ(X,V) = 0.
(i)⇒(ii) Let W (λ) be the stabilizer of λ in W . Then W (λ) is generated by

reflections with respect to S. Let F be a finite-dimensional representation with
regular lowest weight ν, and put F = OX ⊗C F . Then V ⊗OX F satisfies

Γ(X,V ⊗OX F) = Γ(X,V)⊗C F = 0.

Moreover Γ(X, (V⊗OXF)[λ+ν]) = 0. On the other hand, if we consider the filtration
of F discussed in C.2, it induces a filtration of (V ⊗OX F)[λ+ν] such that the
corresponding graded sheaf is a direct sum of V(µ) for all weights µ of F such
that w(λ + ν) = λ + µ for some w ∈ W . This implies that wλ − λ = µ − wν,
hence w ∈ Wλ. Moreover, the left side of the equality λ − w−1λ = w−1µ − ν is a
negative of a sum of roots from Πλ and the right side is a sum of roots from Π.
This implies that wλ = λ, i. e. w ∈ W (λ). Let w1 ∈ W (λ) be such that V(w1ν) is
an OX -submodule of (V ⊗OX F)[λ+ν], then Γ(X,V(w1ν)) = 0. Assume now that

L−1Isα(V) = 0 for all α ∈ S. We claim that in this case Γ(X,V(wν)) 6= 0 for
any w ∈ W (λ), contradicting our assumption. We prove this by induction in the
length of w in W (λ) (which is the same as the length in Wλ by [5, Ch IV, §1, no. 8,
Cor. 4. of Prop. 7]). If w = 1, λ+ν is antidominant and regular, and the statement
follows from C.4.4. Assume that `λ(w) = k > 0. Let w = sαw

′ with α ∈ S and
w′ ∈ W (λ) such that `λ(w′) = k − 1. Then, by [5, Ch. VI, §1, no. 6, Cor. 1 of

Prop. 17], it follows that w′
−1
α ∈ Σ+

λ . This implies, by the antidominance of ν,
that

α (̌λ+ w′ν) = α (̌w′ν) = (w′
−1
α)̌ (ν) ∈ −N,

and λ+ w′ν is α-antidominant.
By the induction assumption we have Γ(X,V(w′ν)) 6= 0 and

L−1Isα(V(w′ν)) = L−1Isα(V)(wν) = 0

by 3.5.(ii). Therefore, the assertion follows from 8. �

6. Intertwining functors and holonomic complexes

The category of holonomic modules is a thick subcategory of the category
Mqc(Dλ). Therefore, we can consider the category Db

hol(Dλ) which is the full sub-
category of Db(Dλ) consisting of complexes with holonomic cohomology. Clearly,
the geometric translation functor V −→ V(µ), µ ∈ P (Σ), induces an equivalence of
the category Db

hol(Dλ) with the category Db
hol(Dλ+µ).

Every holonomic module is of finite length. This results in the following con-
sequence

6.1. Lemma. Irreducible holonomic Dλ-modules form a generating class in
Db
hol(Dλ).
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Proof. By a standard truncation argument [1, I.12.6], all holonomic Dλ-
modules form a generating class in Db

hol(Dλ). On the other hand, for a holonomic
Dλ-module V of length n, let U be one of its maximal coherent submodules. Then
we have the exact sequence

0 −−−−→ U i−−−−→ V −−−−→ V/U −−−−→ 0,

where V/U is irreducible and U of length n− 1. Let

CD(i)

[1]

��
D(U)

D(i)
// D(V)

^^

be the distinguished triangle attached to the morphism i. Then the cone Ci is
isomorphic to D(V/U). Therefore, by induction in the length, we see that the tri-
angulated subcategory of Db

hol(Dλ) generated by irreducible holonomic Dλ-modules
contains all complexes of the form D(V) where V is a holonomic Dλ-module. By
the first remark, it is equal to Db

hol(Dλ). �

By its definition, for arbitrary w ∈ W , the intertwining functor LIw maps
Db
hol(Dλ) into Db

hol(Dwλ).

6.2. Theorem. Let w ∈ W and λ ∈ h∗. Then LIw is an equivalence of the
category Db

hol(Dλ) with Db
hol(Dwλ).

Proof. By the product formula (3.18), it is enough to show this statement for
simple reflections. Using geometric translation and 3.5 we can also assume that λ
is antidominant and regular.

There are two possibilities in this case. Either

(a) α (̌λ) /∈ −N, or
(b) α (̌λ) ∈ −N.

In case (a), sα(λ) is again regular antidominant. Therefore, by 3.22, Iw is an exact
functor and Iw−1 is its inverse. This immediately implies our assertion.

In case (b), p = −α (̌λ) ∈ N. To prove the statement in this case it is enough to
show that the full subcategory A of Db

hol(Dsαλ) consisting of objects isomorphic to
complexes LIsα(C·), C· ∈ Db

hol(Dλ), is equal to Db
hol(Dsαλ). To show this, by 1, it is

enough to show that A contains complexes D(V(pα)) for all irreducible holonomic
Dλ-modules V.

By 4.6, for an irreducible holonomic Dλ-module V, there are two possibilities,
either

(i) L−1Isα(V) = V(pα) and Isα(V) = 0, or
(ii) L−1Isα(V) = 0.

If (i) holds, we have LIsα(D(V)) = D(V(pα))[1]. Therefore

LIsα(D(V)[−1]) = D(V(pα)),

and all complexes D(V(pα)), where V is an irreducible Dλ-module of type (i), are
in A. This also implies that all complexes D(U(pα)), where U is a holonomic
Dλ-module with all composition factors of type (i), are also in A.
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If (ii) holds, by 4.7. we have the short exact sequence

0 −−−−→ U −−−−→ Isα(V) −−−−→ V(pα) −−−−→ 0.

We can choose ν ∈ P (Σ) such that λ+ ν is antidominant and α is the only root in
Πλ orthogonal to λ+ ν. Then, by 3.5,

0 −−−−→ U(sαν) −−−−→ Isα(V(ν)) −−−−→ V(ν) −−−−→ 0

is exact. Moreover, 4.7 implies that Γ(X,U(sαν)) = 0. Since λ+ν is antidominant,
Γ is exact by C.3.2, and all composition factors of U(sαν) have no global sections.
By 4.9, this implies that all composition factors of U(sαν) are of type (i). By 3.5,
it follows that all composition factors of U are of type (i). From the first part
of the proof we conclude that U is in A. Consider now the distinguished triangle
associated to the morphism Isα(V) −→ V(pα),

C·

[1]

��
LIsα(D(V)) // D(V(pα))

]]

The cone C· is isomorphic to D(U)[−1] and, since LIsα(D(V)) and D(U)[−1] are
in A, we see that D(V(pα)) is in A either. By 1, we see that A = Db

hol(Dsαλ). �

This result has the following consequences.

6.3. Theorem. Let λ ∈ h∗ and θ = W · λ. Let V be a holonomic Dλ-module.
Then Hp(X,V), p ∈ Z+, are Uθ-modules of finite length.

Proof. Let µ ∈ θ be antidominant, and w ∈ W such that λ = wµ. By 2,
there exists a complex C· with holonomic cohomology such that LIw(C·) = D(V).
Since Γ is exact functor from Mqc(Dµ) into M(Uθ) we see that RΓ(C·) = Γ(C·),
and Hp(RΓ(C·)) = Γ(X,Hp(C·)) for arbitrary p ∈ Z. By 4.1. we also conclude
that Hp(RΓ(C·)), p ∈ Z, are Uθ-modules of finite length. Therefore, RΓ(C·) is a
complex of Uθ-modules with cohomology modules of finite length. Finally, by 3.23,
we conclude that

Hp(X,V) = Hp(RΓ(D(V))) = Hp(RΓ(LIw(C·))) = Hp(RΓ(C·)).
�

6.4. Proposition. Let λ ∈ h∗ be regular antidominant and θ = W · λ. Let V
be a finitely generated Uθ-module. Then the following conditions are equivalent:

(i) ∆λ(V ) is a holonomic Dλ-module;
(ii) L∆wλ(V ) is a complex with holonomic cohomology for some w ∈W ;
(iii) Hp(nx, V ), p ∈ Z+, are finite-dimensional for all x ∈ X;
(iv) there exists w ∈W such that Hp(nx, V )(wλ+ρ), p ∈ Z+, are finite-dimensional

for all x ∈ X.

Proof. First we remark that, by 1.19, L∆wλ(V ) ∈ Db
coh(Dwλ) for any w ∈W .

The assertions (i) and (ii) are equivalent by 3.19. and 2. Also, (iii) implies (iv).
Assume that (ii) holds. For x ∈ X, denote by ix the injection of x into X.

Then
LTx(L∆wλ(V )) = Li∗x(L∆wλ(V ))
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is a complex with finite-dimensional cohomology. By 2.6, this implies (iv). On the
other hand, if (iv) holds, the same result implies that the complex LTx(L∆wλ(V ))
has finite-dimensional cohomology for all x ∈ X. Hence (ii) follows from ([1],
VII.10.7.(ii)). �

6.5. Corollary. Let θ be a W -orbit in h∗ consisting of regular elements. Let
V be a finitely generated Uθ-module. If Hp(nx, V ), p ∈ Z+, are finite-dimensional
for all x ∈ X, the module V is of finite length.

Proof. Let λ ∈ θ be antidominant. Then 4. implies that ∆λ(V ) is holonomic,
and therefore of finite length. By equivalence of categories this implies that V is of
finite length. �

7. Tensor products with finite-dimensional modules

Let θ be a Weyl group orbit in h∗ and λ ∈ θ. Let F be a finite-dimensional
representation of g and m = dimF . Let (µi; 1 ≤ i ≤ m) be the family of all weights
of F counted with their multiplicities. Since the weights of F and their multiplicities
are invariant under the action of the Weyl group W , the family S(θ, F ) = (νi =
λ+ µi; 1 ≤ i ≤ m), λ ∈ θ, depends only on θ and F .

7.1. Lemma. Let V ∈ M(Uθ), and F a finite-dimensional representation of g.
Then ∏

ν∈S(θ,F )

(ζ − χν(ζ)), ζ ∈ Z(g),

annihilates V ⊗C F .

Proof. Let λ ∈ θ be antidominant. Put F = OX ⊗C F and consider its
filtration (Fi; 1 ≤ i ≤ m) from the beginning of C.2. Then, it induces a filtration
(∆λ(V )⊗OX Fi; 1 ≤ i ≤ m) of ∆λ(V )⊗OX F . The corresponding graded module is
the direct sum of ∆λ(V )(µi), 1 ≤ i ≤ m. It is evident that ∆λ(V )(µi) is annihilated
by ζ − χνi(ζ) for any ζ ∈ Z(g). This immediately implies that ∆λ(V ) ⊗OX F is
annihilated by

∏m
i=1(ζ − χνi(ζ)) for any ζ ∈ Z(g). In particular, the module of its

global sections is annihilated by these elements. On the other hand,

Γ(X,∆λ(V )⊗OX F) = Γ(X,∆λ(V )⊗C F ) = V ⊗C F

by 1.1. �

In particular, V ⊗CF has a finite increasing filtration by U(g)-submodules such
that all composition factors are modules with infinitesimal character.

LetMfl(U(g)) be the full subcategory ofM(U(g)) consisting of U(g)-modules
of finite length. LetMcc(U(g)) be the full subcategory ofMfg(U(g)) consisting of
modules V ∈Mfl(U(g)) such that V ⊗C F ∈Mfl(U(g)) for any finite-dimensional
g-module F .

7.2. Remark. An example due to T. Stafford shows that there are irreducible
Uθ-modules V such that V ⊗C F is not artinian. Therefore, Mcc(U(g)) is strictly
smaller than Mfl(U(g)).

7.3. Lemma. (i) The category Mcc(U(g)) is a thick subcategory of the
category Mfl(U(g)).

(ii) If V ∈ Mcc(U(g)) and F is a finite-dimensional g-module, V ⊗C F ∈
Mcc(U(g)).
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Proof. (i) follows immediately from the exactness of −⊗C F . (ii) is evident.
�

7.4. Lemma. Let λ ∈ h∗ be antidominant and θ = W · λ. Let V ∈ M(Uθ).
Then the assertion:

(i) Hp(X,∆λ(V )(ν)), p ∈ Z+, are Uθ-modules of finite length for any weight
ν ∈ P (Σ), implies

(ii) V ⊗CF is an g-module of finite length for any finite-dimensional g-module
F .

If, in addition, λ is regular, (i) and (ii) are equivalent.

Proof. We use the notation from the proof of 1. From the spectral sequence
of a filtered object [7, III.13.6], we see that there exists a spectral sequence with
E1-term equal to

Hp−q(X,Grq(∆λ(V )⊗OX F)) = Hp−q(X,∆λ(V )(νq))

which abutts to

Hp(X,∆λ(V )⊗OX F) = Hp(X,∆λ(V ))⊗C F

and which is equal to V ⊗CF for p = 0 and 0 otherwise. Since the E1-term consists
of g-modules of finite length and all differentials are morphisms of g-modules, we
conclude that V ⊗C F is of finite length.

Assume now that λ is regular and that that (ii) holds for V ∈M(Uθ).
Let µ is a dominant weight and F the irreducible finite-dimensional module

with lowest weight −µ. Then, by C.2.2 and 1.1, we see that

Γ(X,∆λ(V )(−µ)) = Γ(X,∆λ(V )⊗OX F)[λ−µ]

= (Γ(X,∆λ(V ))⊗C F )[λ−µ] = (V ⊗C F )[λ−µ].

By 2, V ′ = (V ⊗C F )[λ−µ] also has the property (ii) and ∆λ−µ(V ′) = ∆λ(V )(−µ).
Since an arbitrary weight ν can be written as a difference of two dominant

weights µ′ and µ, we have

∆λ(V )(ν) = ∆λ(V )(µ′ − µ) = ∆λ−µ(V ′)(µ′).

Therefore, it is enough to prove (i) for dominant weights ν.
We complete the proof by induction in p. Assume first that p = 0. Let F be

the irreducible finite-dimensional g-module with the highest weight ν. Then

Hp(X,∆λ(V )⊗OX F) = Hp(X,∆λ(V ))⊗C F

for all p, 0 ≤ i ≤ dimX; therefore it vanishes for p > 0. On the other hand, we
have an injection of F1 = O(ν) into F . It follows that, by tensoring with ∆λ(V ),
we get the exact sequence of U◦-modules

0 −→ ∆λ(V )(ν) −→ ∆λ(V )⊗OX F −→ K −→ 0.

Applying Γ to this exact sequence we see that Γ(X,∆λ(V )(ν)) is a g-submodule
of the tensor product Γ(X, ·λ(V ))⊗C F = V ⊗C F , which is of finite length by our
assumption. This proves our assertion for p = 0.

Assume now that p ≥ 1. Then the long exact sequence of cohomology implies
that Hp(X,∆λ(V )(ν)) is a quotient of Hk−1(X,K). On the other hand, from the
definition of the filtration of F , it follows that K has a natural U◦-module filtration
such that the corresponding graded module GrK is equal to ⊕∆λ(V )(µ), where the
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sum is taken over all weights µ of F different from ν. By the induction assumption,
Hk−1(X,∆λ(V )(µ)) are g-modules of finite length. An induction in the length of
the filtration of K implies that Hk−1(X,K) is a g-module of finite length. �

7.5. Proposition. Let λ ∈ h∗ be antidominant and θ = W · λ. Let V ∈
M(Uθ) and F a finite-dimensional representation of g. If ∆λ(V ) is a holonomic
Dλ-module, V ⊗C F is a module of finite length.

Proof. This follows from 5.3. and 4. �

Therefore, Mcc(U(g)) contains all Uθ-modules with holonomic localizations.

7.6. Remark. Is there an irreducible Uθ-module V inMcc(U(g)) such that its
localization is not holonomic?

Let K(Mfl(U(g))) be the Grothendieck group ofMfl(U(g)). Denote by ch the
natural character map from Mfl(U(g)) into K(Mfl(U(g))).

Denote by Mcc(Uθ) the full subcategory of M(Uθ) consisting of objects which
are also in Mcc(U(g)).

7.7. Theorem. Let λ ∈ h∗ be regular antidominant and V an irreducible module
in Mcc(Uθ). Then there exists a unique function Φ from P (Σ) into K(Mfl(U(g)))
such that

(i) Φ(0) = ch(V );
(ii) Φ(ν) is a difference of g-modules with the infinitesimal character χλ+ν ;
(iii) for any finite-dimensional g-module F

ch(V ⊗C F ) =
∑

Φ(ν)

where the sum is taken over the set of all weights ν of F counted with
their multiplicities.

The function Φ is given by the following formula

Φ(µ) =
∑
p∈Z+

(−1)p ch(Hp(X,∆λ(V )(µ)))

for µ ∈ P (Σ).

Proof. First show that the function

Φ(µ) =
∑
p∈Z+

(−1)p ch(Hp(X,∆λ(V )(µ)))

has the required properties. The first two properties are evident from the definition.
As in 4, from the spectral sequence of a filtered object, we get a spectral sequence
with E1-term equal to

Hp−q(X,Grq(∆λ(V )⊗OX F)) = Hp−q(X,∆λ(V )(νq))

which abutts to

Hp(X,∆λ(V )⊗OX F) = Hp(X,∆λ(V ))⊗C F
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and which is equal to V ⊗C F for p = 0 and 0 otherwise. The Euler characteristic
of the total complex attached to the E1-term is∑

p,q∈Z
(−1)p+q ch(Hp−q(X,∆λ(V )(νq)) =

∑
p,q∈Z

(−1)p−q ch(Hp−q(X,∆λ(V )(νq)))

=
∑
s∈Z

(−1)s ch(Hs(X,∆λ(V )(ν))

where the sum is taken over all weights ν of F counted with their multiplicities. By
the Euler principle, this is equal to the Euler characteristics of the total complex
of E∞, i.e. to ch(V ⊗C F ). This proves the third property.

It remains to show the uniqueness. First, the map F 7−→ ch(V ⊗CF ) extends to
the Grothendieck group of the category of finite-dimensional g-modules. Moreover,
the notions of weights and their multiplicities transfer directly to this setting. By
[5, Ch. VI, §3, no. 4, Prop. 3], for any dominant weight µ there exists an object in
the Grothendieck group of the category of finite-dimensional g-modules with the set
of weights equal to {wµ |w ∈W} and each weight has multiplicity one. Therefore,∑
w∈W Φ(wµ) is uniquely determined by the third property. On the other hand,

χλ+µ = χλ+wµ implies w′(λ + wµ) = λ + µ for some w′ ∈ W . This implies that
w′λ−λ = µ−w′wµ ∈ P (Σ). Therefore, w′ ∈Wλ. Since λ is antidominant, w′λ−λ
is a sum of roots from Σ+

λ . On the other hand µ is a dominant weight and µ−w′wµ
is negative of a sum of roots from Σ+. This implies that w′λ = λ and w′ = 1 since
λ is regular. But this immediately leads to w′µ = µ. Hence, by (ii), all summands
in
∑
w∈W Φ(wµ) correspond to different infinitesimal characters. This implies that

they are uniquely determined. �

The map Φ is usually called the coherent family attached to V .

8. Intertwining functors for simple reflections

In this section we study more carefully the action of intertwining functors Isα ,
α ∈ Π, on irreducible Dλ-modules. If α (̌λ) is not integral, by 3.22, Isα is an
equivalence of the category Mqc(Dλ) with Mqc(Dsαλ). A more interesting case
which we want to analyze is when α (̌λ) is an integer. We start with a simple
geometric preliminary result.

8.1. Lemma. The varieties Zw, w ∈W , are affinely imbedded in X ×X.

Proof. The variety X×X is the flag variety of g×g. By 3.1.(ii), Zw, w ∈W ,
are the Int(g)-orbits in X × X under the diagonal action, hence they are affinely
imbedded by H.1.1. �

Let α ∈ Π. Denote by Xα the variety of parabolic subalgebras of type α, and by
pα the natural projection of X onto Xα. Let Yα = X×XαX be the fibered product
of X with X relative to the morphism pα. Denote by q1 and q2 the corresponding
projections of Yα onto the first and second factor respectively. Then the following
diagram

Yα
q2−−−−→ X

q1

y pα

y
X

pα−−−−→ Xα
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is commutative. Moreover, there is a natural imbedding of Yα into X × X. It
identifies Yα with the closed subvariety of X×X which is the union of Z1 and Zsα .
Under this identification, Z1 is a closed subvariety of Yα and Zsα is a dense open
subvariety of Yα. In addition, Zsα is affinely imbedded into Yα by 1.

Fix a base point y ∈ Xα and denote by Pα,y the stabilizer of y in G. As we
have discussed in (...) the G-homogeneous twisted sheaves of differential operators
on Xα are parametrized by Pα,y-invariant linear forms on the Lie algebra qα,y of
Pα,y. Since Pα,y is connected, a linear form µ ∈ p∗α,y is Pα,y-invariant if and only
if it is pα,y-invariant. Therefore µ is Pα,y-invariant if and only if it vanishes on
the commutator subalgebra [pα,y, pα,y] of pα,y. Let b be a Borel subalgebra of g
contained in pα,y. Then [pα,y, pα,y] contains the nilpotent radical n of b and we have
a canonical map from h into pα,y/[pα,y, pα,y]. This map is surjective and its kernel
is spanned by the dual root αˇ of α. Therefore, G-homogeneous twisted sheaves
of differential operators on Xα are parametrized by linear forms µ ∈ h∗ satisfying
α (̌µ) = 0. In addition, for any µ ∈ h∗ satisfying α (̌µ) = 0, the twisted sheaf of
differential operators (DXα,µ)pα is a G-homogeneous twisted sheaf of differential
operators on X and

(DXα,µ)pα = DX,µ = Dµ−ρ.
For any λ ∈ h∗, (Dλ)q1 and (Dλ)q2 are twisted sheaves of differential operators on
Yα. Since pα ◦ q1 = pα ◦ q2, we see that

(Dµ−ρ)q1 = (Dµ−ρ)q2

for any µ ∈ h∗ such that α (̌µ) = 0. Let λ ∈ h∗ be such that p = −α (̌λ) is an
integer. Then we can put µ = λ + pρ. In this case, α (̌µ) = α (̌λ) + pα (̌ρ) = 0,
and µ satisfies our condition. Therefore, by (...), we get the following result:

(Dλ)q1 = ((Dµ−ρ)O((−p+1)ρ))q1 = ((Dλ−ρ)q1)q
∗
1 (O((−p+1)ρ))

and analogously, since µ = sαλ+ psαρ,

(Dλ)q2 = ((Dµ−ρ)O((−p+1)sαρ+α))q1 = ((Dλ−ρ)q1)q
∗
1 (O((−p+1)sαρ+α))

Let L be the invertible OYα -module on Yα given by

L = q∗1(O((−p+ 1)sαρ+ α))⊗OYα q
∗
2(O((−p+ 1)ρ))−1.

Then, by the preceding calculation, we have the following result.

8.2. Lemma. Let λ ∈ h∗ be such that p = −α (̌λ) is an integer. Then

(Dsαλ)q1 = ((Dλ)q2)L.

In particular, we have well-defined functors U j

V −→ Rjq1+(q+
2 (V)⊗OYα L)

fromMqc(Dλ) intoMqc(Dsαλ). Since the fibers of q1 are one-dimensional, U j = 0
for j 6= −1, 0, 1. Now we want to analyze the connection between the functors U j

and the intertwining functor Isα . Denote by i1 the natural inclusion of Z1 into Yα
and by iα the natural inclusion of Zsα into Yα. Since i1 is a closed immersion and
iα is an open affine immersion, we have the distinguished triangle

Γ[Z1](W ·)→W · → iα∗(W ·|Zsα)→ Γ[Z1](W ·)[1]

inDb((Dsαλ)q1) for anyW · ∈ Db((Dsαλ)q1). This leads to the distinguished triangle

Rq1+(Γ[Z1](W ·))→ Rq1+(W ·)→ Rq1+(iα∗(W ·|Zsα))→ Rq1+(Γ[Z1](W ·)[1])
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in Db(Dsαλ). Moreover, q1 ◦ iα = p1, hence

Rq1+(iα∗(W ·|Zsα)) = Rp1+(W ·|Zsα).

Assume now thatW · = D(q+
2 (V)⊗OYα L) for some V ∈ Mqc(Dλ). Then, by 3.3.(i),

L|Zsα = p∗1(O((−p+ 1)sαρ+ α))⊗OZsα p
∗
2(O((−p+ 1)ρ))−1 = p∗1(O(α)) = Tsα .

It follows that, in this case, W ·|Zsα = D(p+
2 (V)⊗OZsα Tsα), and we conclude that

Rq1+(iα∗(W ·|Zsα)) = LIsα(D(V)).

By [1, 7.12], we know that RΓ[Z1](W ·) = Ri1+(Li+1 (W ·)[−1]), hence

Rq1+(RΓ[Z1](W ·)) = R(q1 ◦ i1)+(Li+1 (W ·)[−1]).

Here q1 ◦ i1 is the natural isomorphism of the diagonal Z1 in X × X with X
induced by the projection onto the first factor. If we assume again that W · =
D(q+

2 (V)⊗OYα L), we see that

Li+1 (D(q+
2 (V)⊗OYα L)) = L(q2 ◦ i1)+(D(V))⊗OZ1

i∗1(L).

Here q2 ◦ i1 is again the natural isomorphism of the diagonal Z1 in X ×X with X
induced by the projection onto the second factor. If we use this map to identify Z1

with X, we see that i∗1(L) = O(pα) and

Rq1+(RΓ[Z1](D(q+
2 (V)⊗OYα L))) = D(V(pα)[−1]).

By applying the long exact sequence of cohomology to the above distinguished
triangle this finally leads to the following result.

8.3. Theorem. Let λ ∈ h∗ be such that p = −α (̌λ) is an integer, and V ∈
Mqc(Dλ). Then

(i) U−1(V) = L−1Isα(V);
(ii) we have an exact sequence of Dsαλ-modules

0 −→ U0(V) −→ Isα(V) −→ V(pα) −→ U1(V) −→ 0.

We can say more if V is irreducible.

8.4. Theorem. Let λ ∈ h∗ be such that p = −α (̌λ) is an integer, and V ∈
Mqc(Dλ) an irreducible Dλ-module. Then either

(i) U−1(V) = U1(V) = V(pα) and U0(V) = 0, and in this case Isα(V) = 0
and L−1Isα(V) = V(pα); or

(ii) U−1(V) = U1(V) = 0, and in this case L−1Isα(V) = 0 and the sequence

0 −→ U0(V) −→ Isα(V) −→ V(pα) −→ 0

is exact. The module U0(V) is the largest quasi-coherent Dsαλ-submodule
of Isα(V) different from Isα(V).

From 4. and 4.7. we immediately see that U0(V) in (ii) can be characterized as
the largest quasi-coherent Dsαλ-submodule of Isα(V).

To prove the remaining assertions, we first we remark that if U−1(V) 6= 0,
L−1Isα(V) 6= 0 by 3. Hence, by 4.6, Isα(V) = 0 and L−1Isα(V) = V(pα). By
applying 3. again, we conclude that U0(V) = 0 and U−1(V) = V(pα).

Assume that U−1(V) = 0. Then, by 3, L−1Isα(V) = 0. Hence, by 4.6, we see
that Isα(V) 6= 0. It remains to show that U1(V) = 0.
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Assume that U1(V) 6= 0. Then, by 3, U1(V) = V(pα). We shall show that this
leads to Isα(V) = 0, what is a contradiction. This argument will also give us some
insight in the structure of irreducible Dλ-modules with U1(V) 6= 0.

We start with a preliminary result. Let µ ∈ h∗ be a linear form such that
α (̌µ) = 0. Let U be a DXα,µ-module on Xα. Then p+

α (U) is a Dµ−ρ-module on X.

8.5. Lemma. Let V = p+
α (U) for some U ∈ Mqc(DXα,µ). Then Isα(V) = 0 and

L−1Isα(V) = V(α).

Proof. As in the discussion preceding the proof of 3.9, the proof reduces to
the corresponding statement for g = sl(2,C). In this case, V is a direct sum of
copies of OX and our claim follows from 3.24. �

This result implies that if W is a translate of a module of the form p+
α (U), we

have Isα(W) = 0. On the other hand, by applying the base change (...) to the
diagram

Yα
q2−−−−→ X

q1

y pα

y
X

pα−−−−→ Xα

we see immediately that U1(V) is a translate of such a module. Therefore, V has
also this property, and we conclude that Isα(V) = 0. This ends the proof of 5.4.

In addition, we proved the following result.

8.6. Proposition. Let λ ∈ h∗ be such that p = −α (̌λ) is an integer, and V ∈
Mqc(Dλ) an irreducible Dλ-module. Then the following conditions are equivalent:

(i) Isα(V) = 0;
(ii) V is a translate of a module of the form p+

α (U).

This result, combined with 4.9. implies the following simple criterion for van-
ishing of global sections of irreducible Dλ-modules.

8.7. Theorem. Let λ ∈ h∗ be antidominant. Let S be the subset of Πλ con-
sisting of all roots orthogonal to λ. Assume that S is contained in Π. Let V be an
irreducible Dλ-module. Then the following conditions are equivalent:

(i) Γ(X,V) = 0;
(ii) there exists α ∈ S such that V is a translate of a module of the form

p+
α (U).

9. Supports and n-homology

In this section we prove some results on n-homology which follow from analysis
of the action of intertwining functors.

We start with some geometric preliminaries. Let S be a subset of the flag
variety X. For w ∈W put

Ew(S) = {x ∈ X | bx is in relative position v

with respect to by for some v ≤ w, y ∈ S}.

9.1. Lemma. (i) If S is a subset of X and w ∈W ,

dimS ≤ dimEw(S) ≤ dimS + `(w).



9. SUPPORTS AND n-HOMOLOGY 75

(ii) If S is a subset of X and w ∈W ,

Ew(S̄) = Ew(S).

(iii) If S is a closed subset of X and w ∈W , Ew(S) is the closure of the set

{x ∈ X | bx is in the relative position w with respect to some by, y ∈ S}.

(iv) If S is irreducible, Ew(S) is also irreducible.
(v) Let w, v ∈W be such that `(wv) = `(w) + `(v). Then

Ewv(S) = Ew(Ev(S)).

Proof. Let α ∈ Π. Denote by Xα the variety of all parabolic subalgebras of
type α and by pα : X −→ Xα the natural projection. Then we have

Esα(S) = {x ∈ X | bx is in relative position v

with respect to by for some v ≤ sα, y ∈ S}
= S ∪ {x ∈ X | bx is in relative position sα

with respect to by for some y ∈ S} = p−1
α (pα(S)).

Clearly, since pα : X −→ Xα is a locally trivial fibration with fibre isomorphic to
P1, Esα(S) is closed (resp. irreducible) if S is closed (resp. irreducible). Moreover,
we see that

dimS ≤ dimEsα(S) ≤ dimS + 1.

Therefore, Esα(S̄) is closed. Hence, Esα(S) ⊂ Esα(S̄). On the other hand, since

S ⊂ Esα(S) it follows that S̄ ⊂ Esα(S). If x ∈ Esα(S), the whole fiber p−1
α (pα(x))

is contained in Esα(S). This implies Esα(S̄) ⊂ Esα(S). This proves (ii) for simple
reflections.

Now we prove (v) by induction in the length of w ∈W . First we claim that the
formula holds if w = sα, α ∈ Π. In this case, Esα(Ev(S)) consists of all points x ∈ X
such that either x ∈ Ev(S) or there exists y ∈ Ev(S) such that bx is in relative
position sα with respect to by. Hence, it consists of all x ∈ X such that there exists
y ∈ S and bx is in relative position u with respect to by for either u ≤ v or u = sαu

′

with u′ ≤ v. In the second case, we have either `(u) = `(u′) + 1 and u ≤ sαv or
`(u) = `(u′) − 1 and u ≤ u′ ≤ v. Hence, Esα(Ev(S)) ⊂ Esαv(S). Conversely, if
u ≤ sαv, we have either u ≤ v or sαu ≤ v, hence Esα(Ev(S)) = Esαv(S).

Assume now that w is arbitrary. Then we can find α ∈ Π and w′ ∈ W such
that `(w) = `(w′) + 1. Therefore, by the induction assumption,

Ew(Ev(S)) = Esαw′(Ev(S)) = Esα(Ew′(Ev(S))) = Esα(Ew′v(S)),

which completes the proof of (v).
Now, for arbitrary w ∈W , α ∈ Π, and w′ ∈W such that `(w) = `(w′) + 1, we

have Ew(S) = Esα(Ew′(S)). Using the first part of the proof and an induction in
`(w), (i), (ii) and (iv) follow immediately. In addition, we see that Ew(S) is closed,
if S is closed.

(iii) Let

V = {x ∈ X | bx is in relative position w with respect to some by, y ∈ S}.

Then V ⊂ Ew(S). Since Ew(S) is closed, V ⊂ Ew(S). Let y ∈ S. Then the closure
of the set of all x ∈ X such that bx is in relative position w with respect to by is
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equal to Ew({x}). This implies

V ⊃
⋃
x∈S

Ew({x}) = Ew(S).

�

We say that w ∈W is transversal to S ⊂ X if

dimEw(S) = dimS + `(w).

If w is transversal to S, `(w) ≤ codimS.

9.2. Lemma. (i) The element w ∈W is transversal to S if and only if it
is transversal to S̄.

(ii) Let S be a subset of X and w, v ∈ W be such that `(wv) = `(w) + `(v).
Then the following statements are equivalent:
(a) wv is transversal to S;
(b) v is transversal to S and w is transversal to Ev(S).

Proof. (i) By 1.(ii) we have

dimEw(S) = dimEw(S) = dimEw(S̄),

and the assertion follows from the definition of transversality.
(ii) By 1.(i)

dimEwv(S) ≤ dimS + `(wv) = dimS + `(w) + `(v),

and the equality holds if and only if wv is transversal to S. On the other hand, by
1.(v),

dimEwv(S) = dimEw(Ev(S)) ≤ dimEv(S) + `(w) ≤ dimS + `(v) + `(w).

Hence, if (a) holds, the last relation is an equality, i.e.,

dimEw(Ev(S)) = dimEv(S) + `(w)

and
dimEv(S) = dimS + `(v).

Hence, (b) holds.
Conversely, if (b) holds, we see immediately that wv is transversal to S. �

9.3. Lemma. Let S be an irreducible closed subvariety of X and w ∈W . Then
there exists v ≤ w such that v is transversal to S and Ev(S) = Ew(S).

Proof. First we consider the case of w = sα, α ∈ Π. In this case Esα(S) =
p−1
α (pα(S)) is irreducible and closed, and we have two possibilities:

(a) sα is transversal to S and dimEsα(S) = dimS + 1, or
(b) sα is not transversal to S, dimEsα(S) = dimS and since S ⊂ Esα(S), we

have Esα(S) = S.

Now we prove the general statement by induction in `(w). If `(w) = 0, w = 1 and
E1(S) = S, hence the assertion is obvious. Assume that `(w) = k. Then there
exists w′ ∈ W and α ∈ Π such that w = sαw

′ and `(w) = `(w′) + 1. In this case,
Ew(S) = Esα(Ew′(S)) by 1.(v). By the induction assumption, there exists v′ ∈W ,
v′ ≤ w′ which is transversal to S and such that Ev′(S) = Ew′(S).

Now, by the first part of the proof, if sα is not transversal to Ew′(S) we have

Ew(S) = Esα(Ew′(S)) = Ew′(S) = Ev′(S).
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Since v′ ≤ w′ ≤ w the assertion follows. If sα is transversal to Ew′(S), we have

dimEw(S) = dimEsα(Ew′(S)) = dimEw′(S) + 1 = dimS + `(v′) + 1.

Put v = sαv
′. If we have `(v) = `(v′)− 1,

Ev′(S) = Esα(Ev(S)) = p−1
α (pα(Ev(S)))

by 1.(v) and

Esα(Ev′(S)) = p−1
α (pα(p−1

α (pα(Ev(S))))) = Ev′(S),

contrary to transversality of sα. Therefore, `(v) = `(v′) + 1, v ≤ w and Ev(S) =
Esα(Ev′(S)). We conclude that Ew(S) = Ev(S),

dimEv(S) = dimEw(S) = dimS + `(v′) + 1 = dimS + `(v)

and v is transversal to S. �

Fix λ ∈ h∗. Let Mcoh(Dλ) be the category of coherent Dλ-modules. The
support suppV of a coherent Dλ-module V is a closed subvariety of X [9]. We want
to analyze how the action of intertwining functors changes supports of coherent
D-modules.

First we remark the following simple fact which is a direct consequence of the
definition of the intertwining functors and 1.(iii). If V · is a complex in Db(Dλ), we
define the support of V · as

suppV · =
⋃
p∈Z

suppHp(V ·).

Clearly, by the above remark, the support of V · ∈ Db
coh(Dλ) is a closed subvariety

of X.

9.4. Lemma. For any V ∈ Db
coh(Dλ) and w ∈W , we have

suppLIw(V ·) ⊂ Ew(suppV ·).

Proof. First we establish this result for simple reflections. If α ∈ Π,

LIsα(V ·) = Rp1+(Tsα ⊗OZsα p
+
2 (V ·))

and we have the spectral sequence

Rsp1+(Tsα ⊗OZsα H
t(p+

2 (V ·)))⇒ Hs+t(LIsα(V ·)),

hence the support of LIsα(V ·) is contained in the closure of the image of the support
of p+

2 (V ·). The support of p+
2 (V ·) is contained in the closed subset

{(x, x′) ∈ Zsα | x′ ∈ suppV ·} = {(x, x′) ∈ X ×X |
bx is in relative position sα with respect to bx′ , x

′ ∈ suppV ·}

of Zsα . The projection of this set under p1 is equal to

{x ∈ X | bx is in relative position sα with respect to bx′ , x
′ ∈ suppV ·}
⊂ Esα(suppV ·).

Hence,

suppLIsα(V ·) ⊂ Esα(suppV ·).
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Now we prove the general statement by induction in `(w). Assume that w =
w′sα, w′ ∈ W , α ∈ Π and `(w) = `(w′) + 1. Then LIw = LIw′ ◦ LIsα by 3.18.
Hence, by the induction assumption and 1.(v),

suppLIw(V ·) = suppLIw′(LIsα(V ·)) ⊂ Ew′(suppLIsα(V ·))
⊂ Ew′(Esα(suppV ·)) = Ew(suppV ·).

�

The next result is more subtle.

9.5. Lemma. Let V ∈ Mcoh(Dλ) and α ∈ Π. Then

(i)

dim suppL−1Isα(V) ≤ dim suppV;

(ii) if sα is transversal to suppV,

dim supp Isα(V) = dim suppV + 1.

Proof. Let S = suppV. Then either

(a) sα is transversal to S, or
(b) sα is not transversal to S.

Consider first the case (b). Then, dimS = dimEsα(S). Therefore, by 4,

dim suppLpIsα(V) ≤ dimS

for p ∈ Z. In particular, (i) holds in this case.
It remains to study the case (a). We start with some geometric preliminaries.

Let Si , 1 ≤ i ≤ n, be the irreducible components of S. Then

Esα(S) = Esα

(
n⋃
i=1

Si

)
=
⋃
Esα(Si).

Since Esα(Si) are closed and irreducible by 1.(iv), the maximal elements of the
family (Esα(Si); 1 ≤ i ≤ n) are the irreducible components of Esα(S). Hence,

dimEsα(S) = max
1≤i≤n

dimEsα(Si),

and there are irreducible components Si of S satisfying dimEsα(Si) = dimEsα(S).
By relabeling the indices, we can assume that this holds for 1 ≤ i ≤ m. Since sα
is transversal to S, we have dimEsα(S) = dimS + 1. Therefore, dimEsα(Si) =
dimS+1 for 1 ≤ i ≤ m. On the other hand, dimEsα(Si) ≤ dimSi+1, implies that
dimSi = dimS for 1 ≤ i ≤ m. Hence Si, 1 ≤ i ≤ m, are irreducible components of
S of dimension dimS. Since Esα(Si) = p−1

α (pα(Si)) and pα : X −→ Xα is a locally
trivial fibration with fibers isomorphic to P1, we see that

dim pα(Si) = dim p−1
α (pα(Si))− 1 = dimSi = dimS

for 1 ≤ i ≤ m. On the other hand, if m < i ≤ n, dimEsα(Si) ≤ dimS, hence either
dimSi < dimS or sα is not transversal to Si. In both cases, dim pα(Si) < dimS.
Hence, if we denote by S0 the union of the singular locus of S and

⋃
m<i≤n Si,

we see that dim pα(S0) < dimS and dimEsα(S0) ≤ dimS. Let X ′ = X − S0.
Then S∩X ′ is a smooth closed subvariety of X ′ and its irreducible components are
S′i = Si ∩X ′, 1 ≤ i ≤ m. Therefore, S′i, 1 ≤ i ≤ m, are mutually disjoint smooth
subvarieties of dimension dimS, and sα is transversal to all of them.
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If we consider the restrictions pα|S′i : S′i −→ pα(S′i), 1 ≤ i ≤ m, there exist open
dense sets Ui in pα(Si) such that the fibres p−1

α (u)∩S are finite for u ∈ U =
⋃m
i=1 U

[11, Ch. I, §8, Theorem 3]. The set p−1
α (U) is open in Esα(S) of dimension dimS+1.

Since S and Esα(S0) are closed subspaces of Esα(S) of codimension 1, the set

V = p−1
α (U)− (S ∪ Esα(S0))

is open in Esα(S) of dimension dimS + 1 and its complement is a subvariety of
dimension dimS.

Let x ∈ V . Consider the projections pi : Zsα −→ X, i = 1, 2, induced by
projections of X ×X to the first and second factor. Then

p−1
1 (x) ∩ p−1

2 (S) = {(x, x′) ∈ X ×X | pα(x) = pα(x′), x′ ∈ S}
= {(x, x′) | x′ ∈ p−1

α (x) ∩ S}

is a nonempty finite set, and p2 induces a bijection of this set onto p−1
α (x) ∩ S.

Now we turn to the analysis of geometric fibres of LIsα . For any x ∈ X we
denote by ix the natural injection {x} −→ X. Then we have

LTx(U ·) = Li+x (U ·) = Ri!x(U ·)[dimX]

for any U · ∈ Db(Dλ). Therefore, for any x ∈ X, we have

LTx(LIsα(D(V))) = Ri!x(LIsα(D(V)))[dimX]

= Ri!x(Rp1+(Tsα ⊗OZsα p
+
2 (D(V))))[dimX].

Let Zx = p−1
1 (x) ⊂ Zsα be the fibre of p1 over x. Denote by jx the immersion of

Zx into Zsα . Then, by base change [1, VI.8.4], we have

LTx(LIsα(D(V))) = Ri!x(Rp1+(Tsα ⊗OZsα p
+
2 (D(V))))[dimX]

= R(p1 ◦ jx)+(Rj!
x(Tsα ⊗OZsα p

+
2 (D(V))))[dimX]

= R(p1 ◦ jx)+(j∗x(Tsα)⊗OZx Rj
!
x(p!

2(D(V))[−1]))[dimX]

= R(p1 ◦ jx)+(j∗x(Tsα)⊗OZx R(p2 ◦ jx)!(D(V)))[dimX − 1].

The projection p2◦jx of Zx onto its image F = (pα(x)−{x}) ⊂ X is an ismorphism.
Denote by q1 : F −→ X and q2 : F −→ X the compositions of p1 and p2 with the
inverse of this isomorphism. Then q2 is the natural inclusion of F into X. Since
Tsα = p∗1(O(α)) = p∗2(O(−α)) by 3.3.(i), we finally see that

LTx(LIsα(D(V))) = Rq1+(q∗2(O(−α))⊗OF Rq!
2(D(V)))[dimX − 1].

Assume now that x ∈ V . Then F ⊂ X ′. On the other hand, S′ = S ∩ X ′
is a smooth closed subvariety of X ′. Let j be the natural immersion of S′ into
X. Then, by Kashiwara’s equivalence of categories [1, VI.7.11], we have V|X ′ =
j+(R0j!(V))|X ′. Hence,

Rq!
2(D(V)) = Rq!

2(D(j+(R0j!(V)))) = Rq!
2(j+(Rj!(D(V)))).

Let k and h be the natural immersions of F ∩ S into F and S′ respectively. Then,
applying again the base change, we have

Rq!
2(D(V)) = Rq!

2(j+(Rj!(D(V)))) = Rk+(Rh!(Rj!(D(V))))

= Rk+(R(j ◦ h)!(D(V))) = Rk+(R(q2 ◦ k)!(D(V))).
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Since the set F ∩ S is finite, if we denote by ky the natural immersion of {y} into
F , we have

Rq!
2(D(V)) = Rk+(R(q2 ◦ k)!(D(V)))

=
⊕

y∈F∩S
ky+(Ri!y(D(V))) =

⊕
y∈F∩S

ky+(LTy(D(V)))[−dimX].

This implies that

LTx(LIsα(D(V))) =
⊕

y∈(p−1
α (x)−{x})∩S

LTy(D(V))[−1]

as a complex of vector spaces.
By [1, V.9.3], by shrinking U even more, we can assume that j!(V) is a locally

free O-module on S ∩ p−1
α (U). This implies that LpTy(j!(V)) = 0, for p 6= 0 and

y ∈ S ∩ p−1
α (U); and

Ey = Ty(j!(V)) 6= 0

for y ∈ S ∩ p−1
α (U). Therefore, if we denote by ly the inclusion of {y} into S′, we

get

LTy(D(V)) = Ri!y(D(V))[dimX] = Rl!y(Rj!(D(V)))[dimX]

= LTy(D(j!(V)))[dimX − dimS] = D(Ey)[dimX − dimS]

for all y ∈ S ∩ p−1
α (U). Hence,

LTx(LIsα(D(V))) =
⊕

y∈(p−1
α (x)−{x})∩S

D(Ey)[dimX − dimS − 1]

for x ∈ V , and x ∈ suppLIsα(D(V)). Therefore, suppLIsα(D(V)) contains the
closure V̄ of V and dim suppLIsα(D(V)) ≥ dimS + 1. By 4, we have

dim suppLIsα(D(V)) = dimS + 1.

Since

dim supLIsα(D(V)) = max
p∈Z

dim suppLpIsα(V)

= max
(
dim supp Isα(V),dim suppL−1Isα(V)

)
,

to complete the proof we have to show that dim suppL−1Isα(V) ≤ dimS. Let X ′′

be the complement of the union of the singular locus of Esα(S) and its irreducible
components of dimension ≤ dimS. Then T = Esα(S) ∩ X ′′ is a closed smooth
subvariety of X ′′ and all its irreducible components are of dimension dimS+1. Let
v : T −→ X be the natural inclusion. By Kashiwara’s theorem, LpIsα(V)|X ′′ =
v+(Cp)|X ′′, for coherent D-modules Cp = v!(LpIsα(V)) on T . By shrinking X ′′ if
necessary, we can assume that Cp are locally free O-modules [1, VII.9.3]. If we
denote by hx the inclusion of {x} into T , using again base change, we see that

LTx(D(LpIsα(V))) = LTx(D(v+(Cp))) = Ri!x(v+(D(Cp)))[dimX]

= Rh!
x(D(Cp))[dimX] = LTx(D(Cp))[dimX − dimS − 1]

= D(Tx(Cp))[dimX − dimS − 1]

for x ∈ T and p ∈ Z. Hence,

LqTx(LpIsα(V)) = 0
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for q 6= dimS − dimX + 1 and

LdimS−dimX+1Tx(LpIsα(V)) = Tx(Cp).

By this calculation, the spectral sequence

LqTx(LpIsα(V))⇒ Hp+q(LTx(LIsα(D(V)))),

converges at E2-stage and

HdimS−dimX+p+1(LTx(LIsα(D(V)))) = Tx(Cp)

for x ∈ T . Hence,

LTx(LIsα(D(V))) = D(Tx(C−1))[dimX − dimS]⊕D(Tx(C0))[dimX − dimS − 1]

for x ∈ T .
Since the set of all irreducible components of Esα(S) is equal to the set (Esα(Si); 1 ≤ i ≤ m),

we see that T ∩V is dense in T . Comparing the preceding calculations, we see that
Tx(C−1) = 0 for x ∈ T ∩ V . Since Cp are locally free, we conclude that C−1 = 0.
Hence, suppL−1Isα(V) ⊂ X − X ′′ and dim suppL−1Isα(V) ≤ dimS. This com-
pletes the proof of (i) in this case, and implies that (ii) must hold. �

9.6. Proposition. Let V ∈ Mcoh(Dλ) and w ∈W . Then

dim suppLpIw(V) ≤ dim suppV + `(w) + p,

for p ∈ Z.

Proof. We prove this result by induction in `(w). If w is a simple reflection,
this follows from 1.(i), 4. and 5.(i). Let w = sαw

′ with α ∈ Π and w′ ∈ W with
`(w) = `(w′) + 1. Then, by the induction assumption,

dim suppLpIw′(L
qIsα(V)) ≤ dim suppLqIsα(V) + `(w′) + p

≤ dim suppV + `(w′) + 1 + p+ q = dim suppV + `(w) + p+ q,

for p, q ∈ Z. From the spectral sequence attached to 3.18. we conclude that

dim suppLsIw(V) ≤ dim suppV + `(w) + s,

for any s ∈ Z. �

9.7. Lemma. Let V ∈ Mcoh(Dλ) and w ∈ W transversal to suppV. Assume
that the support S of V is irreducible. Then

supp Iw(V) = Ew(S).

Proof. We prove this result by induction in `(w). If `(w) = 1, w = sα for some
α ∈ Π. By 4, supp Isα(V) ⊂ Esα(S). Also, by 1, both sets are closed and Esα(S) is
irreducible. Since dim supp Iw(V) = dimS + 1 = dimEsα(S) by transversality and
5.(ii), the statement follows.

Let w ∈W with `(w) = k > 1. Then w = sαw
′ with α ∈ Π and `(w′) = k − 1.

Since w is transversal to S, w′ is transversal to S and sα is transversal to Ew′(S) by
2. By the induction assumption, supp Iw′(V) = Ew′(S). Hence, by 3.8 and 1.(iv),
we have

supp Iw(V) = supp Isα(Iw′(V)) = Esα(Ew′(S)) = Ew(S).

�
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To any coherent Dλ-module we attach two subsets of the Weyl group W :

S(V) = {w ∈W | supp Iw(V) = X}
and

E(V) = the set of minimal elements in S(V).

9.8. Proposition. Suppose V ∈ Mcoh(Dλ) has irreducible support. Then

(i) the set S(V) is nonempty;
(ii)

E(V) = {w ∈W | w is transversal to suppV and `(w) = codim suppV},
i.e., E(V) consists of all w ∈ W transversal to suppV with the maximal possible
length.

Proof. Assume that w ∈W is transversal to suppV and `(w) = codim suppV.
Then, by 7, we conclude that w ∈ S(V). If v < w, `(v) < codim suppV, and
dim supp Iv(V) < dimX by 4. Hence, v /∈ S(V), i. e. w ∈ E(V).

Conversely, assume that w ∈ E(V). Then, by 4, we have Ew(suppV) = X.
Since the support of V is irreducible, by 3. we can find v ≤ w such that v is
transversal to suppV and Ev(suppV) = X. By 7. this implies v ∈ S(V). Since w
is a minimal element in S(V) we must have w = v, and w is transversal to suppV.
This proves (ii).

To show (i) it is enough to show that E(V) is nonempty. Clearly, if w0 is the
longest element in W , Ew0(S) = X. By 3, there exists w transversal to S such that
Ew(S) = X, hence the assertion follows from (ii). �

To formulate the main result of this section we need another notion. Let V be
a finitely generated Uθ-module. We say that λ ∈ θ is an exponent of V if the set

{x ∈ X | H0(nx, V )(λ+ρ) 6= 0}
contains an open dense subset of X.

We say that λ ∈ h∗ is strongly antidominant if Reα (̌λ) ≤ 0 for any α ∈ Σ+.
Clearly, a strongly antidominant λ is antidominant.

We also define a partial ordering on h∗ by: λ 4 µ if µ−λ is a linear combination
of simple roots in Π with coefficients with non-negative real parts. This order
relation is related to the ordering on the Weyl group W by the following observation.

9.9. Lemma. Let λ ∈ h∗ be strongly antidominant. Then for any v, w ∈ W ,
v ≤ w implies vλ 4 wλ.

Proof. Clearly, it is enough to show that for any w ∈W and α ∈ Π such that
`(sαw) = `(w) + 1, we have wλ 4 sαwλ. But sαwλ = wλ− α (̌wλ)α, hence

sαwλ− wλ = (w−1α)̌ (λ)α,

and it is enough to prove that Re(w−1α)̌ (λ) ≥ 0. Since w−1α is in Σ+ [5, Ch. VI,
§1, no. 6, Cor. 2 of Prop. 17], this follows immediately from strong antidominance
of λ. �

9.10. Theorem. Let λ ∈ h∗ be strongly antidominant. Let V ∈ Mcoh(Dλ) be
such that S = suppV is irreducible. Put V = Γ(X,V).

(i) If ω is an exponent of V , there exists w ∈ W transversal to S with
`(w) = codimS such that wλ 4 ω.
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(ii) Assume that V is irreducible and V 6= 0. If w ∈ W is transversal to S
and `(w) = codimS, then wλ is an exponent of V .

Proof. (i) Let µ be a regular dominant weight and F the irreducible finite-
dimensional g-module with highest weight µ. Let F = OX ⊗C F . Then λ − µ is
regular and strongly antidominant. Let U = Γ(X,V(−µ)). Then, by C.2.1,

V = (V(−µ)⊗OX F)[λ].

This implies

V = Γ(X,V) = Γ(X, (V(−µ)⊗OX F)[λ])

= Γ(X,V(−µ)⊗OX F)[λ] = (Γ(X,V(−µ))⊗C F )[λ] = (U ⊗C F )[λ].

Let ω be an exponent of V , i.e., H0(nx, V )(ω+ρ) 6= 0 for all x in some open dense
subset of X. Then

H0(nx, V ) = H0(nx, (U ⊗C F )[λ])

is the direct sum of generalized U(h)-eigenspaces of H0(nx, U ⊗ F ) corresponding
to weights vλ+ ρ, v ∈W . Hence,

H0(nx, V )(ω+ρ) = H0(nx, U ⊗C F )(ω+ρ).

Let (Fp; 1 ≤ p ≤ n) be an increasing bx-invariant maximal flag in F . It induces a
filtration (U⊗CFp; 1 ≤ p ≤ n) of the bx-module U⊗CF . The corresponding graded
module is the sum of modules of the form U ⊗C Cν , where ν goes over the set of
weights of F . Clearly, the semisimplification of H0(nx, U ⊗C F ) is a submodule
of the direct sum of modules H0(nx, U) ⊗C Cν . Since the infinitesimal character
of U is regular, H0(nx, U) is a semisimple h-module by L.2.4. This implies that
H0(nx, V )(ω+ρ) is a submodule of the direct sum of modules H0(nx, U)(ω−ν+ρ) ⊗C
Cν . In particular, if H0(nx, V )(ω+ρ) 6= 0, H0(nx, U)(ω−ν+ρ) 6= 0 for some weight ν
of F . Since the set of weights is finite, we can assume that H0(nx, U)(ω−ν+ρ) 6= 0
for all x in an open dense subset of X. On the other hand, ω − ν = v(λ − µ) for
some uniquely determined v ∈ W . This implies that v−1(ω − ν) = λ − µ. Since
ω = uλ for some u ∈W , we see that

v−1uλ− λ = −(µ− v−1ν).

Since µ is the highest weight of F , the right side is the negative of a sum of positive
roots. Hence v−1u ∈ Wλ and since λ is antidominant, we see that the left side is
a sum of positive roots. It follows that both sides must be zero, v−1u is in the
stabilizer of λ and ω = uλ = vλ. Since λ − µ is regular, V(−µ) = ∆λ−µ(U).
Moreover, from 2.6. we conclude that supp ∆v(λ−µ)(U) = X. Since Iv(V(−µ)) =
Iv(∆λ−µ(U)) = ∆v(λ−µ)(U) by 3.16, we see that v ∈ S(V(−µ)) = S(V). Hence, by
6. there exists w ≤ v such that w is transversal to S and `(w) = codimS. But, by
7, this implies that wλ 4 vλ = ω.

(ii) If V is irreducible, V(−µ) is also irreducible and their support S is ir-
reducible. Hence, U is irreducible by the equivalence of categories. Since w is
transversal to S and `(w) = codimS, by 7. we see that supp ∆w(λ−µ)(U) = X.
Put U = ∆w(λ−µ)(U). Since U is irreducible, by applying 1.16. with p = 0, we get
U ⊂ Γ(X,U).

Assume that s ∈ U is a global section of U which vanishes on the open dense
subset in X. Then it generates a submodule of global sections supported in the
complement of this open set. This submodule must be either equal to U or to zero.
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The first possibility would imply that the localization ∆w(λ−µ)(U) is also supported
in the complement of this open set, contradicting our assumption. Therefore this
submodule is equal to zero, i.e., s = 0. This implies that the support of any nonzero
global section in U is equal to X. Let F be the irreducible finite-dimensional
representation of g with highest weight µ. Then, as before, by C.2.1,

U(wµ) = (U ⊗OX F)[λ].

Hence, we see

Γ(X,U(wµ)) = Γ(X, (U ⊗OX F)[λ])

= Γ(X,U ⊗OX F)[λ] = (Γ(X,U)⊗C F )[λ] ⊃ (U ⊗C F )[λ] = V.

Moreover, the support of any nonzero global section of U ⊗OX F = U ⊗C F which
comes from U⊗CF is equal to X, and the support of any nonzero global section of its
subsheaf U(wµ) which belongs to (U ⊗CF )[λ] = V is also equal to X. Since U(wµ)
is coherent, there exists an open dense subset O in X such that U(wµ)|O is a locally
free OO-module [1, VII.9.3]. Therefore, on this set, a section vanishes if and only if
its values (i.e. its images in geometric fibres) vanish everywhere. Hence, there exists
an open dense subset O′ of O, such that for x ∈ O′, some sections from V do not
vanish at x. On the other hand, for any x ∈ O′, the global sections in nxV vanish at
that point. Therefore, for x ∈ O′, the geometric fibre map U(wµ) 7−→ Tx(U(wµ))
induces a nonzero map of V into Tx(U(wµ)), which factors through H0(nx, V ), and
this factor map is a morphism of bx-modules. It follows that H0(nx, V )(wλ+ρ) 6= 0
for x ∈ O′, i.e., wλ is an exponent of V . �

The next result is a direct consequence of 10.

9.11. Theorem. Let V 6= 0 be a finitely generated Uθ-module. Then the set of
exponents of V is nonempty. In particular, there exists an open dense subset U of
X such that H0(nx, V ) 6= 0 for x ∈ U .

Proof. Since V is nonzero, it has an irreducible quotient U 6= 0. Let λ ∈ θ
be strongly antidominant. Then U = Γ(X,U) for some irreducible Dλ-module U
by 4.2. By 8.(ii), there exists ω ∈ θ which is an exponent of U . Since H0(nx, U) is
a quotient of H0(nx, V ), it follows that ω is an exponent of U . �



CHAPTER 4

Harish-Chandra modules

1. Group actions on flag varieties

Let g be a semisimple Lie algebra and G = Int(g). The following result will
play an important role later.

1.1. Proposition. Let K be a subgroup of G. Then K-orbits in the flag variety
X are affinely imbedded.

The proof is based on the following observations.

1.2. Lemma. Let S be a solvable algebraic group and S′ its closed subgroup.
Then S/S′ is an affine variety.

Proof. Assume first that S is unipotent. Let s be the Lie algebra of S and s′

the Lie algebra of S′. If S′ 6= S, there exists a Lie subalgebra r of s of codimension
one which contains s′. Since the exponential map is an isomorphism of s onto S,
the variety S is isomorphic to the product of an affine line with the closed subgroup
R determined by r. Moreover, S/S′ is isomorphic to the product of the affine line
with R/S′. By induction in codimension of S′ in S, it follows that S/S′ is an affine
space.

Assume now that S is arbitrary and S′ is unipotent. Then S′ is a closed
subgroup of the unipotent radical N of S [2, III.10.6]. By the Levi decomposition,
in this case S/S′ is isomorphic to the product of a maximal torus T of S and N/S′.
This reduces the proof to the first case.

Consider now arbitrary S′. Let N ′ be its unipotent radical and T ′ a maximal
torus in S′. By Levi decomposition, S′ is the semidirect product of N ′ with T ′.
By the first part of the proof, S/N ′ is an affine variety. The group T ′ acts on the
variety S/N ′ and the quotient is S/S′. Since T is reductive this quotient is an affine
variety. �

Now, let Y be a homogeneous space for G. We define an action of G on Y ×X
by

g(y, x) = (gy, gx)

for g ∈ G, x ∈ X, y ∈ Y .

1.3. Lemma. The G-orbits in Y ×X are affinely imbedded.

Proof. Fix a point v ∈ X. Let B be the Borel subgroup corresponding to v.
Every G-orbit in Y ×X intersects Y × {v}. Let u ∈ Y . Then the intersection of
the G-orbit Q of (u, v) with Y ×{v} is equal to Bu×{v}. Let N̄ be the unipotent
radical of a Borel subgroup opposite to B. Then N̄v is an open neighborhood of v
in X, and the map n̄ −→ n̄v is an isomorphism of N̄ onto this neighborhood. The
intersection of Q with Y × N̄v is equal to the image of the variety Bu × N̄ under

85
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the map (y, n̄) −→ n̄(y, v), which is obviously an immersion. Since B is solvable,
its orbit Bu is an affine variety by 2. Then Bu and it is an affine variety. Clearly,
this implies that Bu × N̄ is an affine variety. It follows that the intersection of Q
with Y × N̄v is affine. Therefore we can construct an open cover of Y × X such
that the intersection of Q with any element of the cover is an affine variety. Since
the affinity of a morphism is a local property with respect to the target variety, this
ends the proof. �

Now we can prove 1. Let Y = G/K and u ∈ Y the identity coset. Then
the image of the immersion iu : X −→ Y × X given by iu(x) = (u, x) is a closed
subvariety of Y ×X isomorphic to X. Let v ∈ X. Denote by Q′ the K-orbit of v.
Then the intersection of the image of iu with the G-orbit Q of (u, v) in Y ×X is
equal to

iu(X) ∩Q = ({u} ×X) ∩Q = {u} ×Q′.
Let U be an open affine subset in Y ×X. Then U ∩Q is open affine subset of Q by
2. Moreover, since iu(X) is closed in Y ×X, U ∩ (iu(X) ∩Q) is open affine subset
in iu(X)∩Q. This implies that U ∩ ({u}×Q′) is an open affine subset of {u}×Q′.
Furthermore, since iu is a closed immersion, V = i−1

u (U) is an open affine subset of
X and V ∩Q′ is an open affine subset of Q′. Clearly, this implies that Q′ is affinely
imbedded into X and completes the proof of 1.

2. Harish-Chandra pairs

Let K be an algebraic group and ϕ : K −→ Int(g) a morphism of algebraic
groups such that the differential of ϕ is injective. In this case we can identify the
Lie algebra of K with a subalgebra k of g. Clearly, the group K acts naturally on
X.

We say that the pair (g,K) is a Harish-Chandra pair if the K-action on X has
finitely many orbits.

If (g,K) is a Harish-Chandra pair, K has an open orbit in X. Actually, these
two properties are equivalent [?].

2.1. Theorem. Let K be a closed subgroup of Int(g). Then the following con-
ditions are equivalent:

(i) K has an open orbit in X;
(ii) K has finitely many orbits in X.

An example of a Harish-Chandra pair is the pair (g, B) where B is a Borel
subgroup of Int(g). The finiteness of B-orbits in X is the Bruhat lemma [2, 14.11].

Another important class of examples arises in the following way. Let σ be an
involution of g and k the Lie subalgebra of all vectors in g fixed by σ. We say that
k is an involutive subalgebra of g.

2.2. Proposition. Let K be a closed subgroup of Int(g) such that its Lie algebra
k is an involutive subalgebra of g. Then K acts with finitely many orbits on X.

We denote the involutive automorphism of G = Int(g) with differential σ by
the same letter. The key step in the proof is the following lemma. First, define an
action of G on X ×X by

g(x, y) = (gx, σ(g)y)

for any g ∈ G, x, y ∈ X.
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2.3. Lemma. The group G acts on X ×X with finitely many orbits.

Proof. We fix a point v ∈ X. Let Bv be the Borel subgroup of G correspond-
ing to v, and put B = σ(Bv). Every G-orbit in X × X intersects X × {v}. Let
u ∈ X. Then the intersection of the G-orbit Q through (u, v) with X×{v} is equal
to Bu × {v}. Because of the Bruhat decomposition [2, IV.14.11], this implies the
finiteness of the number of G-orbits in X ×X. �

Now we show that 2. is a consequence of 3. First we can assume that K is
connected. Let ∆ be the diagonal in X ×X. By 3, that the orbit stratification of
X ×X induces a stratification of ∆ by finitely many irreducible, affinely imbedded
subvarieties which are the irreducible components of the intersections of the G-
orbits with ∆. These strata are K-invariant, and therefore unions of K-orbits. Let
V be one of these subvarieties, (x, x) ∈ V and Q the K-orbit of (x, x). If we let bx
denote the Borel subalgebra of g corresponding to x, the tangent space Tx(X) of
X at x can be identified with g/bx. Let px be the projection of g onto g/bx. The
tangent space T(x,x)(X ×X) to X ×X at (x, x) can be identified with g/bx× g/bx.
If the orbit map f : G −→ X × X is defined by f(g) = g(x, x), its differential at
the identity in G is the linear map ξ −→ (px(ξ), px(σ(ξ))) of g into g/bx × g/bx.
Then the tangent space to V at (x, x) is contained in the intersection of the image
of this differential with the diagonal in the tangent space T(x,x)(X ×X), i.e.

T(x,x)(V ) ⊂ {(px(ξ), px(ξ)) | ξ ∈ g such that px(ξ)

= px(σ(ξ))} = {(px(ξ), px(ξ)) | ξ ∈ k} = T(x,x)(Q).

Consequently the tangent space to V at (x, x) agrees with the tangent space to Q,
and Q is open in V . By the irreducibility of V , this implies that V is a K-orbit,
and therefore our stratification of the diagonal ∆ is the stratification induced via
the diagonal map by the K-orbit stratification of X. Hence, 2. follows.

The following result is just a reformulation of 2.

2.4. Theorem. Let K be an algebraic group and ϕ : K −→ Int(g) a morphism
of algebraic groups with injective differential. Assume that the Lie subalgebra k of
g is involutive. Then (g,K) is a Harish-Chandra pair.

Such Harish-Chandra pair is called an involutive Harish-Chandra pair.

3. Harish-Chandra modules and Harish-Chandra sheaves

Let (g,K) be a Harish-Chandra pair. A Harish-Chandra module V is a vector
space which is

(i) a finitely generated U(g)-module, which is locally finite as a Z(g)-module;
(ii) an algebraic K-module;
(iii) the actions of g and K are compatible, i.e., the action of k given by the

differential of the K-action is the same as the action of k as a subalgebra
of g and

(ϕ(k)ξ) · v = k · ξ · k−1 · v
for k ∈ K, ξ ∈ g and v ∈ V .

A morphism of Harish-Chandra modules is a linear map which is a morphism
of U(g)-modules and K-modules. We denote by Mfg(U(g),K) the category of
Harish-Chandra modules. For λ ∈ h∗, θ = W · λ, we denote by Mfg(Uθ,K) the
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full subcategory ofMfg(U(g),K) consisting of modules with infinitesimal character
χλ.

The objects of Mcoh(Dλ,K) are called Harish-Chandra sheaves.
Let λ ∈ h∗ and θ = W ·λ. By ..., it is evident that for any object ofMfg(Uθ,K),

the localization ∆λ(V ) is an object of Mcoh(Dλ,K). Moreover, by L.1.21, the
cohomology modules Hi(X,V), 0 ≤ i ≤ dimX, of a Harish-Chandra sheaf V in
Mcoh(Dλ,K) are finitely generated as Uθ-modules. Since they are algebraic K-
modules by ..., it follows that they are in Mfg(Uθ,K).

3.1. Lemma. Any Harish-Chandra sheaf V has a good filtration FV consisting
of K-homogeneous coherent OX-modules.

Proof. By tensoring with O(µ) for sufficiently negative µ ∈ P (Σ) we can
assume that λ is antidominant and regular. In this case, by L.1.3, V = Dλ ⊗Uθ V ,
where V = Γ(X,V). Since V is an algebraic K-module and finitely generated Uθ-
module, there is a finite-dimensional K-invariant subspace U which generates V as
a Uθ-module. Then FpDλ⊗CU , p ∈ Z+, are K-homogeneous coherent OX -modules.
Since the natural map of FpDλ ⊗C U into V is K-equivariant, the image Fp V is a
K-homogeneous coherent OX -submodule of V for arbitrary p ∈ Z+.

We claim that FV is a good filtration of the Dλ-module V. Clearly, this is
a Dλ-module filtration of V by K-homogeneous coherent OX -modules. Since V
is generated by its global sections, to show that it is exhaustive it is enough to
show that any global section v of V lies in Fp V for sufficiently large p. Since V is
generated by U as an Uθ-module, there are Ti ∈ Uθ, ui ∈ U , 1 ≤ i ≤ m, such that
v =

∑m
i=1 Tiui. On the other hand, there exists p ∈ Z+ such that Ti, 1 ≤ i ≤ m, are

global sections of FpDλ. This implies that v ∈ Fp V. Finally, by the construction
of FV, it is evident that FpDλ Fq V = Fp+q V for all p, q ∈ Z+, i.e., FV is a good
filtration. �

The critical result on Harish-Chandra sheaves is the following remark.

3.2. Theorem. Harish-Chandra sheaves are holonomic Dλ-modules. In par-
ticular, they are of finite length.

We shall actually prove a stronger result. First we need some notation. Let
Y be a smooth algebraic variety of pure dimension and Z a smooth subvariety
of Y . Then we define a smooth subvariety NZ(Y ) of T ∗(Y ) as the variety of all
points (z, ω) ∈ T ∗(Y ) where z ∈ Z and ω ∈ Tz(Y )∗ is a linear form vanishing on
Tz(Z) ⊂ Tz(Y ). We call NZ(Y ) the conormal variety of Z in Y .

3.3. Lemma. The dimension of the conormal variety NZ(Y ) of Z in Y is equal
to dimY .

Proof. The dimension of the space of all linear forms in Tz(Y )∗ vanishing on
Tz(Z) is equal to dimTz(Y )−dimTz(Z) = dimY −dimz Z. Hence, dimz NZ(Y ) =
dimY . �

Let λ ∈ h∗. Then, by ..., GrDλ = π∗(OT∗(X)), where π : T ∗(X) −→ X is the
natural projection. Let ξ ∈ g. Then ξ determines a global section of Dλ of order
≤ 1, i.e. a global section of F1Dλ. Therefore, the symbol of this section is a global
section of π∗(OT∗(X)) independent of λ. Let x ∈ X. Then the differential at 1 ∈ G
of the orbit map fx : G −→ X, given by fx(g) = gx, maps the Lie algebra g onto
the tangent space Tx(X) at x. The kernel of this map is bx, i.e. the differential
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T1(fx) of fx at 1 identifies g/bx with Tx(X). The symbol of the section determined
by ξ is given by the function (x, ω) 7−→ ω(T1(fx)(ξ)) for x ∈ X and ω ∈ Tx(X)∗.

Let K be a closed subgroup of Int(g) and k its Lie algebra. Denote by IK the
ideal in the OX -module π∗(OT∗(X)) generated by the symbols of sections attached
to elements of k. Let NK the set of zeros of this ideal in T ∗(X).

3.4. Lemma. The variety NK is the union of the conormal varieties NQ(X) to
all K-orbits Q in X.

Proof. Let x ∈ X and denote by Q the K-orbit through x. Then,

NK ∩ Tx(X)∗ = {ω ∈ Tx(X)∗ | ω vanishes on T1(fx)(k) }
= {ω ∈ Tx(X)∗ | ω vanishes on Tx(Q) } = NQ(X) ∩ Tx(X)∗,

i.e. NK is the union of all NQ(X). �

3.5. Corollary. Assume that K acts on X with finitely many orbits. Then:

(i) dimNK = dimX.
(ii) If K is connected, the irreducible components of NK are the closures

NQ(X) of the conormal varieties NQ(X) of K-orbits Q in X.

Proof. For any K-orbit Q in X, its conormal variety NQ(X) has dimension
equal to dimX by 3. Since the number of K-orbits in X is finite, by 3. and 4, NK
is a finite union of subvarieties of dimension dimX. This implies (i).

Moreover,

NK =
⋃
Q

NQ(X).

If K is connected, its orbits in X are also connected. Hence, their conormal varieties
NQ(X) are connected too. Since they are smooth this immediately implies that they

are irreducible. Hence their closures NQ(X) are irreducible closed subvarieties of N
of dimension dimX. Therefore, they are the irreducible components of NK . This
proves (ii). �

Therefore, 2. is an immediate consequence of the following result.

3.6. Proposition. Let V be a Harish-Chandra sheaf. Then the characteristic
variety Char(V) of V is a closed subvariety of NK .

Proof. By 1, V has a good filtration FV consisting of K-homogeneous coher-
ent OX -modules. Therefore, the global sections of Dλ corresponding to k map FpV
into itself for p ∈ Z. Hence, their symbols annihilate GrV and IK is contained in
the annihilator of GrV in π∗(OT∗(X)). This implies that the characteristic variety
Char(V) is a closed subvariety of NK . �

The following result is an immediate consequence of 2.

3.7. Theorem. Every Harish-Chandra module is of finite length.

Proof. Let V be a Harish-Chandra module. Since it is finitely generated as a
U(g)-module and locally finite as a Z(g)-module, there exists a finite-dimensional
Z(g)-submodule U of V which generates V . Therefore, there exist a finite set
λ1, λ2, . . . , λk ∈ h∗ and n ∈ N such that

P (ξ) =

k∏
i=1

(ξ − χλi(ξ))n,
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ξ ∈ Z(g), annihilates U . Since U generates V as a U(g)-module, it follows that
P (ξ) annihilates V for each ξ ∈ Z(g). Therefore, V is a direct sum of submodules

Vi = {v ∈ V | (ξ − χλi(ξ))nv = 0 for all ξ ∈ Z(g) and sufficiently large n ∈ N}
for 1 ≤ i ≤ k.

Therefore, we can assume that V is annihilated by (ξ − χλ(ξ))n, ξ ∈ Z(g).
We claim that such V has a finite filtration FV by Harish-Chandra submodules
such that the corresponding graded module is has infinitesimal character χλ. Te
proof is by induction in dimU . If dimU = 1 the assertion is evident. In general,
U contains an one-dimensional eigenspace U1 for Z(g). Clearly, U1 generates a
Harish-Chandra submodule V1 of V with infinitesimal character χλ. The quotient
V2 = V/V1 is generated by the image U2 of U and dimU2 ≤ dimU − 1.

Therefore, we can assume that V has an infinitesimal character, i.e., V is in
Mfg(Uθ,K). In this case we can choose λ ∈ θ which is antidominant. The local-
ization ∆λ(V ) is a Harish-Chandra sheaf, and therefore a of finite length by 2. By
L1.1, V = Γ(X,∆λ(V )). Hence, the exactness of Γ and L.4.1 imply that V has
finite length. �

4. The n-homology of Harish-Chandra modules

Let V be a Harish-Chandra module. For any x ∈ X, the nx-homology of V can
be calculated from the standard complex C ·(nx, V ) given by

Cp(nx, V ) = ∧−pnx ⊗C V, p ∈ Z;

with the differential

d(ξ1 ∧ ξ2 ∧ . . . ∧ ξp ⊗ v) =

p∑
i=1

(−1)i+1ξ1 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξp ⊗ ξiv

+
∑
i<j

(−1)i+j [ξi, ξj ] ∧ ξ1 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξ̂j ∧ . . . ∧ ξp ⊗ v

for ξ1, . . . ξp ∈ nx and v ∈ V . This immediately implies that the h-modules
Hp(nx, V ) for various points x in the same K-orbit Q in X are canonically iso-
morphic.

4.1. Theorem. Let V be a Harish-Chandra module and x ∈ X. Then all
nx-homology modules Hp(nx, V ), p ∈ Z, are finite-dimensional.

Proof. In the proof of 3.7 we constructed a finite filtration of V by Harish-
Chandra submodules, such that its composition factors are Harish-Chandra mod-
ules with infinitesimal character. Therefore, using the spectral sequence of a fil-
tered object (...), we see immediately that it enough to prove the statement for
V ∈Mfg(Uθ,K).

If θ is a regular orbit of W , this result follows from L.5.4 and 3.2. Assume now
that θ is an arbitrary Weyl group orbit. Fix an antidominant λ ∈ θ. Let F be a
finite-dimensional irreducible g-module F with regular highest weight µ ∈ P (Σ).
Then λ− µ is regular antidominant, and

∆λ(V ) = (∆λ(V )(−µ)⊗OX F)[λ]

by C.2.1. Therefore,

V = Γ(X,∆λ(V )) = (Γ(X,∆λ(V )(−µ))⊗C F )[λ].
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Clearly, U = Γ(X,∆λ(V )(−µ)) is a Harish-Chandra module with regular infinites-
imal character χλ−µ, and Hp(nx, U), p ∈ Z, are finite dimensional. Let (Fi; 1 ≤ i ≤
m) be an increasing Jordan-Hölder filtration of F as an nx-module. Then the cor-
responding graded module is a trivial nx-module. Therefore, (U ⊗C Fi; 1 ≤ i ≤ m)
is a nx-module filtration of U ⊗C F such that the corresponding graded module is a
direct sum of m copies of U . From the spectral sequence of the filtered object (...)
it follows that Hp(nx, U ⊗ F ), p ∈ Z, are finite-dimensional. The assertion follows
from V = (U ⊗C F )[λ]. �

The next result is considerably deeper it follows from the main result of L.8.
Let Qo be the unique K-open orbit in X.

4.2. Theorem. Let V be a Harish-Chandra module. If V is a nonzero module,
H0(nx, V ) 6= 0 for all x ∈ Qo.

Proof. Since Qo is open and dense in X and H0(nx, V ) are canonically iso-
morphic for all x ∈ Qo, we see that λ ∈ h is an exponent of a Harish-Chandra
module V if and only if H0(nx, V )(λ+ρ) 6= 0 for x ∈ Qo. Hence, the result follows
from L.8.11. �

5. Irreducible Harish-Chandra sheaves

Now we want to describe all irreducible Harish-Chandra sheaves for a Harish-
Chandra pair (g,K). For simplicity we assume that K is connected. We start with
the following remark.

5.1. Lemma. Let V ba an irreducible Harish-Chandra sheaf. Then its support
supp(V) is the closure of a K-orbit Q in X.

Proof. Since K is connected, the Harish-Chandra sheaf V is irreducible if and
only if it is irreducible as a Dλ-module. To see this we may assume, by twisting
with O(µ) for sufficiently negative µ, that λ is antidominant and regular. In this
case the statement follows from the equivalence of categories and the analogous
statement for Harish-Chandra modules (which is evident).

Therefore, by ..., we know that supp(V) is an irreducible closed subvariety of
X. Since it must also be K-invariant, it is a union of K-orbits. The finiteness
of K-orbits implies that there exists an orbit Q in supp(V) such that dimQ =
dim supp(V). Therefore, Q̄ is a closed irreducible subset of supp(V) and dim Q̄ =
dim supp(V). This implies that Q̄ = supp(V). �

Let V be an irreducible Harish-Chandra sheaf and Q the K-orbit in X such
that supp(V) = Q̄. Let X ′ = X − ∂Q. Then X ′ is an open subvariety of X and Q
is a closed subvariety of X ′. By ..., the restriction V|X ′ of V to X ′ is irreducible.
Let i : Q −→ X, i′ : Q −→ X ′ and j : X ′ −→ X be the natural immersions.
Hence, i = j ◦ i′. Therefore, Ri! = R(i′)! ◦ j!, where j! = j+ is just the ordinary
restriction to the open subvariety X ′ of X. It follows that Rpi!(V) = Rp(i′)!(V|X ′)
for p ∈ Z. Since i′ : Q −→ X ′ is an immersion of a closed smooth subvariety and
supp(V|X ′) = Q, by Kashiwara’s equivalence of categories, we see that Rpi!(V) = 0
for p 6= 0 and τ = i!(V) is an irreducible (Diλ,K)-module on Q. Moreover, i′+(τ) =
V|X ′. Since V is holonomic by 3.2, τ is a holonomic module. This implies, by ...,
that there exists an open dense subset U in Q such that τ |U is a connection. Since
K acts transitively on Q, τ must be a K-homogeneous connection.
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Therefore, to each irreducible Harish-Chandra sheaf we attach a pair (Q, τ)
consisting of a K-orbit Q and an irreducible K-homogeneous connection τ on Q
such that:

(i) supp(V) = Q;
(ii) i!(V) = τ .

We call the pair (Q, τ) the standard data attached to V.
Let Q be a K-orbit in X and τ ∈ M(Diλ,K) an irreducible K-homogeneous

connection on Q. Then, by ..., I(Q, τ) = i+(τ) is a (Dλ,K)-module. Moreover, by
..., it is holonomic, i.e., I(Q, τ) is a Harish-Chandra sheaf. We call it the standard
Harish-Chandra sheaf attached to (Q, τ).

5.2. Lemma. Let Q be a K-orbit in X and τ an irreducible K-homogeneous con-
nection on Q. Then the standard Harish-Chandra sheaf I(Q, τ) contains a unique
irreducible Harish-Chandra subsheaf.

Proof. Clearly,
I(Q, τ) = i+(τ) = j+(i′+(τ)).

Therefore, I(Q, τ) contains no sections supported in ∂Q. Hence, any nonzero Dλ-
submodule U of I(Q, τ) has a nonzero restriction to X ′. By Kashiwara’s equivalence
of categories, i′+(τ) is an irreducible (Dλ|X ′)-module. Hence, U|X ′ = I(Q, τ)|X ′.
Therefore, for any two nonzero Dλ-submodules U and U ′ of I(Q, τ), U ∩ U ′ 6= 0.
Since I(Q, τ) is of finite length, it has a minimal Dλ-submodule and by the pre-
ceding remark this module is unique. By its uniqueness it must be K-equivariant,
therefore it is a Harish-Chandra sheaf. �

We denote by L(Q, τ) the unique irreducible Harish-Chandra sheaf of I(Q, τ).
The following result gives a classification of irreducible Harish-Chandra sheaves.

5.3. Theorem. (i) An irreducible Harish-Chandra sheaf V with the stan-
dard data (Q, τ) is isomorphic to L(Q, τ).

(ii) Let Q and Q′ be K-orbits in X, τ and τ ′ irreducible K-homogeneous
connections on Q and Q′ respectively. Then L(Q, τ) ∼= L(Q′, τ ′) if and
only if Q = Q′ and τ ∼= τ ′.

Proof. (i) Let V be an irreducible Harish-Chandra sheaf and (Q, τ) the cor-
responding standard data. Then, as we remarked above, V|X ′ = (i′)+(τ). By the
universal property of j+, there exists a nontrivial morphism of V into I(Q, τ) =
j+((i′)+(τ)) which extends this isomorphism. Since V is irreducible its kernel must
be zero and its image must be L(Q, τ) by 2.

(ii) Since Q = suppL(Q, τ), it is evident that L(Q, τ) ∼= L(Q′, τ ′) implies
Q = Q′. The rest follows from the formula τ = i!(L(Q, τ)). �



CHAPTER 5

Verma modules

1. Category of highest weight modules

Fix a Borel subalgebra b0 in g and n0 = [b0, b0]. Let h0 be a Cartan subalgebra
of g contained in b0. The root system Σ specializes to the root system R0 in h∗0 and
the root subspaces corresponding to positive roots from R+

0 span n0. To simplify
the notation in the following, when it doesn’t cause confusion, we shall identify
the Cartan triple (h,Σ,Σ+) with (h0, R0, R

+
0 ) via this specialization. Denote by n̄0

the nilpotent subalgebra spanned by root subspaces corresponding to the negative
roots in R0. A g-module V is called a highest weight module (with respect to b0) if

(i) V is finitely generated,
(ii) V is U(b0)-finite, i.e. for any v ∈ V , U(b0)v is finite-dimensional.

We call the full subcategory of the categoryMfg(U(g)) consisting of highest weight
modules the category of highest weight modules.

Let V be a highest weight module. For λ ∈ h∗0 we put

V λ = {v ∈ V | (ξ − λ(ξ))kv = 0, ξ ∈ h0, for some k ∈ N}.

Then V λ is a h0-submodule of V and V is the direct sum of V λ, λ ∈ h∗0. If V λ 6= 0
we say that λ is a weight of V .

1.1. Lemma. Let V be a finitely generated g-module. Then the following con-
ditions are equivalent:

(i) V is a highest weight module,
(ii) V satisfies:

(a) V = ⊕V λ and V λ, λ ∈ h∗0, are finite-dimensional.
(b) There exists a finite set of weights S0 of V such that for any weight

ν of V there exists µ ∈ S0 such that µ−ν is a sum of roots from R+
0 .

Proof. Assume that V is a highest weight module. By definition, V is gen-
erated as a g-module by a finite-dimensional b0-invariant subspace U . Hence, by
the Poincaré-Birkhoff-Witt theorem, the natural map of U(n̄0) ⊗C U into V is a
surjective morphism of h0-modules. This clearly implies (a) and (b).

Assume now that V satisfies (a) and (b). Let v ∈ V λ. Then U(b0)v is contained
in the direct sum of V ν for weights ν such that ν − λ is a sum of positive roots.
The number of such weights is finite by (b). Therefore, (a) implies that U(b0)v is
finite-dimensional. �

1.2. Lemma. Let

0 −→ V −→ V ′ −→ V ′′ −→ 0

be an exact sequence of g-modules. Then V ′ is a highest weight module if and only
if V and V ′′ are highest weight modules.

93
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Proof. It is clear that if V ′ is a highest weight module V and V ′′ are highest
weight modules either. Assume that V and V ′′ are highest weight modules. Then
V ′ is clearly finitely generated. Also, it satisfies the conditions in 1.1.(ii). Hence,
V ′ is a highest weight module. �

We say that v ∈ V is Z(g)-finite if Z(g)v is finite-dimensional. Clearly, V λ

are Z(g)-invariant, and consist of Z(g)-finite vectors by 1.1.(ii). This implies that
all vectors in V are Z(g)-finite, i.e. V is a Z(g)-finite module. Finally, since V is
finitely generated, we have the following result.

1.3. Lemma. Let V be a highest weight module. Then the annihilator of V in
Z(g) is of finite codimension.

Also, we have the following converse.

1.4. Proposition. Let V be a g-module satisfying the following conditions:

(i) V is finitely generated,
(ii) for any v ∈ V , there exists k ∈ N such that nk0 · v = 0,
(iii) the annihilator of V in Z(g) is of finite codimension.

Then V is a highest weight module.

Proof. Let U be a finite-dimensional n0-invariant subspace which generates
V . We shall prove that V is a highest weight module by induction in dimU . If
dimU = 1, U is annihilated by U(g)n0. On the other hand, from the properties
of the Harish-Chandra homomorphism we know that the projection of Z(g) ⊂
U(h0) ⊕ U(g)n0 into U(h0) is an algebra homomorphism and that U(h0) is finitely
generated over its image. This clearly implies that U(h0)U = U(b0)U is a finite-
dimensional subspace in V . One checks easily that the linear subspace V ′ consisting
of all vectors u ∈ V such that U(b0)u is finite-dimensional is a g-submodule of V . It
contains U by the preceding discussion, what in turn implies that it is equal to V ,
i.e. V is a highest weight module. Assume now that dimU > 1. Then by Engel’s
theorem U has an one-dimensional subspace U0 such that n0U0 = 0. Let V0 be the
g-submodule of V generated by U0. Then V0 is a highest weight module by the first
part of the proof. Let V1 = V/V0. Then V1 is generated by U1 = U/(U ∩ V0) and
dimU1 ≤ dimU − 1. Therefore, V1 is a highest weight module by the induction
assumption. By 1.2 we see that V is a highest weight module. �

Let N0 be the unipotent subgroup of Int(g) corresponding to n0. Then, by 1.4,
one can exponentiate the action of n0 to an algebraic action of N0 and view highest
weight modules as elements in Mfg(g, N0). Actually, in this way one can identify
the category of highest weight modules with the full subcategory of Mfg(g, N0)
consisting of modules annihilated by ideals in Z(g) of finite codimension.

Now we want to describe irreducible objects in Mfg(g, N0), i.e. irreducible
highest weight modules. First we construct some closely related modules. Let Cλ
be the one-dimensional b0-module defined by λ ∈ h∗0. Then, if we consider U(g) as
a right U(b0)-module via right multiplication, the tensor product U(g) ⊗U(b0) Cλ
has a natural structure of a left U(g)-module given by left multiplication at the first
factor. It is clearly a highest weight module; and we put

M(λ) = U(g)⊗U(b0) Cλ−ρ.

The highest weight module M(λ) is called the Verma module determined by λ.



1. CATEGORY OF HIGHEST WEIGHT MODULES 95

1.5. Lemma. Let λ ∈ h∗0. Then

(i) all weights of M(λ) are of the form λ− ρ− ν where ν is a sum of positive
roots,

(ii) dimM(λ)λ−ρ = 1,
(iii) M(λ) has a unique maximal g-submodule N(λ),
(iv) N(λ)λ−ρ = 0.

Proof. By the Poincaré-Birkhoff-Witt theorem, we see that M(λ), considered
as a h0-module, is isomorphic to U(n̄0) ⊗C Cλ−ρ. This immediately implies (i)
and (ii). Clearly, by definition of M(λ), the one-dimensional subspace M(λ)λ−ρ

generates M(λ) as a g-module. Therefore, any g-submodule different from M(λ)
cannot contain M(λ)λ−ρ. Let M be a maximal g-submodule of M(λ) and N any
g-submodule different from M(λ). Then, either N ⊂M or M +N = M(λ). In the
second case we would have

M(λ)λ−ρ = (M +N)λ−ρ = Mλ−ρ +Nλ−ρ = 0,

what is clearly impossible. Therefore, M is the unique maximal g-submodule. �

This implies that M(λ) has the unique irreducible quotient g-module L(λ).
Also, L(λ)λ−ρ is one-dimensional. We say that λ− ρ is the highest weight of L(λ).

1.6. Proposition. (i) Any irreducible highest weight module is isomor-
phic to some L(λ).

(ii) L(λ) is isomorphic to L(µ) if and only if λ = µ.

Proof. (i) Let V be an irreducible highest weight module. Let S be the set
of all weights of V . Then, by 1.1, we can find a weight λ ∈ S such that λ + α is
not in S for any α ∈ Σ+. This implies that V λ is annihilated by n0. Hence, V λ is
b0-invariant, and it contains a one-dimensional subspace invariant for b0. Let v be
a nonzero vector from that subspace. Then, the homomorphism ξ −→ ξ · v from
U(g) into V is surjective and factors through M(λ + ρ). This implies that V is
isomorphic to L(λ+ ρ).

(ii) This follows from 1.5.(i) and (ii). �

1.7. Lemma. The center Z(g) acts on M(λ) via χλ.

Proof. This follows from the definition of the Harish-Chandra homomor-
phism. �

1.8. Proposition. Highest weight modules have finite length.

Proof. Let V be a highest weight module. If V is not of finite length, we
can construct a decreasing g-module filtration (Vi; i ∈ Z+) of V such that Vi/Vi+1,
i ∈ Z+, are irreducible. Therefore, by 1.6.(i), L(λi) = Vi/Vi+1 for some λi ∈ h∗0. By
1.3 and 1.7, it follows that the set of possible λi is finite. Therefore, by 1.6.(ii), the
set of possible L(λi) is finite, what contradicts the finite-dimensionality of weight
subspaces of V . �

By [5, Ch. VIII, §5, Prop. 2], there exists an involutive automorphism ι of g
with the property that ι|h0 = −1. Then, ι(gα) = g−α for any α ∈ R+

0 . Let τ be the
antiautomorphism of U(g) which is the product of the principal antiautomorphism
of U(g) and the automorphism which extends ι. Then τ is the identity on h0 and
it maps n0 into n̄0.
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1.9. Lemma. The antiautomorphism τ acts as identity on Z(g).

Proof. Let γ be the Harish-Chandra homomorphism, i.e., the projection of
Z(g) ⊂ U(h0) ⊕ n0U(g) into U(h0) along n0U(g). By definition, the antiautomor-
phism τ acts as identity on U(h0) and maps n0U(g) into U(g)n̄0. On the other
hand, the intersections of n0U(g) and U(g)n̄0 with the centralizer of h0 in U(g) are
equal, what implies immediately that γ and γ ◦ τ agree on Z(g). The injectivity of
γ implies that τ |Z(g) is the identity. �

For any highest weight module V , let V ∗ be its linear dual. We define the
action of U(g) on V ∗ by

(ξf)(v) = f(τ(ξ)v), ξ ∈ U(g), f ∈ V ∗, v ∈ V.
In this way V ∗ becomes a g-module. Let V˜ be the subspace consisting of f ∈ V ∗
such that U(h0)f is finite-dimensional. It can be easily checked that V˜ is a g-
module.

1.10. Lemma. V ˜ is a highest weight module.

(ii) (V )̃̃ = V .
(iii) (V )̃λ = (V λ)∗ for any λ ∈ h∗0.

Proof. Clearly V˜ = ⊕(V λ)∗ as an h0-module and (V )̃λ = (V λ)∗. Hence,
the set of weights of V˜ is the same as the set of weights of V . The canonical map
of V into (V )̃̃ is injective, a g-module morphism and

dim((V )̃̃ )λ = dim(V )̃λ = dimV λ,

for any λ ∈ h∗0, what implies that it is an isomorphism. Let U be an g-submodule
of V˜ and U⊥ be the subspace of (V )̃̃ = V orthogonal to U . Then U⊥ is a
g-submodule of V . Also, (U⊥)⊥ = U . This implies that every g-submodule of
V˜ is the orthogonal of some g-submodule of V . By 1.8, it follows that V˜ is of
finite length. In particular, V˜ is finitely generated and a highest weight module
by 1.1. �

Therefore, V −→ V˜ is an exact contravariant functor from Mfg(g, N0) into
itself. We call V˜ the dual of V . Also, for any orbit θ of the Weyl group W in h∗,
we conclude from 1.9 that V ∈ Mfg(Uθ, N0) implies that V˜ ∈ Mfg(Uθ, N0), i.e.,
V −→ V˜ is an antiequivalence of the category Mfg(Uθ, N0) with itself.

1.11. Lemma. For any λ ∈ h∗0, L(λ)̃ = L(λ).

Proof. It follows from 1.10 that L(λ)̃ is an irreducible highest weight module
with the highest weight λ. By 1.6, L(λ)̃ is isomorphic to L(λ). �

We put I(λ) = M(λ)̃ . Then, by 1.5 and 1.11, I(λ) has a unique irreducible
g-submodule L(λ). The modules I(λ) have the following universal property.

1.12. Lemma. Let λ ∈ h∗ and θ = W · λ.

(i) Let V be a highest weight module such that λ − ρ is a weight of V and
λ − ρ + α is not a weight of V for any positive root α ∈ Σ+. Then there
exists a nonzero morphism of V into I(λ).

(ii) Let V be a highest weight module satisfying following conditions:
(a) V contains a unique irreducible submodule isomorphic to L(λ);
(b) dimV µ = dim I(λ)µ for any µ ∈ h∗.
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Then V is isomorphic to I(λ).

Proof. (i) By 10. V˜ is a highest weight module such that λ − ρ is a weight
of V˜ and λ − ρ + α is not a weight of V˜ for any positive root α ∈ Σ+. Hence, if
v ∈ (V )̃λ−ρ, v 6= 0, v is annihilated by n0. Therefore, the homomorphism ξ −→ ξ ·v
from U(g) into V factors through M(λ), and we constructed a nonzero morphism
φ of M(λ) into V .̃ By duality, φ˜ is a nonzero morphism of V into I(λ).

(ii) By (i) there exists a nonzero morphism φ of V into I(λ). Since the image
of φ is nontrivial, it must contain the unique irreducible submodule L(λ) of I(λ).
Denote by K the kernel of φ. Since dimV λ−ρ = dim I(λ)λ−ρ = 1 by (b), and
dimL(λ)λ−ρ = 1, we conclude that Kλ−ρ = 0. By (a), this implies that K = 0,
and φ is injective. From (b) we finally conclude that φ is an isomorphism. �

Now we can relate our results to the general geometric scheme for classification
of irreducible objects inMfg(Uθ, N0). First, by the Bruhat lemma ([2], 14.11), N0

has finitely many orbits in the flag variety X. Therefore, we have the following
remark which enables us to apply the results of ... .

1.13. Proposition. (g, N0) is a Harish-Chandra pair.

The N0-orbits in X are the Bruhat cells C(w), w ∈W . They are affine subva-
rieties of X ([2], 14.11) and

dimC(w) = `(w), w ∈W.

Therefore, if C(s) is in the boundary ∂C(w) = C(w) − C(w) of C(w), we have
`(s) < `(w).

Let λ ∈ h∗. Let C(w) be a Bruhat cell and iw : C(w) −→ X the canonical
immersion. Then, from ... we see that the only irreducible N0-homogeneous (Dλ)iw -
connection on C(w) is OC(w). The standard Dλ-module corresponding to data
(C(w),OC(w)) we denote by I(w, λ), and its unique irreducible Dλ-submodule by
L(w, λ). The key connection between the geometric classification of irreducible
objects and 6. is given by the following result.

1.14. Theorem. Let λ ∈ h∗ be antidominant. Then

Γ(X, I(w, λ)) = I(wλ), w ∈W.

To prove 14. we need some preparation. We start with a very special case of
14.

1.15. Lemma. Let λ ∈ h∗ be antidominant. Then

Γ(X, I(1, λ)) = M(λ) = L(λ) = I(λ).

Proof. Clearly, I(1, λ) is an irreducible Dλ-module. Hence, by L.4.1, the
Uθ-module Γ(X, I(1, λ)) is either an irreducible highest weight module or zero.
Since I(1, λ) is supported at the point C(1) the second possibility is automatically
eliminated. Therefore, to prove the statement it is enough to establish the first
equality.

Now we need to describe the structure of the direct image module I(1, λ) =
i1+(Cλ+ρ). We can view it as a rightD−λ-module. Then it is equal to i∗1(D−λ,C(1)→X)
as a right D−λ-module in the natural way. On the other hand, as in the proof of
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L.2.4, we conclude that as a right U(g)-module

D−λ,C(1)→X = Tx0
(D−λ)

= (U(g)/n0U(g))/(I−λ+ρ(U(g)/n0U(g))) = C−λ+ρ ⊗U(b0) U(g),

where we denoted by x0 the point in C(1). This implies that, as a left U(g)-module,
I(1, λ) is equal to M(λ). �

Now we need some results about the action of the intertwining functors on the
standard modules.

1.16. Lemma. Let w ∈W and λ ∈ h∗. Then

LIw(D(I(1, λ))) = D(I(w−1, wλ)).

Proof. We use the notation from the L.3. Let Zw ⊂ X × X be the variety
of ordered pairs of Borel subalgebras in relative position w ∈ W . Denote by pi,
i = 1, 2, the projections to the ith factor in X ×X. Then

p−1
2 (C(1))

= {(x, x′) ∈ X ×X | bx′ = b0, bx in relative position w−1 with respect to b0}
= C(w−1)× C(1),

i.e. we have the following commutative diagram

C(w−1)× C(1)
j−−−−→ Zw

pr2

y p2

y
C(1)

i1−−−−→ X

and by base change ([1], VI.8.4), since pr2 and p2 are submersions and i1 and j
affine immersions, we have

p+
2 (I(1, λ)) = p+

2 (i1+(OC(1))) = j+(pr+
2 (OC(1))) = j+(OC(w−1)×C(1)).

The projection p1 induces an immersion of p−1
2 (C(1)) into X and its image is equal

to C(w−1), i.e. we have the following commutative diagram

C(w−1)× C(1)
j−−−−→ Zw

pr1

y p1

y
C(w−1)

iw−1−−−−→ X

and we get, after checking the appropriate twists, that

LIw(D(I(1, λ))) = Rp1+(Tw ⊗OZw p
+
2 (I(1, λ)))

= Rp1+(Tw ⊗OZw j+(OC(w−1)×C(1))) = D(iw−1+(OC(w−1)))) = D(I(w−1, wλ)).

�

1.17. Corollary. Let w,w′ ∈W be such that `(ww′) = `(w) + `(w′). Then

LIw(D(I(w′
−1
, λ))) = D(I(w′

−1
w−1, wλ)).
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Proof. Clearly, by 16.

LIww′(D(I(1, w′
−1
λ))) = D(I(w′

−1
w−1, wλ)).

On the other hand, by L.3.18 we have

LIww′(D(I(1, w′
−1
λ))) = LIw(LIw′(D(I(1, w′

−1
λ)))

= LIw(D(I(w′
−1
, λ))).

�

In particular, if w0 is the longest element in W , and w an arbitrary element of

W , the element w′ = w0w satisfies ww′
−1

= w−1
0 = w0 and `(w′) = `(w0) − `(w)

([5], Ch. VI, §1, no. 6, Cor. 3. of Prop. 17.). It follows that LIw′(D(I(w, λ))) =
D(I(w0, w

′λ)).
The next result is critical for the proof of 14.

1.18. Lemma. Let λ ∈ h∗. Then

(i) Hp(X, I(w0, λ)) = 0 for p > 0;
(ii) Γ(X, I(w0, λ)) = I(w0λ).

Proof. Since C(w0) is an affine open subvariety of X,

Hp(X, I(w0, λ)) = Hp(C(w0),OC(w0)) = 0

for p > 0. This proves (i).
Now we can prove (ii). Assume that λ ∈ h∗ is antidominant. Then, by 15, we

have Γ(X, I(1, λ)) = M(λ) and it is an irreducible g-module. If we take a nonzero
v ∈ Γ(X, I(1, λ)), it generates a finite-dimensional b0-invariant subspace U . By
Engel’s theorem, there exists a vector v′ ∈ U which spans a b0-invariant subspace.
Therefore, v′ is a weight vector of M(λ) for some weight µ ∈ h∗ and it is annihilated
by n0, hence there exists a natural morphism of M(µ+ ρ) into M(λ). Since M(λ)
is irreducible, we have L(µ + ρ) = M(λ) = L(λ). By 6. we finally conclude that
λ = µ + ρ. Hence, we have proved that every b0-invariant subspace U of M(λ)
contains the highest weight subspace M(λ)λ−ρ. By 16, we also conclude that for
antidominant λ ∈ h∗,

Γ(X, I(w0, w0λ)) = M(λ)

and every b0-invariant subspace U of it contains the highest weight subspace. As
we remarked before, for arbitrary µ ∈ h∗,

Γ(X, I(w0, µ)) = Γ(C(w0),OC(w0)).

Therefore, the constant function 1 on C(w0) is a global section of I(w0, µ). It
is clearly N0-invariant. Denote by xw0 ∈ C(w0) the point corresponding to the
Borel subalgebra which contains h0 and is opposite to b0. The section n · xw0 −→
Ad(n)ξ, ξ ∈ h0, of U◦|C(w0) maps into the constant section (w0µ − ρ)(ξ) in
Dw0µ|C(w0), hence it acts on the section 1 as multiplication by (w0µ − ρ)(ξ).
This in turn implies that ξ acts on this section as multiplication by (w0µ − ρ)(ξ),
i. e. 1 ∈ Γ(X, I(w0, µ))w0µ−ρ. In particular, for antidominant λ ∈ h∗, any b0-
invariant subspace U of Γ(X, I(w0, w0λ)) contains the highest weight subspace
Γ(X, I(w0, w0λ))λ−ρ consisting of constant functions on C(w0). Since the geomet-
ric translation of I(w0, µ) is I(w0, µ)⊗OX O(ν) = I(w0, µ+ ν), and O(ν)|C(w0) =
OC(w0) as an OC(w0)-module, we have a natural isomorphism of the b0-module
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Γ(X, I(w0, µ + ν)) with Γ(X, I(w0, µ)) ⊗C Cν . Hence, we see that for arbitrary
µ ∈ h∗:

(a) dim Γ(X, I(w0, µ))ω = dimM(w0µ)ω = dim I(w0µ)ω for any weight ω ∈
h∗;

(b) any b0-invariant subspace U of Γ(X, I(w0, µ)) contains the highest weight
subspace Γ(X, I(w0, µ))w0µ−ρ consisting of constant functions on C(w0).

In particular, from (b) we conclude that any g-submodule of Γ(X, I(w0, µ)) con-
tains the constants. This implies that Γ(X, I(w0, µ)) has a unique irreducible g-
submodule L.

Then (a) implies that w0µ − ρ is the highest weight of L, i.e. L = L(w0µ).
Finally, by 12.(ii), we conclude that Γ(X, I(w0, µ)) = I(w0µ). �

Now we can prove 14. If λ ∈ h∗ is antidominant, w an arbitrary element of W

and ww′
−1

= w0, we have

RΓ(D(I(w, λ))) = RΓ(LIw′(D(I(w, λ)))) = RΓ(D(I(w0, w
′λ)))

by the preceding discussion and L.3.23. This implies that

Γ(X, I(w, λ)) = Γ(X, I(w0, w
′λ)) = I(w0w

′λ) = I(wλ).

and proves 14.
Now it is quite straightforward to determine the global sections of irreducible

modules. Let W (λ) be the stabilizer of λ.

1.19. Theorem. Let λ ∈ h∗ be antidominant.

(i) Any left W (λ)-coset contains the shortest element.
(ii) Let w ∈W . Then the following assertions are equivalent:

(a) Γ(X,L(w, λ)) 6= 0;
(b) Γ(X,L(w, λ)) = L(wλ);
(c) w is the shortest element in a left W (λ)-coset.

Proof. Let w ∈ W . First, by L.4.1, we know that Γ(X,L(w, λ)) is an irre-
ducible g-module or zero.

By exactness of Γ and 14, if it is nonzero, it must be the unique irreducible
submodule L(wλ) of I(wλ) = Γ(X, I(w, λ)).

Let w and w′ are in the same left W (λ)-coset with Γ(X,L(w, λ)) 6= 0 and
Γ(X,L(w′, λ)) 6= 0. Then, we have wλ = w′λ and L(wλ) = L(w′λ). By L.4.2,
this implies L(w, λ) ∼= L(w′, λ) and w = w′. Therefore, the element w in a left
W (λ)-coset such that Γ(X,L(w, λ)) 6= 0 is unique.

Let v 6= w be in the same left W (λ)-coset as w. Then Γ(X,L(v, λ)) = 0. From
the exact sequence

0 −→ L(v, λ) −→ I(v, λ) −→ I(v, λ)/L(v, λ) −→ 0

and exactness of Γ we conclude that

Γ(X, I(v, λ)/L(v, λ)) = Γ(X, I(v, λ)) = I(vλ) = I(wλ),

hence it contains L(wλ) as its composition factor. This in turn implies that L(w, λ)
is a composition factor of I(v, λ)/L(v, λ). Hence, C(w) ⊂ ∂C(v) and `(w) < `(v).
Therefore, ` attains at w its minimum on the coset wW (λ). �

In particular, we have the following result if λ is regular in addition.
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1.20. Corollary. Let λ ∈ h∗ be regular antidominant. Then, for any w ∈W ,
we have

Γ(X,L(w, λ)) = L(wλ).

Proof. Since λ is regular, W (λ) = {1}. �

The discussion in the proof of 14. has the following consequence.

1.21. Theorem. Let λ ∈ h∗ and θ = W · λ. Then the annihilator of M(λ) in
Uθ is {0}.

Proof. It is enough to show that the annihilator of I(λ) is trivial for any
λ ∈ h∗. But, by 1.18.(ii), this is equivalent to showing that no nontrivial element
of Γ(X,Dλ) annihilates Γ(X, I(w0, λ)) = Γ(C(w0),OC(w0)) which is evident. �

Finally, we want to discuss the necessary and sufficient conditions for the ir-
reducibility of standard modules I(w, λ) and Verma modules. First we analyze a
critical special situation.

1.22. Lemma. Let λ ∈ h∗ and α ∈ Π be such that p = −α (̌λ) ∈ Z. Let
w = w′sα with `(w) = `(w′) + 1. Then:

(i) we have an exact sequence

0 −→ U0(I(w′, sαλ)) −→ I(w, λ) −→ I(w′, λ) −→ 0;

(ii) U0(I(w′, sαλ)) 6= 0 and it is a translate of a module of form p+
α (V).

Proof. By 16. and L.3.18, we have

I(w, λ) = Iw−1(I(1, wλ)) = Isα(Iw′−1(I(1, wλ))) = Isα(I(w′, sαλ)).

Hence, by L.5.3.(ii), we have an exact sequence

0 −−−−→ U0(I(w′, sαλ)) −−−−→ I(w, λ) −−−−→ I(w′, sαλ)(−pα) −−−−→ U1(I(w′, sαλ)) −−−−→ 0∥∥∥
I(w′, λ)

.

Let pα : X −→ Xα be the natural projection of the flag variety X onto the variety
of all parabolic subalgebras of type α. Then, using the notation from L.5. we have
the commutative diagram

Yα
q2−−−−→ X

q1

y pα

y
X

pα−−−−→ Xα

and by base change, using the fact that the composition of pα ◦ iw′ is an immer-
sion of the affine variety C(w′) into Xα, we conclude that U1(I(w′, sαλ)) = 0,
U0(I(w′, sαλ)) 6= 0 and it is a translate of a module of form p+

α (V). This implies
both assertions. �

1.23. Theorem. Let λ ∈ h∗ and w ∈ W . Then the following conditions are
equivalent:

(i) Σ+
w ∩ Σλ = ∅;

(ii) I(w, λ) is irreducible Dλ-module.
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Proof. (i)⇒(ii) If Σ+
w ∩ Σλ = ∅, by L.3.22, the intertwining functor Iw :

Mqc(Dλ) −→ Mqc(Dwλ) is an equivalence of categories and Iw−1 its inverse. By
16, we have

Iw−1(I(1, wλ)) = I(w, λ).

Since I(1, wλ) is evidently irreducible, I(w, λ) is an irreducible Dλ-module.
Now we shall prove, by induction in `(w), that Σ+

w ∩ Σλ 6= ∅ implies that
I(w, λ) is a reducible Dλ-module. If `(w) = 0, w = 1 and the assertion is obvious.
Therefore, we can assume that the statement holds for w′ ∈W with `(w′) < k. Let
`(w) = k. Then w = w′sα for some α ∈ Π and w′ ∈ W with `(w′) = k − 1. As in
the preceding proof, from 16. and L.3.18 we deduce that

I(w, λ) = Isα(I(w′, sαλ)).

Moreover, by L.3.12.(ii),

Σ+
w ∩ Σλ = sα(Σ+

w′ ∩ Σsαλ) ∪ ({α} ∩ Σλ).

If α /∈ Σλ, Card(Σ+
w ∩ Σλ) = Card(Σ+

w′ ∩ Σsαλ), and by induction assumption
I(w′, sαλ) is a reducibleDsαλ-module. Since, by L.3.22, in this case Isα :Mqc(Dsαλ) −→
Mqc(Dλ) is an equivalence of categories, I(w, λ) is a reducible Dλ-module.

If α ∈ Σλ, I(w, λ) is reducible by 21. �

Now we deduce a necessary and sufficient condition for irreducibility of Verma
modules.

1.24. Theorem. Let λ ∈ h∗. Then the following conditions are equivalent:

(i) λ is antidominant;
(ii) M(λ) is irreducible.

Proof. (i)⇒(ii) If λ is antidominant, I(λ) = Γ(X, I(1, λ)) by 14. Moreover,
I(1, λ) is clearly irreducible. By L.4.1, I(λ) is an irreducible g-module, and M(λ) =
I(λ)̃ is also irreducible.

(ii)⇒(i) Take λ which is not antidominant. Assume that M(λ) is irreducible.
Let w ∈W be a shortest element of W such that w−1λ is antidominant. Then, by
14, we have

Γ(X, I(w,w−1λ)) = I(λ) = M(λ)̃ = L(λ)̃ = L(λ) = M(λ).

Let α ∈ Π such that w = w′sα with `(w) = `(w′) + 1. Then w′
−1
λ is not an-

tidominant. We claim that p = −α (̌w−1λ) ∈ N. Since w−1λ is antidominant,
β (̌w−1λ) /∈ N for any β ∈ Σ+. In addition, sα permutes the roots of Σ+ − {α},
hence (sαβ)̌ (w−1λ) = β (̌w′

−1
λ) /∈ N for any β ∈ Σ+ − {α}, and since w′

−1
λ is

not antidominant, α (̌w′
−1
λ) ∈ N. From 21.(i) we get the exact sequence

0 −→ U0(I(w′, w′
−1
λ)) −→ I(w,w−1λ) −→ I(w′, w−1λ) −→ 0

of Dw−1λ-modules. Since w−1λ is antidominant, by C.3.2, we get the exact sequence

0→ Γ(X,U0(I(w′, w′
−1
λ)))→ Γ(X, I(w,w−1λ))→ Γ(X, I(w′, w−1λ))→ 0,

and Γ(X, I(w,w−1λ)) = I(λ) = M(λ)̃ is irreducible. By 14, we have

Γ(X, I(w′, w−1λ)) = I(swαλ) 6= 0.

This implies that Γ(X,U0(I(w′, w′
−1
λ))) = 0 and I(λ) = I(swαλ). By dualizing

we conclude that M(λ) = M(swαλ), what is possible only if λ = swαλ. This in
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turn implies that sα stabilizes w−1λ, what contradicts α (̌w−1λ) ∈ N. Therefore,
M(λ) must be reducible. �

Finally we want to discuss the action of the intertwining functors for simple
reflections on irreducible modules L(w, λ).

1.25. Proposition. Let λ ∈ h∗ and α ∈ Π. Then:

(i) If α (̌λ) /∈ Z, Isα(L(w, λ)) = L(wsα, sαλ).
(ii) If α (̌λ) ∈ Z, there are two possibilities:

(a) if `(wsα) = `(w) + 1, Isα(L(w, λ)) 6= 0 and L−1Isα(L(w, λ)) = 0;
(b) if `(wsα) = `(w) − 1, Isα(L(w, λ)) = 0 and L−1Isα(L(w, λ)) =
L(w, sαλ).

Proof. In this case, Isα is an equivalence of categories by L.3.22, hence it is
an exact functor. By L.3.5. we can assume in addition that λ is antidominant and
regular. This implies that sαλ is also antidominant and regular. Therefore, the
statement follows from L.1.16, L.3.23. and 19.

(ii) Let Pα be the parabolic subgroup of type α containing a Borel subgroup
B. Then Pα = B ∪ BsαB. This implies that p−1

α (pα(C(w))) = C(w) ∪ C(wsα).
Since pα is a locally trivial projection with fibres isomorphic to P1, it follows that
p−1
α (pα(C(w))) = C(w) ∪ C(wsα). If `(wsα) = `(w) + 1, C(w) ⊂ C(wsα) and

p−1
α (pα(C(w))) = C(wsα) 6= C(w); if `(wsα) = `(w) − 1, C(wsα) ⊂ C(w) and

p−1
α (pα(C(w))) = C(w). Since suppL(w, λ) = C(w), we see that L(w, λ) can be a

translate of a module of the form p+
α (V) only if `(wsα) = `(w)−1. Hence, by L.5.6,

Isα(L(w, λ)) = 0 implies that `(wsα) = `(w)− 1.
It remains to prove the converse. Let `(wsα) = `(w) − 1. In this case, by 21,

we have the exact sequence

0 −→ U0(I(wsα, sαλ)) −→ I(w, λ) −→ I(wsα, λ) −→ 0

and U0(I(wsα, sαλ)) is a non-zero translate of a module of the form p+
α (V). Hence,

U0(I(wsα, sαλ)) contains L(w, λ) as its unique irreducible submodule and, in par-

ticular, suppU0(I(wsα, sαλ)) = C(w). Moreover by L.5.5, L−1Isα(U0(I(wsα, sαλ))) =
U0(I(wsα, λ)). Since, by 17, L−1Isα(I(wsα, λ)) vanishes, from the long exact se-
quence of derived functors of Isα applied to the preceding short exact sequence, we
conclude that

L−1Isα(I(w, λ)) = U0(I(wsα, λ)) 6= 0.

Also, since L−1Isα is left exact, we conclude that L−1Isα(L(wsα, λ)) = 0. Consider
now the short exact sequence

0 −→ L(w, λ) −→ I(w, λ) −→ Q −→ 0,

where suppQ ⊂ ∂C(w) = C(w)−C(w). By the preceding discussion, the conditions

C(v) ⊂ ∂C(w) and p−1
α (pα(C(v))) = C(w) imply that v = wsα. Therefore, if

L(v, λ) would be an irreducible constituent ofQ with suppL−1Isα(L(v, λ)) = C(w),
we would have v = wsα what is impossible by the preceding remark. Hence, by
induction in the length of Q, we conclude that suppL−1Isα(Q) 6= C(w). Therefore,
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the part of the corresponding long exact sequence of derived intertwining functors

0 −−−−→ L−1Isα(L(w, λ)) −−−−→ L−1Isα(I(w, λ)) −−−−→ L−1Isα(Q)∥∥∥
U0(I(wsα, λ))

implies that the second horizontal arrow is nonzero, hence L−1Isα(L(w, λ)) 6= 0.
This implies by L.5.4. that Isα(L(w, λ)) = 0.

Therefore, (ii) is a consequence of L.5.4. �

2. Kazhdan-Lusztig Algorithm

In this section we want to develop an algorithm for calculating the multiplicities
in the composition series of Verma modules. We start with a critical combinatorial
result.

Let W be the Weyl group of a reduced root system Σ and S the set of simple
reflections attached to a set of simple roots Π. Denote by ` : W −→ Z+ the length
function on (W,S). Let Z[q, q−1] be the localization of Z[q] at (q), i.e. the ring of
finite Laurent series in q. Denote by H the Z[q, q−1]-module with basis δw, w ∈W .
Let α ∈ Π. Then, for any w ∈ W , either `(wsα) = `(w) + 1 or `(wsα) = `(w)− 1.
We define a Z[q, q−1]-module endomorphism Tα of H by

Tα(δw) =

{
qδw + δwsα if `(wsα) = `(w) + 1;

q−1δw + δwsα if `(wsα) = `(w)− 1.

The mentioned combinatorial result is the following theorem.

2.1. Theorem. There exists a unique function ϕ : W −→ H, such that the
following properties are satisfied:

(i) for w ∈W we have

ϕ(w) = δw +
∑
v<w

Pwvδv,

where Pwv ∈ qZ[q].
(ii) for α ∈ Π and w ∈ W such that `(wsα) = `(w) − 1, there exist cv ∈ Z,

which depend on α and w, such that

Tα(ϕ(wsα)) =
∑
v≤w

cvϕ(v).

The function ϕ : W −→ H determines an unique family {Pwv |w, v ∈ W, v ≤
w} of polynomials in Z[q] such that ϕ(w) =

∑
v≤w Pwvδv for w ∈ W . These

polynomials are called the Kazhdan-Lusztig polynomials for (W,S).

2.2. Remark. Our Kazhdan-Lusztig polynomials differ in normalization from
the ones defined originally [?]. We shall discuss the connection of the two normal-
izations later ... .

First we shall prove the uniqueness part of 2.1. To prove the existence, we
need it in a slightly stronger form. For k ∈ Z+, denote by W≤k the set of elements
w ∈W such that `(w) ≤ k.

2.3. Lemma. Let k ∈ N. Then there exists at most one function ϕ : W≤k −→ H,
such that the following properties are satisfied:
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(i) for w ∈W≤k we have

ϕ(w) = δw +
∑
v<w

Pwvδv,

where Pwv ∈ qZ[q].
(ii) for α ∈ Π and w ∈ W≤k such that `(wsα) = `(w)− 1, there exist cv ∈ Z,

which depend on α and w, such that

Tα(ϕ(wsα)) =
∑
v≤w

cvϕ(v).

Proof. The proof is by induction in k. Let k = 0. Then W≤k = {1}. Clearly,
(i) implies that ϕ(1) = δ1 and (ii) is void in this case.

Assume that k > 1. By the induction assumption, ϕ|W≤k−1 is unique. Then,
for w ∈ W≤k such that `(w) = k we can find a simple root α such that `(wsα) =
`(w)− 1 = k − 1. By (ii) we know that

Tα(ϕ(wsα)) =
∑
v≤w

cvϕ(v),

and, by evaluating at q = 0 and using (i),

Tα(ϕ(wsα))(0) =
∑
v≤w

cvδv.

By the induction assumption, the left side is uniquely determined. This implies
that cv are uniquely determined. On the other hand, if we put y = wsα, we have

Tα(ϕ(wsα)) = Tα(δy +
∑
v<y

Pyvδv) = Tα(δy) +
∑
v<y

PyvTα(δv)

= qδy + δw +
∑
v<y

PyvTα(δv).

By the construction, `(v) < `(y) = k − 1. Hence, terms in the expansion of Tα(δy)
can involve only δu with `(u) ≤ k − 1. In particular, they cannot involve δw. This
implies that cw = 1. But this yields to

ϕ(w) = Tα(ϕ(wsα))−
∑
v<w

cvϕ(v).

�

The uniqueness part of 2.1 follows immediately from 2.3. The difficult part
of the proof of 2.1 is the existence. We shall prove the existence by relating the
Kazhdan-Lusztig polynomials with the structure of the categoryMcoh(DX , N0). As
a byproduct of this analysis we shall get a connection between the Kazhdan-Lusztig
polynomials and the multiplicities of irreducible g-modules in Verma modules.

First we want to establish a “parity” property of solutions of 2.3. Define addi-
tive involutions i on Z[q, q−1] and ι on H by

i(qm) = (−1)mqm for m ∈ Z,

ι(qmδw) = (−1)m+`(w)qmδw for m ∈ Z and w ∈W.

Then ιTαι is Z[q, q−1]-linear endomorphism of H, and we have

(ιTαι)(δw) = (−1)`(w)ι(Tα(δw)) = (−1)`(w)ι(qδw+δwsα) = −(qδw+δwsα) = −Tα(δw),
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if `(wsα) = `(w) + 1, and

(ιTαι)(δw) = (−1)`(w)ι(Tα(δw)) = (−1)`(w)ι(q−1δw+δwsα) = −(q−1δw+δwsα) = −Tα(δw),

if `(wsα) = `(w)− 1. Therefore,

ιTαι = −Tα.

2.4. Lemma. Let k ∈ N. Let ϕ : W≤k −→ H, be a function satisfying the
properties 2.3.(i) and 2.3.(ii). Then

Pwv = q`(w)−`(v)Qwv

where Qwv ∈ Z[q2, q−2].

Proof. Define ψ(w) = (−1)`(w)ι(ϕ(w)). Then ψ : W≤k −→ H, and

ψ(w) = (−1)`(w)ι(δw +
∑
v<w

Pwvδv) = δw +
∑
v<w

(−1)`(w)−`(v)i(Pwv)δv,

hence ψ satisfies 2.3.(i). By the previous remark, for α ∈ Π and w ∈ W≤k such
that `(wsα) = `(w)− 1, we have

Tα(ψ(wsα)) = −(−1)`(w)Tα(ι(ϕ(wsα))) = (−1)`(w)ι(Tα(ϕ(wsα)))

= (−1)`(w)ι(
∑
v≤w

cvϕ(v)) = (−1)`(w)
∑
v≤w

cvι(ϕ(v)) =
∑
v≤w

(−1)`(w)−`(v)cvψ(v),

hence ψ satisfies also 2.3.(ii). Therefore, by 2.3, we conclude that ψ = ϕ. �

Let F ∈Mcoh(DX , N0). For w ∈W we denote by iw the canonical immersion
of the Bruhat cell C(w) into X. Clearly, for any k ∈ Z, L−ki+w(F) is N0-equivariant
connection on C(w), i.e. it is isomorphic to a sum of copies of OC(w). On the other

hand, dimC(w) = `(w), hence Rn−`(w)−ki!w(F) = L−ki+w(F) for any k ∈ Z. We
put

ν(F) =
∑
w∈W

∑
m∈Z

dimO(Rmi!w(F))qmδw.

Therefore, ν is a map from Mcoh(DX , N0) into H.
For any w ∈W , we put

Iw = I(w,−ρ) and Lw = L(w,−ρ).

The existence part of 2.1 follows from the next result.

2.5. Proposition. Let ϕ(w) = ν(Lw). Then ϕ satisfies 2.1.(i) and 2.1.(ii).

Checking that ϕ satisfies 2.1.(i) is quite straightforward.

2.6. Lemma. Let ϕ(w) = ν(Lw). Then

ϕ(w) = δw +
∑
v<w

Pwvδv

where Pwv ∈ qZ[q].

Proof. Clearly, suppLw = C(w). By definition of the Bruhat order, v ≤ w is

equivalent with C(v) ⊂ C(w). Therefore, we see that Rmi!v(Lw) = 0, for all m ∈ Z,
if v is not less than or equal to w. By Kashiwara’s theorem, we conclude that

R0i!w(Lw) = R0i!w(Iw) = R0i!w(R0iw+(OC(w))) = OC(w),
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and, for m 6= 0,

Rmi!w(Lw) = Rmi!w(Iw) = Rmi!w(R0iw+(OC(w))) = 0.

Finally, if v < w, denote by X ′ the complement in X of the boundary ∂C(v) =

C(v)−C(v) of C(v). Since the restriction of an irreducible DX -module to an open
set is either zero or irreducible, Lw|X ′ is an irreducible DX′ -module. Let jv be the
natural inclusion of C(v) into X ′. Then jv is a closed immersion. On the other
hand, R0jv+(R0i!v(Lw)) is the DX′ -submodule of Lw|X ′ consisting of local sections
supported on C(v). Hence, we must have R0jv+(R0i!v(Lw)) = 0. Therefore, it
follows that R0i!v(Lw) = 0. �

The main part of the proof is to establish that ϕ(w) = ν(Lw) satisfies 2.1.(ii).
First we need an auxiliary result.

Let α ∈ Π and Xα the corresponding flag variety of parabolic subalgebras
of type α. Denote by pα : X −→ Xα the natural projection map. Let C(v)
be a Bruhat cell in X for v ∈ W . Since it is isomorphic to C`(v), the natural
imbedding iv : C(v) −→ X is an affine morphism. The projection pα(C(v)) of
C(v) to Xα is also an affine space, and therefore affinely imbedded into Xα. Since
the fibration pα : X −→ Xα is locally trivial, we conclude that p−1

α (pα(C(v)))
is a smooth affinely imbedded subvariety of X. If Pα is the standard parabolic
subgroup of type α containing the Borel subgroup B, we have Pα = B ∪ BsαB.
This implies that p−1

α (pα(C(v))) = C(v)∪C(vsα). One of these Bruhat cells is open
and dense in p−1

α (pα(C(v))), the other one is closed in p−1
α (pα(C(v))). We have

either `(vsα) = `(v)+1 or `(vsα) = `(v)−1. In the first case, dim p−1
α (pα(C(v))) =

`(v) + 1, C(vsα) is open and C(v) closed in p−1
α (pα(C(v))). In the second case,

dim p−1
α (pα(C(v))) = `(v), C(v) is open and C(vsα) closed in it. Moreover, in the

first case pα : C(v) −→ pα(C(v)) is an isomorphism, while in the second case it is
a fibration with fibres isomorphic to an affine line. We define the functors

Uqα(F) = p+
α (Rqpα+(F)),

from Mqc(DX) into itself, for any q ∈ Z. Since the fibres of the projection map
pα : X −→ Xα are one-dimensional, Uqα can be nonzero only for q ∈ {−1, 0, 1}.
These functors are closely related to the functors we discussed in L.5. In particular,
we have the following lemma.

2.7. Lemma. Let w ∈W and α ∈ Π be such that `(wsα) = `(w)− 1. Then:

(i) Uqα(Lwsα) = 0 for all q 6= 0;
(ii) U0

α(Lwsα) is a direct sum of Lv for v ≤ w.

Proof. First, by the construction, Uqα(Lwsα) are holonomic (DX , N0)-modules
supported inside the closure of p−1

α (pα(C(w))), which is equal to the closure of C(w)
by the preceding discussion. This implies that Uqα(Lwsα) are of finite length and
their composition factors could be only Lv for v ≤ w. Since pα is a locally trivial
fibration with fibres isomorphic to P1 and Lwsα is the direct image of OC(wsα) and
therefore of geometric origin (...), by the decomposition theorem (...) Rqpα+(Lwsα)
are semisimple. This implies, using again the local triviality of pα, that Uqα(Lwsα)
are semisimple, and completes the proof of (ii).

To prove (i) we establish the connection with the results in L.5. Let Yα =
X ×Xα X denote again the fibered product of X with X relative to the morphism
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pα. Denote by q1 and q2 the corresponding projections of Yα onto the first and
second factor respectively. Then the following diagram

Yα
q2−−−−→ X

q1

y pα

y
X

pα−−−−→ Xα

is commutative. By base change,

Uqα(Lwsα) = p+
α (Rqpα+(Lwsα)) = Rqq1+(q+

2 (Lwsα)).

Since DX = D−ρ, we easily check that Uqα(Lwsα)(α) = Uq(Lwsα). Hence, (i) follows
immediately from L.5.4. if we show that Isα(Lwsα) 6= 0. On the other hand, this
follows immediately from 1.21. �

Now we want to calculate ν(U0
α(Lwsα)) for w ∈ W and α ∈ Π such that

`(wsα) = `(w) − 1. First, let v ∈ W be such that v ≤ w. Then C(v) is in the
closure of C(w). Since, by our assumption, the closure of C(w) is also the closure of
p−1
α (pα(C(w))), we conclude that p−1

α (pα(C(v))) = C(v)∪C(vsα) is also contained
in the closure of C(w), i. e. vsα ≤ w. Therefore, without any loss of generality, we
can assume that `(v) = `(vsα) + 1, i. e. C(v) is open in Zα = p−1

α (pα(C(v))). Let
j : Zα −→ X and jv : pα(C(v)) −→ Xα be the natural inclusions. Then we have
the following commutative diagram

Zα
j−−−−→ X

qα

y pα

y
pα(C(v))

jv−−−−→ Xα

and by base change and 7. we get

Rkj!(U0
α(Lwsα)) = Hk

(
Rj!(p+

α (Rpα+(D(Lwsα))))
)

= Hk−1
(
Rj!(Rp!

α(Rpα+(D(Lwsα))))
)

= Hk−1
(
R(pα ◦ j)!(Rpα+(D(Lwsα)))

)
= Hk−1

(
R(jv ◦ qα)!(Rpα+(D(Lwsα)))

)
= Hk−1(Rq!

α(Rj!
v(Rpα+(D(Lwsα)))))

= q+
α

(
Hk
(
Rj!

v(Rpα+(D(Lwsα)))
))

= q+
α

(
Hk
(
Rqα+(Rj!(D(Lwsα))

))
.

Now we analyze in more details the structure of the complex Rj!(D(Lwsα)). As
we remarked before, Zα = C(v)∪C(vsα), C(v) is open in Zα and C(vsα) is closed
in it. If we denote by i : C(v) −→ Zα and i′ : C(vsα) −→ Zα the canonical affine
immersions, we have the following distinguished triangle

i′+(Ri′
!
(F ·)) −→ F −→ i+(F ·|C(v))

in the category Db(DZα), for any object F ·. Therefore, in particular we have the
following distinguished triangle

i′+(Ri′
!
(Rj!(D(Lwsα)))) −→ Rj!(D(Lwsα)) −→ i+(Rj!(D(Lwsα))|C(v))

and

i′+(Ri!vsα(D(Lwsα))) −→ Rj!(D(Lwsα)) −→ i+(Ri!v(D(Lwsα))).

By applying the functor Rqα+ we get the distinguished triangle

Rqα+(i′+(Ri!vsα(D(Lwsα))))→ Rqα+(Rj!(D(Lwsα)))→ Rqα+(i+(Ri!v(D(Lwsα))))
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in Db(Dpα(C(v))). Since pα(C(v)) is a N0-orbit in Xα, and all D-modules involved
in the preceding arguments are N0-equivariant, the cohomologies of the complexes
in this triangle are sums of copies of Opα(C(v)). In addition,

Rqα+(i′+(Ri!vsα(D(Lwsα)))) = R(qα ◦ i′)+(Ri!vsα(D(Lwsα)))

and qα ◦ i′ : C(vsα) −→ pα(C(v)) is an isomorphism. Therefore,

dimOH
k
(
R(qα ◦ i′)+(Ri!vsα(D(Lwsα)))

)
= dimO R

ki!vsα(Lwsα)

for any k ∈ Z. On the other hand,

Rqα+(i+(Ri!v(D(Lwsα)))) = R(qα ◦ i)+(Ri!v(D(Lwsα)))

and qα ◦i : C(v) −→ pα(C(v)) is a a locally trivial projection with fibres isomorphic
to an affine line. Therefore, since cohomologies of Ri!v(D(Lwsα)) are sums of copies
of OC(v),

dimOH
k
(
R(qα ◦ i)+(Ri!v(D(Lwsα)))

)
= dimO R

k+1i!v(Lwsα)

for any k ∈ Z. This also leads to the long exact sequence

· · · → Hk
(
R(qα ◦ i′)+(Ri!vsα(D(Lwsα)))

)
→ Hk

(
Rqα+(Rj!(D(Lwsα)))

)
→ Hk

(
R(qα ◦ i)+(Ri!v(D(Lwsα)))

)
→ Hk+1

(
R(qα ◦ i′)+(Ri!vsα(D(Lwsα)))

)
→ · · ·

consisting of Dpα(C(v))-modules which are are sums of copies of Opα(C(v)).
Now we want to prove that ϕ(w) = ν(Lw) satisfies 1.(ii) by induction in the

length of w ∈ W . If `(w) = 0, w = 1 and 1.(ii) is void in this case. Therefore, we
can assume that ϕ(w) = ν(Lw) satisfies 1.(ii) on W≤k for some k ∈ N. By 4, it
satisfies the parity condition on W≤k, i. e. for any u ∈W≤k, we have Rki!v(Lu) = 0
for all v ∈ W and k ∈ Z+ such that k ≡ `(v) − `(u) − 1 (mod 2). Let w ∈ W
be such that `(w) = k + 1. Then there exists α ∈ Π such that `(wsα) = k,
i.e. wsα ∈ W≤k. Then for any v ∈ W in the preceding calculation, we either
have k ≡ `(v) − `(wsα) (mod 2) or k ≡ `(v) − `(wsα) − 1 (mod 2). In the first
case, we have Rk+1i!v(Lwsα) = 0 and Rki!vsα(Lwsα) = 0, what in turn implies that

Hk(Rqα+(Rj!(D(Lwsα))) = 0. In the second case, we see that

dimOH
k(Rqα+(Rj!(D(Lwsα))) = dimO R

k+1i!v(Lwsα) + dimO R
ki!vsα(Lwsα).

This implies that Rkj!(U0
α(Lwsα)) = 0 if k ≡ `(v)− `(wsα) (mod 2), and

dimO R
kj!(U0

α(Lwsα)) = dimO R
k+1i!v(Lwsα) + dimO R

ki!vsα(Lwsα)

for k ≡ `(v)− `(wsα)− 1 (mod 2).
By restricting further to C(v) and C(vsα) we finally get, for all k ∈ Z+, that

dimO R
ki!v(U

0
α(Lwsα)) = dimO R

k+1i!v(Lwsα) + dimO R
ki!vsα(Lwsα)

and

dimO R
ki!vsα(U0

α(Lwsα)) = dimO R
ki!v(Lwsα) + dimO R

k−1i!vsα(Lwsα),
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what leads to

ν(U0
α(Lwsα)) =

∑
v∈W

∑
k∈Z

dimO R
ki!v(U

0
α(Lwsα)) qkδv

=
∑
vsα<v

∑
k∈Z

dimO R
ki!v(U

0
α(Lwsα)) qkδv+

∑
vsα<v

∑
k∈Z

dimO R
ki!vsα(U0

α(Lwsα)) qkδvsα

=
∑
vsα<v

∑
k∈Z

(
dimO R

k+1i!v(Lwsα) + dimO R
ki!vsα(Lwsα)

)
qkδv

+
∑
vsα<v

∑
k∈Z

(
dimO R

ki!v(Lwsα) + dimO R
k−1i!vsα(Lwsα)

)
qkδvsα

=
∑
vsα<v

∑
k∈Z

(
dimO R

k+1i!v(Lwsα) + dimO R
ki!vsα(Lwsα)

)
qk(δv + qδvsα)

=
∑
vsα<v

∑
k∈Z

dimO R
k+1i!v(Lwsα) qk+1(q−1δv + δvsα)

+
∑
vsα<v

∑
k∈Z

dimO R
ki!vsα(Lwsα) qk(δv + qδvsα) = Tα(ν(Lwsα)) = Tα(ϕ(wsα)).

In combination with 7. we get

Tα(ϕ(wsα)) = ν(U0
α(Lwsα)) =

∑
v≤w

cvν(Lv) =
∑
v≤w

cvϕ(v),

i.e. 1.(ii) holds for ϕ on W≤k+1. By induction we see that ϕ satisfies 1.(ii), and this
ends the proof of 5. This also completes the proof of 1.

Now we want to establish the connection between the Kazhdan-Lusztig poly-
nomials and the multiplicities of irreducible g-modules in Verma modules. We start
with the following observation.

2.8. Lemma. The evaluation of the map ν at −1 factors through the Grothendieck
group K(Mcoh(DX , N0)) of Mcoh(DX , N0).

Proof. Evidently

ν(F)(−1) =
∑
w∈W

∑
m∈Z

(
(−1)m dimO(Rmi!w(F))

)
δw.

On the other hand, if
0 −→ F1 −→ F2 −→ F3 −→ 0

is an exact sequence in Mcoh(DX , N0), we get a long exact sequence

. . . −→ Rmi!w(F1) −→ Rmi!w(F2) −→ Rmi!w(F3) −→ Rm+1i!w(F1) −→ . . .

of N0-homogeneous connections on C(w). By the Euler principle,∑
m∈Z

(−1)m dimO(Rmi!w(F2))

=
∑
m∈Z

(−1)m dimO(Rmi!w(F1)) +
∑
m∈Z

(−1)m dimO(Rmi!w(F3)).

�

Also we need the following simple fact.

2.9. Lemma. ν(Iw) = δw.
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Proof. By definition, Iw = R0iw+(OC(w)). Therefore, by Kashiwara’s theo-
rem

R0i!w(Iw) = R0i!w(R0iw+(OC(w))) = OC(w),

and, for m 6= 0,
Rmi!w(Iw) = Rmi!w(R0iw+(OC(w))) = 0.

Moreover, by the base change, for any y ∈W , y 6= w, we have

Rmi!y(Iw) = Rmi!y(R0iw+(OC(w))) = 0.

�

Let χ : Mcoh(DX , N0) −→ K(Mcoh(DX , N0)) denote the natural map of the
category Mcoh(DX , N0) into its Grothendieck group.

2.10. Theorem. Let Pwv, w, v ∈ W , be the Kazhdan-Lusztig polynomials of
(W,S). Then

χ(Lw) = χ(Iw) +
∑
v<w

Pwv(−1)χ(Iv).

Proof. Since Iw contains Lw as the unique irreducible submodule, and all
other composition factors are Lv for v < w, we see that χ(Iw), w ∈ W , form a
basis of K(Mcoh(DX , N0)). Hence

χ(Lw) =
∑
v≤w

λwv χ(Iv)

with λwv ∈ Z. By 8, ν(−1) factors throughK(Mcoh(DX , N0)) and by 9, ν(Iv)(−1) =
δv for v ∈W , what leads to

ν(Lw)(−1) =
∑
v≤w

λwvν(Iv)(−1) =
∑
v≤w

λwvδv.

Hence, from definition of Pwv it follows that λww = 1 and Pwv(−1) = λwv. �

This gives an effective algorithm to calculate the multiplicities of irreducible
modules in Verma modules for infinitesimal character χρ. We can order the elements
of W by an order relation compatible with the Bruhat order. Then the matrix
(λwv;w, v ∈ W ) is lower triangular with 1 on the diagonal. If (µwv;w, v ∈ W ) are
the coefficients of its inverse matrix, we see from 10. that

χ(Iw) =
∑
u∈W

∑
v∈W

µwvλvu χ(Iu) =
∑
v∈W

µwv

(∑
u∈W

λvu χ(Iu)

)
=
∑
v∈W

µwv χ(Lv) =
∑
v≤w

µwv χ(Lv)

and µww = 1 for any w ∈ W . By 1.11, 1.14. and 1.19. we finally get the following
result.

2.11. Corollary. The multiplicity of irreducible module L(−vρ) in the Verma
module M(−wρ) is equal to µwv.

Clearly, by twisting by a homogeneous invertible OX -module we get the re-
sults analogous to 10. for standard modules in Mcoh(Dµ, N0) for arbitrary weight
µ ∈ P (Σ). This immediately leads to an analogue of 11. for Verma modules with
infinitesimal character χµ for regular weights µ ∈ P (Σ). In the next section we
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shall discuss the analogous problem for Verma modules with arbitrary regular in-
finitesimal character.

At the end, we list a few simple properties of Pwv.

2.12. Corollary. The coefficients of the Kazhdan-Lusztig polynomials Pwv
are non-negative integers.

Proof. This follows immediately from 5. and the definition of the map ν. �

2.13. Lemma. Let w ∈ W with `(wsα) = `(w) − 1. Then, for any v ∈ W ,
vsα ≤ w is equivalent to v ≤ w. If v ≤ w with `(vsα) = `(v) − 1, we have
qPwv = Pw vsα .

Proof. In the proof of 1.21, we have shown that `(wsα) = `(w)−1 is equivalent

to C(w) = p−1
α (pα(C(w))). Therefore, C(v) ⊂ C(w) implies that

C(v) ∪ C(vsα) = p−1
α (pα(C(v))) ⊂ C(w),

i.e. vsα ≤ w. This proves the first assertion.
Moreover, by 1.24. and L.5.6, Lw is of the form p+

α (V). Therefore, using the
notation from the proof of 5, we have

dimO R
pi!vsα(Lw) = dimO L

p−n+`(v)−1i+vsα(Lw) = dimO L
p−n+`(v)−1j+

v (V)

= dimO L
p−n+`(v)−1i+v (Lw) = dimO R

p−1i!v(Lw),

for arbitrary v ≤ w such that `(vsα) = `(v)− 1. �



CHAPTER 6

Generalized Verma modules

1. Cosets in Weyl groups

Let Σ be a reduced root system and Σ+ a set of positive roots. Denote by Π
the corresponding set of simple roots. As before, we put

Σ+
w = Σ+ ∩ {−w−1(Σ+)} = {α ∈ Σ+ | wα ∈ −Σ+}.

1.1. Lemma. Let w ∈ W and α ∈ Π. Then the following statements are
equivalent:

(i) `(wsα) = `(w) + 1,
(ii) α /∈ Σ+

w.

Proof. Let `(wsα) = `(w) + 1. Then by L.3.12.(ii) we have

Σ+
wsα = sα(Σ+

w) ∪ {α},
i.e. α ∈ Σ+

wsα . This implies that

−wα = wsαα ∈ −Σ+,

i.e. α /∈ Σ+
w .

If `(wsα) = `(w) − 1, `(w′sα) = `(w′) + 1 for w′ = wsα and α /∈ Σ+
w′ . This in

turn implies that
wα = w′sαα = −w′α ∈ −Σ+,

and α ∈ Σ+
w . �

Let Θ ⊂ Π. Denote by ΣΘ the root subsystem of Σ generated by Θ, and by
WΘ the subgroup of W generated by simple reflections SΘ = {sα |α ∈ Θ}. Clearly,
the length function of (WΘ, SΘ) is the restriction of ` to WΘ. Also, define the set

WΘ = {w ∈W | Σ+
w ∩Θ = ∅} = {w ∈W | Θ ⊂ w−1(Σ+)}.

1.2. Theorem. Every element w ∈W has a unique decomposition in the form
w = w′t, w′ ∈WΘ, t ∈WΘ. In addition, `(w) = `(w′) + `(t).

Proof. By 1, for any w ∈W , the following conditions are equivalent:

(i) w ∈WΘ;
(ii) `(wsα) = `(w) + 1 for any α ∈ Θ.

First we claim that a shortest element in a left WΘ-coset must be in WΘ. Assume
that w is a shortest element in a left WΘ-coset and that w /∈ WΘ. Then there
would exist an α ∈ Θ with `(wsα) = `(w) − 1. Therefore, there would exist an
element in the same left WΘ-coset of shorter length, contradicting our assumption.

Now we prove, by induction in length, that every element w in a left WΘ-
coset has a decomposition of the form w = w′t with w′ ∈ WΘ, t ∈ WΘ and
`(w) = `(w′) + `(t). We already proved this for elements of minimal length. Take

113
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an arbitrary element w of a left WΘ-coset. If it is in WΘ we are done. If it is not
in WΘ, by the preceding remark we can find an α ∈ Θ with `(wsα) = `(w) − 1.
By the induction assumption wsα = w′t′ for some w′ ∈ WΘ and t′ ∈ WΘ with
`(wsα) = `(w′) + `(t′). This implies that w = w′t′sα. Put t = t′sα. Then w = w′t,
t ∈WΘ and `(t) ≤ `(t′) + 1. Moreover, we have

`(w) ≤ `(w′) + `(t) ≤ `(w′) + `(t′) + 1 = `(wsα) + 1 = `(w),

which implies that we have the equality `(w) = `(w′) + `(t). This completes the
proof of the existence of the decomposition.

To prove that this decomposition is unique it is enough to show that there is
at most one element of WΘ in each left WΘ-coset. Assume that w,w′ ∈ WΘ and
w = w′t with t ∈WΘ. Then

Θ ⊂ w−1(Σ+) = t−1w′
−1

(Σ+).

The set Σ+
Θ = ΣΘ ∩ Σ+ is the set of positive roots in ΣΘ determined by Θ. Then

Σ+
Θ ⊂ t

−1w′
−1

(Σ+),

and

t(Σ+
Θ) ⊂ w′−1

(Σ+).

Analogously,

Σ+
Θ ⊂ w

′−1
(Σ+).

Since WΘ is isomorphic to the Weyl group of ΣΘ, if t 6= 1, there would exist a root

β ∈ Σ+
Θ such that −β ∈ t(Σ+

Θ). This would imply that β,−β ∈ w′−1
(Σ+), which is

impossible. Therefore, t = 1 and w = w′. �

Let wΘ be the longest element in WΘ. This element is characterized by the
following property.

1.3. Lemma. The element wΘ is the unique element in W with the following
properties:

(i) wΘ(Θ) = −Θ;
(ii) wΘ permutes positive roots outside Σ+

Θ.

Proof. To prove that wΘ satisfies (i) it is enough to remark that wΘ maps
positive roots in ΣΘ into negative roots.

Let β ∈ Θ. Then the reflection sβ permutes elements in Σ+ − {β} and also
roots in ΣΘ. This implies that it also permutes positive roots outside Σ+

Θ. By
induction in length we conclude that any element of WΘ permutes positive roots
outside Σ+

Θ. This shows that wΘ satisfies (ii).
On the other hand, if w satisfies the conditions (i) and (ii),

w(Σ+) =
(
−Σ+

Θ

)
∪
(
Σ+ − Σ+

Θ

)
,

and, since W acts simply transitively on all sets of positive roots in Σ, there is only
one element of W with this property. �

1.4. Theorem. (i) Each left WΘ-coset in W has a unique shortest ele-
ment. It lies in WΘ.

(ii) If w is the shortest element in a left WΘ-coset C, wwΘ is the unique
longest element in this coset.

(iii) Each right WΘ-coset in W has a unique shortest element.
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(iv) If w is the shortest element in a right WΘ-coset C, wΘw is the unique
longest element in this coset.

Proof. The statements (i) and (ii) follow immediately from 2. Since the
antiautomorphism w 7−→ w−1 of W preserves WΘ, wΘ and the length function
` : W −→ Z+, and maps left WΘ-cosets into right WΘ-cosets, (i) and (ii) imply
also (iii) and (iv). �

Therefore, the set WΘ is a section of the left WΘ-cosets in W consisting of the
shortest elements of each coset. Hence, the shortest elements of right WΘ-cosets in
W are the elements of the set

{w ∈W | w−1 ∈WΘ} = {w ∈W | Θ ⊂ w(Σ+)}.
This implies the following result.

1.5. Lemma. The set
ΘW = {w ∈W | Θ ⊂ −w(Σ+)}

is the section of the set of right WΘ-cosets in W consisting of the longest elements
of each coset.

Proof. Let w be the shortest element of a right WΘ-coset. Then, by the
preceding discussion, Θ ⊂ w(Σ+). Therefore,

−Θ = wΘ(Θ) ⊂ wΘw(Σ+),

and the longest element of this right coset wΘw is in ΘW .
On the other hand, if w ∈ ΘW , Θ ⊂ −w(Σ+) and

−Θ = wΘ(Θ) ⊂ −wΘw(Σ+),

what implies that wΘw is the shortest element in its right WΘ-coset. Therefore, w
is the longest element in this coset. �

For a right WΘ-coset C in W we denote by wC the corresponding element in
ΘW . We define an order relation on the set WΘ\W of all all right WΘ-cosets by
transfering the order relation on ΘW induced by the Bruhat order on W .

1.6. Proposition. Let C be a right WΘ-coset in W and α ∈ Π. Then we have
the following three possibilities:

(i) Csα = C;
(ii) Csα > C, and in this case wCsα = wCsα and `(wsα) = `(w) + 1 for any

w ∈ C;
(iii) Csα < C, and in this case wCsα = wCsα and `(wsα) = `(w)− 1 for any

w ∈ C.

Proof. Assume that Csα 6= C. Let w be the shortest element in C. Then
there are two possibilities, either `(wsα) = `(w) + 1 or `(wsα) = `(w)− 1.

Assume first that `(wsα) = `(w) + 1. Let t ∈ WΘ. Suppose that `(twsα) =
`(tw) − 1. Since `(wsα) = `(w) + 1, by the exchange condition we conclude that
there exists t′ ∈ WΘ such that wsα = t′w. This implies that Csα = C, contrary
to our assumption. Therefore, `(twsα) = `(tw) + 1. This implies that wCsα is the
longest element in Csα and (ii) holds.

Assume now that `(wsα) = `(w)− 1. Let t ∈WΘ. Then

`(twsα) ≤ `(t) + `(wsα) = `(t) + `(w)− 1 = `(tw)− 1,
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which implies `(twsα) = `(tw)− 1. Therefore, wCsα is the longest element in Csα
and (iii) holds. �

Let C be a right WΘ-coset and w its shortest element. Then wC = wΘw and
`(wC) = `(w) + `(wΘ). This implies that wΘ ≤ wΘw = wC in the Bruhat order,
i. e. WΘ ≤ C in the ordering on WΘ\W . Hence, WΘ is the smallest element in
WΘ\W . Later we shall need the following characterization of this element.

1.7. Lemma. Let C ∈ WΘ\W . Assume that for any α ∈ Π we have either
Csα = C or Csα > C. Then C = WΘ.

Proof. Let w be the shortest element in C. Our assumption implies that
`(wsα) = `(w)+1 for any α ∈ Π. But this is possible only if w = 1 and C = WΘ. �

Finally, we remark the following fact.

1.8. Lemma. If w ∈ ΘW and t ∈WΘ, we have

`(tw) = `(w)− `(t).

Proof. Let w ∈ ΘW and t ∈ WΘ. Then wΘw is the shortest element in the
right WΘ-coset of w. Moreover, by 2,

`(tw) = `((twΘ)(wΘw)) = `(twΘ) + `(wΘw) = `(wΘ)− `(t) + `(wΘw) = `(w)− `(t).

�

Let B be a Borel subgroup of G and PΘ the standard parabolic subgroup of G
of type Θ containing B. Then the PΘ-orbits in X are B-invariant, and therefore
unions of Bruhat cells in X. More precisely, we have the following result.

1.9. Lemma. Let O be a PΘ-orbit in X and C(w) ⊂ O. Then

O =
⋃
t∈WΘ

C(tw).

Proof. This follows from ([5], Ch. IV, §2, no. 5, Prop. 2). �

Therefore, we have a bijection between WΘ\W and the set of PΘ-orbits in X.
Let C be a right WΘ-coset in W and O the corresponding PΘ-orbit. Then

dimO = max
t∈WΘ

dimC(twC) = max
t∈WΘ

`(twC) = `(wC),

by 8. Therefore, C(wC) is the open Bruhat cell in O. This implies the following
result.

1.10. Proposition. The map attaching to PΘ-orbit O in the flag variety X the
unique Bruhat cell C(w) open in O is a bijection between the set of all PΘ-orbits
in X and the set of Bruhat cells C(w) with w ∈ ΘW .

Finally we want to give a geometric interpretation of the order relation on
WΘ\W .

1.11. Proposition. Let C ∈WΘ\W . Let O be the PΘ-orbit in X corresponding
to C. Then the closure of O consists of all PΘ-orbits in X corresponding to D ≤ C.
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Proof. The Bruhat cell C(wC) is open in O. Since O is irreducible, C(wC) is

dense in O and Ō = C(wC). Therefore, Ō = ∪v≤wCC(v). On the other hand, Ō is

a union of PΘ-orbits. Let D correspond to a PΘ-orbit in Ō. Then C(wD) is in Ō

and wD ≤ wC , i.e. D ≤ C. If D ≤ C, we have wD ≤ wC and C(wD) ⊂ C(wC) = Ō.
If O′ is the orbit corresponding to D we get

O′ ⊂ O′ = C(wD) ⊂ C(wC) = Ō.

�

2. Generalized Verma Modules

Let b0 be a fixed Borel subalgebra of g and denote by B0 the corresponding
Borel subgroup of the simply connected covering group G of Int(g). To each subset
Θ of Π we associate a standard parabolic subalgebra pΘ containing b0 and denote
by PΘ the corresponding parabolic subgroup of G. Let qΘ = [pΘ, pΘ] and QΘ the
commutant of PΘ.

2.1. Lemma. (i) The unipotent radical NΘ of PΘ is the unipotent radical
of QΘ.

(ii) Let LΘ be a Levi factor of PΘ. Then the commutator subgroup SΘ of LΘ

is a Levi factor of QΘ.
(iii) The PΘ-orbits in X are also QΘ-orbits.
(iv) The stabilizer in PΘ of x ∈ X is connected.
(v) The stabilizer in QΘ of x ∈ X is connected.

Proof. Let c be a Cartan subalgebra of g contained in b0 and R the root
system in c∗. We identify Θ with a subset of the set of simple roots in R which
corresponds to Π under the specialization defined by b0. Then pΘ is spanned by
c, and the root subspaces gα corresponding to positive roots in R and rots of the
form −β where β is a sum of roots in Θ. This implies that the Lie algebra nΘ of
NΘ is spanned by the root subspaces gα corresponding to positive roots which are
not sums of roots in Θ. Also, the Lie algebra lΘ of a Levi factor LΘ is spanned by
c and the root subspaces gα which are sums of roots in Θ or their negatives. Put
sΘ = [lΘ, lΘ]. Then, since [c, nΘ] = nΘ we have

qΘ = [pΘ, pΘ] = [lΘ, lΘ] + [lΘ, nΘ] + [nΘ, nΘ] = sΘ + nΘ.

By the conjugacy of Levi decompositions these results are independent of the choice
of c. Since PΘ is connected, the decompositions for groups follow immediately from
the results for their Lie algebras. This completes the proof of (i) and (ii).

(iii) We see that QΘ and B0 generate PΘ. Let O be a PΘ-orbit in X and x ∈ O.
Then Bx ∩B0 contain a common Cartan subgroup C of G, and N0 and C generate
B0. This implies that QΘ and C generate PΘ, and the QΘ-orbit of x agrees with
O.

The stabilizer PΘ ∩ Bx is the semidirect product of the Cartan subgroup C
with the unipotent radical PΘ ∩ Nx of the stabilizer. Analogously, the stabilizer
QΘ ∩Bx is the semidirect product of a Cartan subgroup in SΘ with the unipotent
radical QΘ∩Nx of the stabilizer. This immediately implies the statements (iv) and
(v). �

Clearly, (g, QΘ) is a Harish-Chandra pair for any Θ ⊂ Π. We want to analyze
the categoriesMcoh(Dλ, QΘ). First we consider standard Harish-Chandra sheaves.
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Let λ ∈ h∗. Fix a PΘ-orbit O in X. Let i0 : O −→ X be the natural immersion
of O into X. The homogeneous twisted sheaf of differential operators Dλ on X
defines a PΘ-homogeneous twisted sheaf of differential operators (Dλ)iO on O. Then
the stabilizer of x in QΘ is connected by 1.(v). Therefore, there exists at most one
irreducible QΘ-homogeneous (Dλ)iO -connection on O.

Put

P (ΣΘ) = {λ ∈ h∗ | α (̌λ) ∈ Z for α ∈ Θ}.

2.2. Lemma. Let λ ∈ h∗. Let O be a PΘ-orbit and w ∈ ΘW such that the
Bruhat cell C(w) is open in O. Then the following conditions are equivalent:

(i) wλ ∈ P (ΣΘ);
(ii) there exist an irreducible QΘ-homogeneous (Dλ)iO -connection on O.

If such connection exists, it is unique.

Proof. Let x ∈ C(w). Then bx is a Borel subalgebra in g in relative position
w with respect to b0. Let c be a Cartan subalgebra contained in bx ∩ b0. Then,
with respect to specialization s defined by b0, nx is spanned by root subspaces gα
corresponding to α ∈ w(Σ+). By 1.(v), the stabilizer of x in QΘ is the connected
subgroup with the Lie algebra qΘ∩bx. Therefore, with respect to our specialization,
the Lie algebra of the stabilizer is spanned by qΘ ∩ c and gα with α ∈ Σ+ ∩w(Σ+)
and α ∈ ΣΘ ∩ w(Σ+). Since w ∈ ΘW , we see that the second set is equal to −Σ+

Θ.
Therefore, the stabilizer of x is the semidirect product of a Borel subgroup of SΘ

opposite to B0 ∩ SΘ with the normal subgroup N0 ∩ Nx. This implies that the
differential of the representation of the stabilizer which determines an irreducible
QΘ-homogeneous (Dλ)iO -connection on O must be given by the restriction of the
specialization of an element in P (ΣΘ). The specialization s′ defined by bx is equal
to s ◦ w. Hence, the linear form which determines the connection is s′(λ + ρ) =
s(wλ+ wρ) and this implies that wλ must be in P (ΣΘ). �

This implies that for any λ ∈ h∗ there exists at most one standard Harish-
Chandra sheaf inMcoh(Dλ, QΘ) attached to the orbit O. We denote it by I(O, λ),
and its unique irreducible Harish-Chandra subsheaf we denote by L(O, λ). First,
we observe that the irreducible Harish-Chandra sheaves L(O, λ) are actually iso-
morphic to the irreducible modules we encountered before. More precisely, we have
the following result.

2.3. Proposition. Let O be a PΘ-orbit in X and C(w) the Bruhat cell open
in O. Let wλ ∈ P (ΣΘ). Then L(O, λ) = L(w, λ).

Proof. Let j : C(w) −→ O be the natural immersion. Denote by τ the unique
irreducible QΘ-homogeneous (Dλ)iO -connection on O. Then its restriction to C(w)
is an irreducible N0-connection and therefore isomorphic to OC(w). This implies

that τ ⊂ R0j+(OC(w)). Hence,

I(O, λ) = R0iO+(τ) ⊂ R0iO+(R0j+(OC(w))) = R0iw+(OC(w)) = I(w, λ).

Therefore, L(O, λ) ⊂ I(w, λ). Since L(O, λ) is irreducible, it must be equal to
L(w, λ). �

It remains to analyze I(O, λ). We use the method from V.2.
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2.4. Lemma. Let O be a PΘ-orbit in X and C(w) the Bruhat cell open in O.
Then Rpi!v(I(O, λ)) = 0 for all v ∈W such that C(v) 6⊆ O and p ∈ Z. If C(v) ⊂ O,
Rpi!v(I(O, λ)) = 0 if p 6= `(w)− `(v), and

R`(w)−`(v)i!v(I(O, λ)) = OC(v).

Proof. We use the notation from the preceding proof. Since O is affinely
imbedded in X and IO = R0iO+(τ), the first assertion follows from the base change.

If we denote by jv the immersion of C(v) into O, by the base change we conclude
that

Rpi!v(I(O, λ)) = Rpi!v(R
0iO+(τ)) = Rpj!

v(τ)

for any p ∈ Z. On the other hand,

Rpj!
v(τ) = Lp−dimO+`(v)j+

v (τ),

what is nonzero only if p− dimO+ `(v) = 0, i.e. if p = dimO− `(v) = `(w)− `(v),
since τ is a connection. Moreover, since τ is locally isomorphic to OO, L0j+

v (τ) is an
N0-homogeneous connection on C(V ) locally isomorphic to OC(v), i.e. L0j+

v (τ) =
OC(v). �

By 1.8, we have `(vw) = `(w)− `(v) for v ∈WΘ, hence we get

ν(I(O, λ)) =
∑
v∈W

∑
m∈Z

dimO(Rmi!v(I(O, λ))) qmδv =
∑
v∈WΘ

q`(v)δvw.

As in the proof of V.2.10 this leads to the following result.

2.5. Proposition. Let O be a PΘ-orbit in X and C(w) the Bruhat cell open
in O. Then

χ(I(O, λ)) =
∑
v∈WΘ

(−1)`(v)χ(I(vw, λ)).

In particular, if Θ = Π, PΘ = G acts transitively on X and the big cell
is the Bruhat cell attached to the G-orbit X. Therefore, we have the following
consequence.

2.6. Corollary.

χ(O(λ+ ρ)) =
∑
w∈W

(−1)`(w)χ(I(ww0, λ)).

Now we want to describe the highest weight modules which correspond to
standard Harish-Chandra sheaves I(O, λ) under the equivalence of categories for
regular antidominant λ. The first step is to construct some objects in the category
of highest weight modules. Let

P++(ΣΘ) = {ν ∈ P (ΣΘ) | α (̌λ) ∈ Z+}.

For any ν ∈ P++(ΣΘ), if we use the specialization defined by b0, there exists a
unique irreducible finite-dimensional lΘ-module V ν with highest weight ν. The
action of sΘ on this module is clearly the differential of a unique algebraic SΘ-
module action. Therefore, if we extend the actions to pΘ and QΘ by assuming that
they are trivial on nΘ and NΘ respectively, we can view V ν as (pθ, SΘ)-module.
For µ ∈ h∗ such that µ− ρ ∈ P++(ΣΘ), we define the generalized Verma module

MΘ(µ) = U(g)⊗U(pΘ) V
µ−ρ,
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here the g-action is given by left multiplication in the first factor and QΘ action is
given as the tensor product of the adjoint action on the first factor and the natural
action on the second factor. Clearly, MΘ(µ) is in Mfg(U(g), QΘ).

2.7. Lemma. Let µ ∈ h∗ such that µ − ρ ∈ P++(ΣΘ). The module MΘ(µ) is
the largest quotient of the Verma module M(µ) which is pΘ-finite.

In particular, MΘ(µ) is a highest weight module with infinitesimal character
χµ.

Proof. The pΘ-module V µ−ρ is a quotient of the pΘ-module U(pΘ) ⊗U(b0)

Cµ−ρ. Therefore, MΘ(µ) is a quotient of

U(g)⊗U(pΘ) (U(pΘ)⊗U(b0) Cµ−ρ) = U(g)⊗U(b0) Cµ−ρ = M(µ).

Let N be a quotient of M(µ) which is pΘ-finite. Then it contains a vector v which
is the image of the generator 1⊗1 ∈M(µ). This vector is a weight vector of weight
µ− ρ and it spans the one-dimensional weight subspace in N . Let N ′ be the finite-
dimensional lΘ-submodule generated by v. Then N ′ is a direct sum of irreducible
lΘ-submodules, and only one of these submodules can contain the weight subspace
corresponding to the weight µ− ρ. This implies that N ′ is actually irreducible and
isomorphic to V µ−ρ. Therefore, the projection of M(µ) onto N factors through
MΘ(µ). �

This implies that MΘ(µ) is in Mfg(Uθ, QΘ) for θ = W · µ.
We know that χ(M(λ)), λ ∈ θ, is a basis of the Grothendieck groupK(M(Uθ, N0)).

Therefore, we should be able to express χ(MΘ(µ)) in terms of χ(M(λ)), λ ∈ θ.
By Poincaré-Birkhoff-Witt theorem, the enveloping algebra U(g) is a free right
U(pΘ)-module for right multiplication. This implies that the induction functor
V −→ U(g)⊗U(pΘ) V from the category of U(pΘ)-modules into the category U(g)-
modules is exact. If we consider the category of highest weight modules for sΘ

with respect to its Borel subalgebra b0 ∩ sΘ, we can define the natural functor to
the category of U(pΘ)-modules by extending the action to the center of lΘ by a
linear form and trivially to nΘ. The composition of this functor with the induction
functor defines an exact functor from the category of highest weight modules for sΘ

into the category of highest weight modules for g. Therefore, it defines a morphism
of the corresponding Grothendieck groups.

Next we need the following simple observation.

2.8. Lemma. Let ν ∈ P (Σ) be a dominant weight and F ν the irreducible finite-
dimensional g-module with highest weight ν. Then, in the Grothendieck category of
highest weight modules for g we have

ch(F ν) =
∑
w∈W

(−1)`(w) ch(M(w(ν + ρ))).

Proof. The lowest weight of F ν is w0ν. By 6. we have

χ(O(w0ν)) =
∑
w∈W

(−1)`(w)χ(I(ww0, w0ν − ρ)).

By the equivalence of categories and V.1.14 this implies that

ch(F ν) =
∑
w∈W

(−1)`(w) ch(I(wν − ww0ρ)) =
∑
w∈W

(−1)`(w) ch(M(w(ν + ρ))).

�
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2.9. Proposition. Let µ ∈ h∗ such that µ− ρ ∈ P++(ΣΘ). Then

ch(MΘ(µ)) =
∑
v∈WΘ

(−1)`(v) ch(M(vµ)).

Proof. The length function of (WΘ, SΘ) is the restriction of the length func-
tion ` of (W,S) to WΘ. Therefore, the statement follows from 6. applied to the
representation V µ−ρ of lΘ and the preceding observation about the morphism of
Grothendieck groups defined by the induction functor. �

Put IΘ(µ) = MΘ(µ)̌ .

2.10. Theorem. Let λ ∈ h∗ be antidominant. Let O be a PΘ-orbit in X and
w ∈W be such that C(w) is open in O. Assume that wλ ∈ P (ΣΘ), so that I(O, λ)
exists. Then:

(i) α (̌wλ) ∈ Z+ for α ∈ Θ;
(ii) if α (̌wλ) = 0 for some α ∈ Θ, we have Γ(X, I(O, λ)) = 0;
(iii) if α (̌wλ) 6= 0 for α ∈ Θ, wλ− ρ ∈ P++(ΣΘ) and we have

Γ(X, I(O, λ)) ∼= IΘ(wλ).

All modules IΘ(µ), with µ ∈W · λ and µ− ρ ∈ P++(ΣΘ), are obtained in this way.

Proof. Since w ∈ ΘW , (i) holds. Since the functor Γ is exact for antidominant
λ, we have by 5. and V.1.14,

ch(Γ(X, I(O, λ))) =
∑
v∈WΘ

(−1)`(v)χ(Γ(X, I(vw, λ))) =
∑
v∈WΘ

(−1)`(v) ch(I(vwλ)).

Hence, if α (̌wλ) = 0 for some α ∈ Θ, sα(wλ) = wλ and ch(Γ(X, I(Q,λ))) = 0.
This clearly implies (ii).

If the assumption in (ii) doesn’t hold, α (̌wλ − ρ) = α (̌wλ) − 1 ∈ Z+, hence
wλ − ρ ∈ P++(ΣΘ). The restriction of the irreducible QΘ-homogeneous (Dλ)iO -
connection τ to C(w) is equal toOC(w), so we can identify I(O, λ) with a submodule
of I(w, λ). Since Γ is exact for antidominant λ, this implies that Γ(X, I(O, λ))
is a Uθ-submodule of Γ(X, I(w, λ)). By V.1.14, it follows that Γ(X, I(O, λ)) is
a pΘ-finite submodule of I(wλ). By dualizing the statement of 7, we see that
Γ(X, I(O, λ)) is a submodule of IΘ(wλ). Finally, by the preceding calculation and
9, we conclude that

ch(Γ(X, I(O, λ))) = ch(IΘ(wλ)),

and therefore Γ(X, I(O, λ)) ∼= IΘ(wλ).
Let µ ∈ W · λ, µ − ρ ∈ P++(ΣΘ). This implies that α (̌µ) ∈ N for α ∈ Θ.

Let w ∈ W be such that −β (̌µ) ∈ Z+ for all β ∈ w(Σ+). Then λ = w−1µ is
antidominant, and Θ ⊂ −w(Σ+), i. e, w ∈ ΘW . �

Now we want to discuss the irreducibility of standard Harish-Chandra sheaves
I(O, λ). First we need a result about the action of the intertwining functors.

2.11. Lemma. Let O be a PΘ-orbit in X and C(w), w ∈ ΘW , the Bruhat cell
open in O. Let α ∈ Π be such that wsα ∈ ΘW , `(wsα) = `(w) + 1, and O′ the
corresponding PΘ-orbit. Let wλ ∈ P (ΣΘ). Then

Isα(I(O, λ)) = I(O′, sαλ) and L−1Isα(I(O, λ)) = 0.
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Proof. First we remark that (wsα)sαλ = wλ ∈ P (ΣΘ), hence the standard
module I(O′, sαλ) exists by 2.

Let pα be the projection of X onto the generalized flag variety Xα of parabolic
subalgebras of type α. Let Q be a PΘ-orbit in X corresponding to C ∈ WΘ\W .
Then pα(Q) is a PΘ-orbit in Xα corresponding to the double coset WΘ\W/Wsα in
W . Therefore, p−1

α (pα(Q)) consists of either:

(a) one PΘ-orbit if Csα = C;
(b) two PΘ-orbits if Csα 6= C.

By our assumption, p−1
α (pα(O)) = O ∪O′ and dimO′ = dimO + 1. Hence,

dim pα(O) = dim p−1
α (pα(O))− 1 = dimO.

Let x′ ∈ O. Let Ppα(x′) be the stabilizer of pα(x′). Then the stabilizers PΘ ∩ B′x
and PΘ∩Ppα(x′) have the same dimension, and since they are both connected, they

must be equal. This implies that p−1
α (pα(x′)) ∩O consists only of x′. Therefore,

p−1
α (pα(x′)) = {x′} ∪ (p−1

α (pα(x′)) ∩O′),
and PΘ∩Ppα(x′) acts transitively on p−1

α (pα(x′))∩O′. Therefore, we finally conclude

that PΘ ∩ Bx′ acts transitively on p−1
α (pα(x′)) ∩ O′, i.e. on the set of all Borel

subalgebras in the relative position sα with respect to bx′ .
Now we use the notation from L.3. Let Zsα ⊂ X ×X be the variety of ordered

pairs of Borel subalgebras in relative position sα. Since

p−1
2 (O) = {(x, x′) ∈ X×X | x′ ∈ O, bx in relative position sα with respect to bx′},

by the preceding remark we see that p−1
2 (O) is a PΘ-orbit of dimension dimO+ 1.

This implies that p1(p−1
2 (O)) is also a PΘ-orbit, hence p1(p−1

2 (O)) = O′. The
stabilizer PΘ ∩Bx of the point x ∈ O′ in PΘ contains the stabilizer PΘ ∩Bx ∩Bx′
of (x, x′) ∈ p−1

2 (O). Since the dimensions of orbits are the same and the stabilizers
connected, we conclude that p1 induces an isomorphism of p−1

2 (O) onto O′.
By L.3.2 and 2.3, we see that p−1

2 (O) is affinely imbedded. Therefore, if we
denote by j the affine immersion of p−1

2 (O) into Zsα and by q2 the morphism of
p−1

2 (O) into O induced by p2, we get

p+
2 (I(O, λ)) = p+

2 (R0iO+(τ)) = R0j+(q+(τ))

by base change. This implies that

LIsα(D(I(O, λ))) = Rp1+(Tsα ⊗OZsα D(R0j+(q+(τ)))) = R(p1 ◦ j)+(τ ′),

where τ ′ is an irreducible QΘ-equivariant connection on p−1
2 (O). The image of p1◦j

is equal to O′, and the map is an immersion. Therefore, LIsα(D(I(O, λ))) is equal
to D(V), where V is a standard Dsαλ-module attached to O′. By 2, this standard
module is I(O′, sαλ). �

Let w ∈ ΘW . Then Σ+
Θ ⊂ −w(Σ+) and therefore −w−1(Σ+

Θ) ⊂ Σ+. If wλ ∈
P (ΣΘ), we have ΣΘ ⊂ Σwλ and w−1(ΣΘ) ⊂ Σλ. This implies that

Σ+
w ∩ Σλ ⊃ −w−1(Σ+

Θ).

2.12. Theorem. Let O be a PΘ-orbit in X and C(w) the Bruhat cell open in
O. Let wλ ∈ P (ΣΘ). Then the following conditions are equivalent:

(i) the standard module I(O, λ) is irreducible;
(ii) Σ+

w ∩ Σλ = −w−1(Σ+
Θ).
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Proof. We prove this by induction in `(w). If `(w) is minimal, w = w0 and
O is the closed PΘ-orbit in X. In this case I(O, λ) is allways irreducible. On the
other hand, w0λ ∈ P (ΣΘ) is equivalent to λ ∈ P (ΣΘ) and

Σ+
w0
∩ Σλ = Σ+

Θ ∩ Σλ = Σ+
Θ = −w−1

0 (Σ+
Θ).

Assume now that the statement holds for `(w) < k. Let `(w) = k. Then, by
1.7, we can find α ∈ Π such that w′ = wsα ∈ ΘW and `(w′) = k− 1. Let O′ be the
PΘ-orbit corresponding to w′. Since w′sαλ = wλ ∈ P (Σθ), the standard module
I(O′, sαλ) exists. Now, 11 implies that

Isα(I(O′, sαλ)) = I(O, λ),

and L−1Isα(I(O′, sαλ)) = 0.
Assume that (ii) holds. Since Σ+

w = sα(Σ+
w′) ∪ {α}, we see that

Σ+
w′ ∩ Σsαλ = sα((Σ+

w − {α}) ∩ Σλ) ⊂ −sαw−1(Σ+
Θ) = −w′−1

(Σ+
Θ).

By the discussion preceding the theorem, this implies that the above inclusion is
an equality. Therefore, I(O′, sαλ) is irreducible by the induction assumption, and
α /∈ Σλ. This implies that Isα : Mqc(Dsαλ) −→ Mqc(Dλ) is an equivalence of
categories and therefore I(O, λ) is also irreducible.

Assume that I(O, λ) is irreducible. If α (̌λ) is not an integer, Isα :Mqc(Dsαλ) −→
Mqc(Dλ) is an equivalence of categories and I(O′, sαλ) must also be irreducible.

By the induction assumption, we have Σ+
w′ ∩ Σsαλ = −w′−1

(Σ+
Θ). Therefore,

Σ+
w ∩ Σλ = sα(Σ+

w′) ∩ Σλ = sα(Σ+
w′ ∩ Σsαλ) = −sαw′

−1
(Σ+

Θ) = −w−1(ΣΘ).

If α (̌λ) is an integer, by L.7.3 and 11 we have the exact sequence

0 −→ U0 −→ I(O, λ) −→ I(O′, λ) −→ U1 −→ 0,

where the middle arrow is nontrivial. Since the support of I(O, λ) is larger than
the support of I(O′, λ), we have a contradiction with the assumption that I(O, λ)
is irreducible. �

This result has the following consequence.

2.13. Theorem. Let λ ∈ P++(ΣΘ) be regular. Then the following conditions
are equivalent:

(i) MΘ(λ) is irreducible;
(ii) Σ+

Θ = {α ∈ Σ+ | α (̌λ) ∈ N}.

Proof. Clearly, instead of MΘ(λ) we can consider IΘ(λ). Let w ∈ ΘW be
such that w−1λ is antidominant (such w exists by the proof of 10). Let O be the
PΘ-orbit attached to the left WΘ-coset of w. Then Γ(X, I(O,w−1λ)) = IΘ(λ), and
by the equivalence of categories and 12, this module is irreducible if and only if
Σ+
w ∩ Σw−1λ = −w−1(Σ+

Θ). This is equivalent with

Σ+
w−1 ∩ Σλ = Σ+

Θ.

Let β ∈ Σ+
w−1 ∩ Σλ. Then β (̌λ) ∈ Z and −β ∈ w(Σ+), hence −w−1β ∈ Σ+ and

−β (̌λ) = −(w−1β)̌ (w−1λ) ∈ −N.
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Therefore, β (̌λ) ∈ N. If β (̌λ) ∈ N for some β ∈ Σ+, then −w−1β (̌w−1λ) ∈ −N,
and since w−1λ is antidominant, −w−1β ∈ Σ+. This implies that β ∈ −w(Σ+) and
finally β ∈ Σ+

w−1 ∩ Σλ. Therefore,

Σ+
w−1 ∩ Σλ = {β ∈ Σ+ | β (̌λ) ∈ N}.

�

3. Kazhdan-Lusztig Algorithm for Generalized Verma Modules

Let Θ ⊂ Π. In this section we assume that λ = −ρ and denote

IO = I(O,−ρ) and LO = L(O,−ρ).

Consider the Z[q, q−1]-modules H introduced in V.2. For each right WΘ-coset
C in W we denote by wc the longest element in this coset and by δC the element
of H given by

δC =
∑
w∈WΘ

q`(v)δvwC .

Let HΘ be the Z[q, q−1]-submodule of H spanned by δC , C ∈WΘ\W .
Let C ∈ WΘ\W and α ∈ Π. Then, by 1.6, we have the following three possi-

bilities: Csα = C; Csα > C and Csα < C. We want now to calculate the action of
Tα on δC in these cases.

3.1. Lemma. Let C ∈WΘ\W and α ∈ Π. Then:

(i) if Csα = C, we have

Tα(δC) =
(
q + q−1

)
δC ;

(ii) Csα > C, we have

Tα(δC) = q δC + δCsα ;

(iii) Csα < C, we have

Tα(δC) = q−1 δC + δCsα .

Proof. Consider first the case (i). In this case the left multiplication by sα
permutes the elements of C. Let

C+ = {w ∈ C | `(wsα) = `(w) + 1}

and

C− = {w ∈ C | `(wsα) = `(w)− 1}.
Then C+sα = C− and C−sα = C+. Therefore, if we denote by wC the longest
element in C, we have

Tα(δC) =
∑
v∈WΘ

q`(v)Tα(δvwC ) =
∑

vwC∈C+

q`(v)Tα(δvwC ) +
∑

vwC∈C−

q`(v)Tα(δvwC )

=
∑

vwC∈C+

q`(v)(q δvwC + δvwCsα) +
∑

vwC∈C−

q`(v)(q−1 δvwC + δvwCsα).

As we remarked before, if vwC ∈ C+, vwCsα ∈ C−, and therefore vwCsα = v′wC

with

`(v′) = `(wC)− `(v′wC) = `(wC)− `(vwCsα) = `(wC)− `(vwC)− 1 = `(v)− 1.
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Analogously, if vwC ∈ C−, vwCsα ∈ C+ and vwCsα = v′wC with

`(v′) = `(v) + 1.

Therefore,

Tα(δC) =
∑

vwC∈C+

q`(v)+1 δvwC +
∑

v′wC∈C−

q`(v
′)+1δv′wC +

∑
vwC∈C−

q`(v)−1δvwC

+
∑

v′wC∈C+

q`(v
′)−1δv′wC =

∑
v∈WΘ

(q + q−1)q`(v) δvwC =
(
q + q−1

)
δC .

In case (ii), by 1.6, we have wCsα = wCsα . Therefore,

Tα(δC) =
∑
v∈WΘ

q`(v)Tα(δvwC ) =
∑
v∈WΘ

q`(v)(q δvwC + δvwCsα) = q δC + δCsα .

In case (iii), by 1.6, we have wcsα = wCsα . Therefore,

Tα(δC) =
∑
v∈WΘ

q`(v)Tα(δvwC ) =
∑
v∈WΘ

q`(v)(q−1 δvwC + δvwCsα) = q−1 δC + δCsα .

�

3.2. Corollary. HΘ is invariant under Tα, α ∈ Π.

3.3. Lemma. Let C ∈WΘ\W . Then ϕ(wC) ∈ HΘ and

ϕ(wC) = δC +
∑
D<C

PwC wDδD.

Proof. Let O be the PΘ-orbit corresponding to wC . Then, by 2.3, we know
that LwC = LO. Let O′ be a PΘ-orbit in Ō. Denote by iO′ the natural inclusion
of O′ into X. Then Rpi!O′(LO) is a PΘ-equivariant connection on O′, i.e. a sum of
copies of OO′ . Assume that D ∈WΘ\W corresponds to O′. Then

O′ =
⋃

v∈WΘ

C(vwD).

Moreover, for any v ∈ WΘ, C(vwD) is a smooth subvariety of O of codimension
`(v). Therefore, if we denote by j the immersion of C(vwD) into O, we see that
Rpj!(OO) = 0 for p 6= `(v), and R`(v)j!(OO) = OC(vwD). This implies that, for any
p ∈ Z,

Rpi!vwD (LO) = R`(v)j!(Rp−`(v)i!O′(LO)).

Therefore,

dimO R
pi!wD (LO) = dimO R

pi!O′(LO)

and

dimO R
pi!vwD (LO) = dimO R

p−`(v)i!O′(LO) = dimO R
p−`(v)i!wD (LO),
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for any p ∈ Z and v ∈WΘ. This implies that

ϕ(wC) = ν(LCw) = ν(LO) =
∑
w∈W

∑
m∈Z

dimO(Rmi!w(LO)) qm δw

=
∑
v∈WΘ

∑
D∈WΘ\W

∑
m∈Z

dimO(Rm−`(v)i!wD (LO)) qm δvwD

=
∑
v∈WΘ

∑
D∈WΘ\W

∑
p∈Z

dimO(Rpi!wD (LO)) qp+`(v) δvwD

=
∑

D∈WΘ\W

∑
p∈Z

dimO R
pi!wD (LO) qp δD =

∑
D∈WΘ\W

PwC wD δD.

�

In the following, we put

ϕ(C) = ϕ(wC)

for C ∈WΘ\W .
Finally, we remark the following fact.

3.4. Lemma. Let C ∈WΘ\W and α ∈ Π such that Csα < C. Then

Tα(ϕ(Csα)) =
∑
D≤C

cDϕ(D)

for some cv ∈ Z.

Proof. By 2. and 3. we know that Tα(ϕ(Csα)) ∈ HΘ, i.e.

Tα(ϕ(Csα)) =
∑

D∈WΘ\W

QDδD =
∑
v∈WΘ

∑
D∈WΘ\W

QDq
`(v)δvwD

with QD ∈ Z[q, q−1]. On the other hand,by 1.6 we know that wCsα = wCsα and
`(wCsα) = `(wC)− 1, hence, by V.2.1, we have

Tα(ϕ(Csα)) = Tα(ϕ(wCsα)) =
∑
v≤wC

cvϕ(v).

This implies that QD are in Z[q]. By evaluating these expressions at 0 we get∑
D∈WΘ\W

QD(0)δwD = Tα(ϕ(Csα))(0) =
∑
v≤wC

cvδv.

This shows that cv 6= 0 implies that v = wD for some D ∈ WΘ\W . Therefore,
ϕ(v) = ϕ(D) and wD ≤ wC , i.e. D ≤ C. �

This leads to the following result generalization of V.2.1.

3.5. Theorem. There exists a unique function ϕ : WΘ\W −→ HΘ, such that
the following properties are satisfied:

(i) for C ∈WΘ\W we have

ϕ(C) = δC +
∑
D<C

PCDδD.

where PCD ∈ qZ[q];
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(ii) for α ∈ Π and C ∈WΘ\W such that Csα 6= C and `(wCsα) = `(wC)− 1,
there exist cD ∈ Z, which depend on α and C, such that

Tα(ϕ(Csα)) =
∑
D≤C

cDϕ(D).

The polynomials PCD are given by the Kazhdan-Lusztig polynomials for
(W,S) by

PCD = PwC wD

for C,D ∈WΘ\W , D ≤ C.

Proof. We already established the existence. It remains to prove the unique-
ness. This part of the argument is analogous to the proof of uniqueness in V.2.1.
First we can assume that Θ 6= Π, since in the case Θ = Π we have WΘ = W and
the proof is trivial.

The proof is by induction in `(wC). The function C 7−→ `(wC) attains its
minimal value on wΘ and in this case C = WΘ. Clearly, (i) implies that ϕ(WΘ) =
δWΘ

and (ii) is void in this case.
Take C ∈ WΘ\W such that `(wC) > `(wΘ). By the induction assumption, ϕ

is uniquely determined on D ∈WΘ\W with `(wD) < `(wC). Then, by 1.7, we can
find a simple root α such that Csα < C. By 1.6, we have then `(wCsα) = `(wC)−1.

By (ii) we know that

Tα(ϕ(Csα)) =
∑
D≤C

cDϕ(D),

and, by evaluating at q = 0 and using (i),

Tα(ϕ(Csα))(0) =
∑
D≤C

cDδD.

By the induction assumption, the left side is uniquely determined. This implies
that cD are uniquely determined. On the other hand, if we put C ′ = Csα, we have

Tα(ϕ(Csα)) = Tα(δC′ +
∑
D<C′

PC′DδD)

= Tα(δC′) +
∑
D<C′

PC′DTα(δD) = qδC′ + δC +
∑
D<C′

PC′DTα(δD).

By the construction, `(wD) < `(wC
′
) = `(wC)− 1. Hence, terms in the expansion

of Tα(δD) can involve only δD′ with `(wD
′
) ≤ `(wC)−1. In particular, they cannot

involve δC . This implies that cC = 1. But this yields to

ϕ(C) = Tα(ϕ(Csα))−
∑
D<C

cDϕ(D),

which proves the uniqueness of ϕ(C). �

3.6. Theorem. Let PCD, C,D ∈ WΘ\W , be the polynomials of from 5. For
C ∈WΘ/W , denote by OC the corresponding PΘ-orbit. Then

χ(LOC ) = χ(IOC ) +
∑
D<C

PCD(−1)χ(IOD ).
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Proof. Since IOC contains LOC as the unique irreducible submodule, and all
other composition factors are LOD for D < C, we see that χ(IOC ), C ∈ WΘ\W ,
form a basis of K(Mcoh(DX , PΘ)). Hence

χ(LOC ) =
∑
D≤C

λCD χ(IOD )

with λCD ∈ Z. Since ν(−1) factors throughK(Mcoh(DX , N0)) and by 2.6, ν(ID)(−1) =
δD(−1) for D ∈WΘ\W , what leads to

ν(LOC )(−1) =
∑
D≤C

λCDν(IOD )(−1) =
∑
D≤C

λCDδD(−1).

Hence, from definition of PCD it follows that λCC = 1 and PCD(−1) = λCD. �

This gives an effective algorithm to calculate the multiplicities of irreducible
modules in generalized Verma modules for infinitesimal character χρ. We can order
the elements of WΘ\W by an order relation compatible with the Bruhat order.
Then the matrix (λCD;C,D ∈WΘ\W ) is lower triangular with 1 on the diagonal.
If (µCD;C,D ∈WΘ\W ) are the coefficients of its inverse matrix, we see from 6. that

χ(IOC ) =
∑

E∈WΘ\W

∑
D∈WΘ\W

µCDλDE χ(IOE )

=
∑

D∈WΘ\W

µCD

 ∑
E∈WΘ\W

λDE χ(IOE )


=

∑
D∈WΘ\W

µCD χ(LOD ) =
∑
D≤C

µCD χ(LOD )

and µCC = 1 for any C ∈WΘ\W . Hence, from 2.12, 2.5 and V.1.19, we finally get
the following result.

3.7. Corollary. The multiplicity of irreducible module L(−vρ), v ∈ ΘW , in
the generalized Verma module MΘ(−wρ), w ∈ ΘW , is equal to µCD where C,D ∈
WΘ\W are the cosets of w and v respectively.
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