
Bootstrapped Language Identification
For Multi-Site Internet Domains

Uwe F. Mayer
eBay Research Labs
2145 Hamilton Ave

San Jose, CA 95125

ABSTRACT
We present an algorithm for language identification, in particular
of short documents, for the case of an Internet domain with sites
in multiple countries with differing languages. The algorithm is
significantly faster than standard language identification methods,
while providing state-of-the-art identification. We bootstrap the
algorithm based on the language identification based on the site
alone, a methodology suitable for any supervised language
identification algorithm. We demonstrate the bootstrapping and
algorithm on eBay email data and on Twitter status updates data.
The algorithm is deployed at eBay as part of the back-office
development data repository.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: Artificial Intelligence –
Natural Language Processing.

General Terms
Algorithms, Performance, Design.

Keywords
Language identification, large data, statistical model, boosting.

1. INTRODUCTION
In today’s interconnected global Internet community it is quite
common that Internet-based businesses (e.g., eBay, Twitter)
operate sites in different languages (e.g., ebay.com, ebay.de,
ebay.fr, etc., or twitter.com, twitter.com/?lang=de, twitter.com/?
lang=fr, etc.). Many such sites have user-contributed content data,
private or public, such as web postings, reviews, blogs, or emails.
Usually, but not always, either the site which the user employs to
generate the content or more often the site on which it is to appear
(or which the recipient uses in case of a message) dictates the
language used by the creator of the content. Typically one may
expect that knowing the site language alone allows language
identification of user-provided content with high precision. On the
other hand this approach is not expected to be perfect, and one can
employ standard language identification algorithms, which even if
not specifically trained for the corpus at hand, also achieve
usually still high precision. The task is to improve over either
approach to determine the language of the user-created
documents.

The general idea, of course, is to combine the language
identification based on the site language or language from a user
profile with some other supervised algorithm. In particular in a
web setting one usually has lots of data, however obtaining
suitable accurate labels constitutes the bottleneck. Our approach is
to use data labeled by the site or the user profile alone for training,
and we build a custom model using a supervised algorithm. Then
we combine the language identification based on the site or user
profile language with the newly trained supervised model to
create a final model. The method of combination could be as
simple as a linear model.

Most algorithms for language identification, and in particular
most modern ones, employ a statistical approach, often not word
(dictionary) based, but rather character or n-gram based [1,2,3].
However, these algorithms often perform not optimally if the
documents to be classified are short [4].

The archetypical example of shorts text on the web nowadays are
Twitter status updates (so-called tweets), which by design are
limited to 140 characters. On the other hand, tweets are not the
only short prevalent documents on the web. This research grew
out of the need to accurately identify the language of user-to-user
email communications on eBay. We found that these often also
are rather short. This may well be due to the limited setting of
what the messages are usually about (e.g., “do you have this also
in a different color?” or “would you ship the item to Europe?”, or
the complete email could also just be the single word “yes”). It
turns out that on these user-to-user email messages a dictionary-
based approach does indeed perform very well. We then also
apply our methodology to Twitter status updates, which besides
being short, are also well known to be difficult to classify due to
the vast amount of Twitter-specific slang and abbreviations.

Our specific approach is to look only at the first two and the last
two words of the documents (emails, tweets), and use the site or
user profile determined language to build frequency tables on a
training set. In the email setting, the intuition of looking at the
opening word of a message was the observation that many users
start their text with one of only relatively few and very language-
specific terms, such as hello, bonjour or goedendag. Then again,
starting an email with the name of the recipient is also very
frequent, which leads to a dilution of the signal captured by the
first word. This is why we also consider the second word, which
then in turn tends to be language-specific. An analogous reasoning
applies to the end of the messages, common endings are strongly
indicative of the language, such as good-bye, ciao, or Tschüß.
However, if the email is ended with the name of the sender, then
the second-to-last word carries this signal.

© ACM, (2012). This is the author's version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in:
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08.

This approach also works quite well for tweets, which start often
with common opening words or abbreviations and often finish with
common ending words or abbreviations. For example in English
common opening words or abbreviations are I, lol, you, my, …,
while common ending words or abbreviations are you, now, me,
smh, …, and similarly for other languages.

Normalizing these frequency tables across the languages for each
word separately leads to estimated language probabilities, and
summing up these probabilities with suitable weights creates a
dictionary-based language identification model, with weights on the
opening and closing words only. Combination with the site or user
profile language identification is easy, the indicator variable is just
another (binary) probability weighted into the sum.

Because in the end only the first two and the last two words of a
document need to be investigated, the algorithm is computationally
very lightweight during scoring, and correspondingly very fast.
Additionally our method needs no human-labeled training data,
rather it bootstraps itself from the (hopefully relatively strong)
learner given by language identification based on the site or user
profile alone. This is also where the nature of today’s high-volume
web sites helps our approach: the hosting domain generally captures
vast amounts of such trivially machine-labeled data for free.
Furthermore, as a consequence of being built on large amounts of
data, the resulting models are very stable. On the eBay data where
we have access to a longer period of data, the model still performs
exceptionally well one year after fitting. The algorithm is deployed
at eBay as part of the back-office development data repository.

With the investigation of the Twitter data, which has the relatively
weaker language identifier given by the user profile language, we
conclude that the (a-priori) precision of the site or user profile
language determination is a key ingredient to our approach: the
stronger the site or user profile language learner, the better the
algorithm and bootstrapping.

Applications of language identification are not subject of this paper,
but of course could include the obvious ones, from spam filtering,
fraud detection, sentiment analysis, to customer service queue
routing, among others.

2. EBAY MEMBER TO MEMBER EMAILS
The specific data leading to the development of the algorithm were
the (non-public) emails between sellers and buyers (or interested
members, in case of a pre-sale communication). These are all called
member-to-member emails (or messages), in short, M2M emails.
The eBay sites that are part of this study use one of the following
seven languages: English, German, Italian, French, Spanish, Dutch,
or Polish. This glosses over subtle differences, for example, British
English, Australian English, and American English are simply
identified as English, similarly for French being spoken in France,
parts of Canada, parts of Switzerland, and parts of Belgium, the
same holds for German being used in Germany, Austria, and parts
of Switzerland, and finally Dutch for the Netherlands and parts of
Belgium.

M2M messages on eBay usually are generated within the
MyMessages facility, which wraps each message with a template.
What the template precisely contains is not important, with the
exception that the template header before the message ends on
“Dear recipient-user-name”, and the footer template after the
message starts with a signature of the form “- sender-user-name”.
Hence many eBay members do not include the recipient name as
part of their message, and neither do they include their own sender

name as a signature. This is important for our algorithm, as
otherwise if one looks just at the beginning and the ending of a
typical email message one would generally have to discard (and
identify!) user names in order to derive a generalizable model. On
the other hand, as explained in the introduction, we consider the
leading two words and the ending two words, just in case a greeting
by name or a signature user name is still present in the message.

A key feature of the eBay M2M data is that it contains many short
documents; one- and two-word documents are not uncommon.

Obviously, the strongest indicator of the email language is the site.
In our setting we extract the site from the email template, thus
avoiding a user database lookup to find the registered site of the
user. However, in particular because of a small percentage of
template-free emails this results in missing values for some of the
records. Also, some users write emails in a language different from
their site language, which combined with the missing values
ultimately gives a site-language accuracy of about 96% in
identifying the language of emails. More precisely, in case the sites
of the sender and the recipient differ, this is based on the site of the
recipient, which has proven to give slightly better language
identification performance. This percentage was established on a
random un-biased sample of about 15K emails from June 2010
which were human-labeled into the seven languages considered. For
the eBay data, our goal is to improve on this 96% accuracy rate.

3. TWITTER STATUS UPDATES
As the obvious source of short web documents in multiple
languages, we also consider Twitter status updates. We used the
streaming API to capture a 1% sample of public status updates
made freely available by Twitter, commonly known as the
“Sprinkler” data feed [6].

For this study we excluded several languages that could easily be
separately handled from the Twitter data feed because these
languages use a different font encoding: Japanese (ISO 639-1 code
“ja”), Chinese (both “zh-cn” and “zh-tw”), Korean (“ko”) and
Russian (“ru”). Similarly to how we grouped all different flavors of
English from eBay’s data into simply one English language, we
mapped the intricately related macro-languages Malay (“msa”) and
Indonesian (“id”) simply into Indonesian (“id”). The Twitter user
profile languages (in the following often called “site languages”)
that are part of this study were determined on the training set and
comprise the following eleven languages: English, Spanish,
Portuguese, French, Dutch, Turkish, Indonesian, German, Italian,
Filipino, and Hindi. In the end there actually was not a single
Twitter status update in Hindi in the test sets, however all code used
all eleven languages.

An important point is that while there are no missing values in the
language field in the Twitter user profiles, the language specified in
the user profile is only about 80% accurate if used to identify the
language used for status updates. However, the public user profile
distributed by Twitter as part of the streaming API also contains a
location field. This field is populated for about three quarters of all
status updates, but of these about absolute 15% of the values contain
not even a single letter (e.g., contain a “smiley face”), leaving about
60% of locations with potentially identifiable values. Not all of
these values map to an actual physical location on a map, but some
contain other whimsical entries (e.g., “in my kitchen”). In the end,
we prepared a simple parsing model on the location field by using
both the geographic location and the language used to specify the
location to assign a language to the location (e.g. both “Chicago”
and “in my kitchen” would be assigned “English”). We managed to

map about 50% of status updates to a location language (from an
upper limit of 60%). Finally, we assigned this location language (if
present) as the site-language, thus overriding the user profile
language. As it turns out, the majority of Twitter users in Indonesia
and in the Philippines post in English, and hence for these two
locations we did not override the user language from the profile
with the location language. With this improved site language from
using both the language field and the location field from the user
profile, the combined prediction accuracy if using it to predict the
language used for the status updates is about 87%, comparing
favorably to the 80% accuracy if using the user profile language
alone.

In the rest of this study we use both of these Twitter site languages
(user profile language alone, or user profile language and location
language combined), and we list the results in separate tables.

4. THE ALGORITHM
4.1 Data Preparation
The algorithm expects only absolutely minimal data cleaning.
Generally, digits and letters including umlauts and accented letters
make up the words, anything else is a word break. For the eBay
message data, after breaking the document into words, all words
containing a digit were removed, which removed many user-
selected user ids and names. For the Twitter data, on the other hand,
numbers are often used as abbreviations (e.g., “gr8” for “great”),
and hence these words were allowed. As a further concession to the
abbreviated nature of Twitter status updates, we also allowed
apostrophes (e.g., in this study “I’m” is considered one word in the
Twitter data, but two words in the eBay data). Similar to the eBay
data we removed Twitter user names from the status updates (e.g.,
“@Example”) and we saw a slight improvement in the language
identification. Finally all the letters are transformed into a uniform
case (lower case, for example). On the other hand, no stemming or
aliasing is performed.

4.2 Learning of Frequency Tables
After pre-processing, we collect site or user language counts for
each of the first two words and each of the last two words of each
document. For the eBay M2M data we found during our
experimentations that it helps slightly to combine the frequencies
from the last two words into a single table. Hence for the eBay
M2M data we created only three frequency tables, one each for the
first words, the second words, and one for the combined collection
of second-to-last and last words. The likely reason for this
improvement is that in the combined frequency table stray entries
from signature user names will obtain relatively less dominance as
they would in a last-word-only table. The Twitter status update data
contains no signatures at the end of tweets, and we observed no
such improvement by combining the last two words into a single
frequency table. We kept those tables separate.

The frequency tables can be both pre- and post-processed. The most
obvious post-processing is to remove entries with insufficient total
frequency. For both the eBay M2M data and the Twitter status
updates data, we collected the frequency tables on a training set of
several million documents, and we set the minimum frequency to
50 for the individual (first, second, second-to-last, last) word tables,
and to 100 for the combined last words table in the case of eBay
M2M data. Additional pre-processing may include removal of
undesirable words (e.g., words which are known to carry no signal)
from the document before extraction of the leading and terminating
words for the frequency tables. For example, for the eBay M2M

data we excluded the words ebay and paypal, while for the Twitter
data we excluded the abbreviation RT (short for Re-Tweet).

4.3 Scoring
Assigning a language to a given document is highly efficient. It
amounts to extracting the first two and the last two words of the
document, and for each of these four words wk (k = 1,…,4) and
for each of the predetermined set of languages L looking up the
corresponding frequency fkL(wk) in the count tables k (k = 1,…,4),
and computing a linear weighted sum. Recall that for the eBay
M2M data we created one combined table for the last two words
(k = 3,4), which is to say in this case f3L(w) = f4L(w) for all
languages L and all words w.

Let fk(w) denote the sum of the frequencies for a word w in table k

across all languages. Given weights Wk (k = 1,…,4), the language
score is computed for each language L as

sL = W1 f1L(w
1
) / f1(w1

) + W2 f2L(w
2
) / f2(w

2
) +

W3 f3L(w
3
) / f3(w

3
) + W4 f4L(w

4
) / f4(w

4
).

Lacking any prior, we chose all weights Wk = 1. The final
language assigned is the language with the highest score. In case
of a score tie, a predetermined preference order based on the
expected distribution of languages could be used.

4.4 Combination with the Site Language
We chose a simple approach and combined the above language
identification scores sL in a linear fashion with the site language.
Let δ(L) be the indicator function for the site language (value = 1
if L is the site language, 0 otherwise), and let WS be a pre-chosen
site weight, then the combined site and algorithm score is

sLS = WS δ(L) + sL.

For both the eBay M2M and the Twitter status data, we chose WS
= 1.75, with the idea that the site or user profile language is by
itself already very accurate, and this way at least two of the
features in the weighted sum sL have to trigger at values close to 1
to override the site or user profile language.

5. EVALUATION ON EBAY DATA
5.1 Data
As a first evaluation of our approach, we fitted the models and
tested the algorithm on proprietary eBay M2M data. Specifically
we used the samples listed in the table below.

Table 1. eBay Data Sets

Time Period Volume Filter Labeled By

June 2010 Several million No Site language

June 2010 1K per language Biased Site language

June 2010 15K Cleaned Human

Sept 30, 2010 20K Cleaned Human

June 2011 21K Cleaned Human

In the table above, “Cleaned” means that records that were using
more than one language, or that were ambivalent were removed
(e.g., a message consisting of digits only could be any language).
“Biased” means that the given distribution of languages was
ignored, and rather a specific number of documents was extracted
for all languages in order to generate a reference set; these were
also filtered so that each sender was allowed only one message in
order to capture as much different user behavior as possible. The
data set listed in row 1 is a superset of those in rows 2 and 3. No
attempt has been made to keep the data sets from rows 2 and 3
disjoint.

5.2 Comparison Algorithms on eBay Data
We compared our algorithm to two industry-standard algorithms,
which we also combined with the site language determination for
further competitiveness.

5.2.1 Standalone Zipping
We prepared a set of reference documents for each of the seven
languages, these are the 1,000 documents each from June 2010 in
row 2 of Table 1. We used Gzip as the compression tool, and
pruned the 1K reference document files so that for each of the
seven languages the resulting gzipped reference set had roughly
the same byte count (about 64KB each). We also used a much
smaller reference set (about 2KB each) as a second classifier.
Classification is as follows: Given a document, for each of the
language reference sets add the given document and compress the
resulting document set using gzip. Among the seven resulting
document sets that one reference set that grew relatively the least
must have had similar statistical byte patterns, and its language is
selected [4]. One immediate drawback of this algorithm is that
even for a one-word message the algorithm needs to compress
seven 64KB (or 2KB, respectively) data sets, which is a relatively
huge computational effort. Thus the expected run-time
performance is expected to be very poor if compared to other
methods.

5.2.2 Combination Zipping with Site Language
For the Zipping algorithm, a voting scheme determines whether to
use the gzip-determined language or the site language. The voting
scheme is as follows. For any language L, let rL be the ratio of the
size of the gzipped reference set with the document attached to the
size of the gzipped reference set without the document attached.
Let rL2

be the second smallest ratio and rL1
be the smallest ratio

(for the given document), and let Wg be a pre-determined weight.

The voting scheme is testing Wg < rL1
/ rL2

, if true it uses the site

language, otherwise the gzip language. The ratio of the two
smallest ratios is thus taken as a measurement of how sure the
gzip determination is of its result. For the 64K (2K) sized
reference sets we experimentally fit Wg = 0.999925 (0.997,
respectively) using the human-labeled June 2010 data (row 3 of
Table 1). Note that this combination is not bootstrapped but uses a
human-labeled dataset to obtain the optimal combination weight.
It is included here for comparison purposes only, and not to
illustrate the methods described in this paper.

5.2.3 Standalone Character n-gram Naïve Bayesian
We used the publicly available implementation from Cybozu Labs
[2]. This Java software comes out-of-the box pre-trained for 49
languages, the training being based on Wikipedia documents. We

used the tool as it is, but also used it with the 49 languages
restricted to just the seven languages under consideration, and
finally, we also retrained the underlying classifier using a sample
of the eBay M2M data, using the same reference sets as for the
Zipping classifier from June 2010. The classifier software drops
short documents during training, in order to avoid this, we
repeated any short message inside the eBay M2M reference
training set until it exceeded that drop cut-off (a simple study
showed this repetition did improve the performance because it
increased the training data size). Note that this custom language
profile generation follows the same bootstrapping philosophy as
we used for our algorithm, no human-labeled data was needed.

5.2.4 Combination Bayesian with Site Language
The software described in the previous section outputs a
probability score for the assigned language. If this score exceeds
the prior precision known of the site language (0.96 for the eBay
M2M data), then the language assigned by the Bayesian model
was used, otherwise the site language was used.

Table 2. Models for eBay Data

Name Description

Site Language based on recipient site

Gzip64 Zipping 64K reference docs

Gzip64Site Zipping 64K with site
Gzip2 Zipping 2K reference docs

Gzip2Site Zipping 2K with site
Bayes49W Naïve Bayes 49 languages, Wikipedia profile
Bayes7W Naïve Bayes 7 languages, Wikipedia profile
Bayes7M Naïve Bayes 7 languages, M2M profile

Bayes49WSite
Naïve Bayes 49 languages with site,
Wikipedia profile

Bayes7WSite
Naïve Bayes 7 languages with site, Wikipedia
profile

Bayes7MSite
Naïve Bayes 7 languages with site, M2M
profile

Algo Our algorithm
AlgoSite Our algorithm with site

5.3 Results on eBay Data
Based on the discussions and explanations of the previous
sections, Table 2 on the previous page lists the models we
compared. Below are various result tables. Note that the June
2010 data is the training data, while the other data sets are unseen
test data (out of sample, out of time).

Table 3. Runtime on a 32 Bit 2.66 GHz System

Runtimes of the “without site” models are essentially equivalent.

Name 1 record 15K records 100K records

Gzip64Site 0m 0.5s 30m 0s (not performed)
Gzip2Site 0m 0.4s 0m 34s 3m 29s

Bayes7MSite 0m 0.3s 0m 3.5s 0m 19s

AlgoSite 0m 1.2s 0m 1.9s 0m 4.3s

Table 4. Precision on Human-labeled eBay Data

Table 5. Precision by Language on June 2011 eBay Data

6. EVALUATION ON TWITTER DATA
6.1 Data
As a second cross-domain application, we determined the
language profiles and tested the algorithm on public Twitter status
update data. Specifically we used the following samples listed in
the Table 6. In this table, “Cleaned” means that records that were
using more than one language, or that were ambivalent were
removed (e.g., a message consisting only of a smiley face could
be any language). Additionally all languages not part of the set of
eleven Twitter languages considered were removed.

The data from October 2011 was used to generate the location to
language mapping explained at the end of Section 3. It was not
otherwise used.

The November 2011 data was used in several ways. First, it was
used to generate the word frequency tables. Second, a subset was
used to generate custom profiles for the Character n-gram Naïve
Bayesian classifier.

The December 2011 data was used as a near-term small test set, in
particular as a sanity check, while the January 2012 data was used
as a longer-term test set.

Table 6. Twitter Data Sets

Time Period Volume Filter Labeled By

Oct 29-31, 2011 750K No Not labeled

Nov 13-19, 2011

14.6 million
(100% of

“Sprinkler” =
1% of all

Twitter status
data)

No

(a) User
profile

language
(b) User
profile

language and
location

Dec 11-17, 2011
1.2K

(0.001% of
“Sprinkler”)

Cleaned Human

Jan 8-10, 2012
6.5K

(0.01% of
“Sprinkler”)

Cleaned Human

6.2 Comparison Algorithms on Twitter Data
We followed our approach to evaluating our method on the eBay
M2M data, and compared our algorithm to the industry-standard
Standalone Character n-gram Naïve Bayesian classifier, which as
for the eBay data we also combined with the site language (in the
user profile sense, see Section 3) for further competitiveness. We
did not evaluate the Zipping algorithm on the Twitter data as it
had proved to be non-competitive on the eBay data.

6.2.1 Standalone Character n-gram Naïve Bayesian
As before, we used the publicly available implementation from
Cybozu Labs [2], and as for the eBay data used it with all 49
languages, the training being based on Wikipedia documents, and
also restricted to just the subset of the considered eleven Twitter
site-languages. Similar to the eBay data we also retrained the
underlying classifier using a sample of the Twitter data. For this
we generated two sets of language profiles, once using the user
profile language as the label, and once using the language
determined from the location and language from the user profile
as the label (see Section 3). The language profiles were generated
on the November 2011 data, limited to at most 100K records per
language (some less-used languages stayed significantly below
this). As before for the eBay M2M data we appended to itself any
short message inside the Twitter reference training set until it
exceeded the software’s internal minimum message-length cut-
off, and as for the eBay data a simple study showed this repetition
did improve the performance. Once again this implements the
same bootstrapping philosophy as we used for our algorithm, no
human-labeled data was needed.

6.2.2 Combination Bayesian with Site Language
As previously explained, the software described in the section
above outputs a probability score for the assigned language, and if
this score exceeds the prior precision known of the pre-assigned
site language, then the language assigned by the Bayesian model
was used, otherwise the site language was used. “Pre-assigned site
language” in the previous sentence means either (a) the language
from the user profile with an accuracy estimate of 80%, or (b) the
language determined from the combination of user location and
profile language with an accuracy estimate of 87%.

Name June 2010 Sept 2010 June 2011

Site 0.960 0.958 0.956

Gzip64 0.971 0.974 0.972
Gzip64Site 0.987 0.986 0.988

Gzip2 0.962 0.960 0.958

Gzip2Site 0.988 0.986 0.987
Bayes49W 0.968 0.971 0.970
Bayes7W 0.979 0.981 0.981
Bayes7M 0.992 0.992 0.991

Bayes49WSite 0.984 0.986 0.986
Bayes7WSite 0.987 0.988 0.987

Bayes7MSite 0.995 0.995 0.994
Algo 0.995 0.994 0.996

AlgoSite 0.997 0.996 0.997

Grouped True
Language

True
Count

Correct by
Bayes7MSite

Correct by
AlgoSite

English
German

19,230 19,118 (0.994) 19,196 (0.998)

Dutch
French
Italian
Polish

Spanish

1,588 1,580 (0.995) 1,561 (0.983)

ALL 20,818 20,698 (0.994) 20,757 (0.997)

Table 7. Models for Twitter Data

Name Description

Site
Language based on user site (a) or (b) as
explained above

Bayes49W Naïve Bayes 49 languages, Wikipedia profile

Bayes11W Naïve Bayes 11 languages, Wikipedia profile
Bayes11T Naïve Bayes 11 languages, Twitter profile

Bayes49WSite
Naïve Bayes 49 languages with site,
Wikipedia profile

Bayes11WSite
Naïve Bayes 11 languages with site,
Wikipedia profile

Bayes11TSite
Naïve Bayes 11 languages with site, Twitter
profile

Algo Our algorithm
AlgoSite Our algorithm with site

6.3 Results on Twitter Data
Based on the discussions and explanations of the previous
sections, Table 7 above lists the models we compared, and below
are the result tables. There are two sets of all results (Tables 8a
and b), corresponding to the two site-language strategies: (a) the
site language is the language from the user profile, or (b) the site
language is the language determined from the combination of
language and location from the user profile.

Table 8a. Precision on Human-labeled Twitter Data with
Site-language = User Profile Language

Dec 2011 Jan 2012
Algo 0.657 0.664
Bayes11T 0.821 0.810
Bayes49W 0.820 0.816
Site 0.793 0.828
AlgoSite 0.804 0.830
Bayes11TSite 0.858 0.848
Bayes49WSite 0.864 0.860
Bayes11W 0.873 0.863
Bayes11WSite 0.902 0.897

Table 8b. Precision on Human-labeled Twitter Data with
Site-language = Language from Location
and Language from User Profile

Dec 2011 Jan 2012
Algo 0.679 0.689
Bayes49W 0.820 0.816
Bayes11T 0.853 0.834
Bayes11W 0.873 0.863
Site 0.878 0.869
Bayes11TSite 0.900 0.885
Bayes49WSite 0.893 0.889
AlgoSite 0.904 0.897
Bayes11WSite 0.917 0.914

Table 9. Precision by Language on Jan 2012 Twitter Data

True
Language

True
Count

Correct by
Bayes11WSite

Correct by
AlgoSite

English 3596 3390 (0.94) 3566 (0.99)
Portuguese 794 670 (0.84) 639 (0.80)

Spanish 674 595 (0.88) 601 (0.89)
Indonesian 411 355 (0.86) 247 (0.60)

Dutch 184 168 (0.91) 68 (0.37)
Turkish 55 52 (0.95) 49 (0.89)
French 53 48 (0.91) 36 (0.68)
Italian 22 19 (0.86) 11 (0.50)

German 20 18 (0.90) 8 (0.40)
Filipino 16 12 (0.75) 0 (0.00)

ALL 5825 5330 (0.914) 5225 (0.897)

7. DISCUSSION / CONCLUSIONS
As is apparent from comparing Tables 4, 8a and b, there are
significant differences between the eBay M2M data, and the
Twitter status data. On the positive side, on all data sets all models
/ approaches are very stable, and show no over-fitting. Scoring
eBay M2M data one year out from the training period achieves
the same precision, showing that the underlying patterns are well
captured by all approaches. The Twitter data was evaluated on a
shorter timeframe, but the models also appear stable.

On the eBay M2M data the Bayesian model shows, as expected,
that a custom model (Bayes7M) performs better than a generic
model (Bayes7W). On the other hand, this is not the case on the
Twitter status data, where the generic profile (Bayes11W)
outperforms the custom profile (Bayes11T). The email messages
in the eBay M2M data are fairly clean text with highly accurate
site language identification labels, certainly if compared to
Twitter status updates, where abbreviations and creative slang are
the norm and where the user profile language (and location)
information is less accurate in identifying the language of status
updates. In other words, the major differences between the eBay
M2M and the Twitter status update data sets seem to be the
cleanliness of the data and the vast difference in the labeling
accuracy by the site language. It stands to reason that this noisy
signal confuses both the Bayesian model’s language profiles when
built on the Twitter data, and also our dictionary-based model’s
frequency tables. Indeed, on the Twitter status update data labeled
by the user profile language, which has the lowest accuracy of all
site-languages considered in this study, both modeling approaches
perform poorly when evaluated stand-alone. For the Bayesian
model using an off-the-shelf profile avoids this pitfall.

From a pure run-time consideration (Table 3), the Zipping method
is not competitive in a real-time high-volume application. While
the Bayesian model has a shorter load time as compared to our
model, which must load the more extensive count tables, once the
model is loaded, scoring with the Bayesian model is more than an
order of magnitude slower as compared to scoring with our
model.

Our observation of the poor run-time performance of the Zipping
method along with its also relatively poor language identification
performance validates a previous observation from the literature
dated shortly after the original publication of the Zipping
algorithm [6].

Maybe surprisingly, our simple custom model performed in the
same ballpark as all the other models, in an overall sense, at least
if the underlying site language classifier was strong. Its natural
role thus is as a boost to an already existing strong language
detector. A more detailed breakdown (Tables 5 and 9) shows that
it roughly matched or outperformed the best competing model on
the popular languages, while having a (slightly) higher error rate
on the less popular languages. This imbalance was more
pronounced on the more noisy Twitter data. As to specific
languages, the main root cause of the poor language identification
performance of our algorithm on the Twitter data, even when
combined with the site, in particular on the Filipino language
(Table 9) is that all users tweeting in Filipino had English as their
site language from their user profile. Because of the rarity of the
Filipino language there was insufficient evidence in the frequency
tables to override this dominant site language. The same
explanation applies on the Twitter data to the lower identification
rate of the Dutch language where more than half of the users have
English as their site language, and also to German, where just
under half of the users have English as their site language.

The performance on the Twitter data indicates that our word-
frequency based approach has a strong dependency on the
accuracy of the classifier based on the site-language. When this
accuracy is lower, this lack of accuracy transports itself into the
frequency tables, and the algorithm’s performance suffers
significantly (Table 8a). On the other hand, the boot-strapping
procedure using an existing strong classifier based on the site-
language works well, for all of the algorithms considered (Tables
4 and 8b). Indeed, even on noisy Twitter data the bootstrapping
procedure boosts the precision to roughly the 90% range (Tables
8a and 8b), which is significantly better than the roughly 80%
accuracy one obtains from the user profile language alone.

One key point is that both our algorithm and our bootstrapping are
completely unsupervised in the classical sense that no human-
labeled data is needed, instead the site provides the necessary
labeling. The weights in our algorithm including the weight for
the combination with the site language have not been optimized
but were set based only on insight into the model structure, and
could likely be improved. The combination of the Bayesian model
with the site-language classifier requires a single a-priori estimate
on the precision of the site-language classifier, but nothing else in
form of labeled data, and it boosts the performance measurably.

In summary, we presented a simple, stable, and highly runtime-
efficient algorithm for language identification, which does not
need any human-labeled training data, provided there already
exists a strong language identifier based on a site language or user
language. While it is at heart a statistical method based on
frequency tables on a machine-generated dictionary, the decision
of building the dictionary only on the opening and closing words
of a message was driven by human insight into the problem
structure. The method shines on web-scale data, validating once
more that bigger data is better data, and that, when combined with
human understanding of the problem domain, bigger data is even
better data. Our approach in particular works well for short
documents, and its precision is on-par with state-of-the-art
language identification.

8. ACKNOWLEDGMENTS
Our thanks go to Cybozu Labs, Inc. for publicly posting their
implementation of a character n-gram Bayesian language
classifier, thus allowing us to easily compare our method to a
state-of-the-art classifier.

9. REFERENCES
[1] Dunning, Ted. 1994. Statistical Identification of Language.

Technical Report MCCS 94-273. Computing Research
Laboratory, New Mexico State University.

[2] Shuyo, Nakatani. 2010. Language Identification Library.
Technical Presentation and Java Implementation. Cybozu
Labs, Inc. http://code.google.com/p/language-detection/.

[3] Benedetto, Dario, Caglioti Emanuele and Loreto, Vittorio.
2002. Language trees and zipping. Physical Review Letters,
88:4.

[4] Řehůřek, Radim and Kolkus, Milan. 2009. Language
Identification on the Web: Extending the Dictionary Method.
Computational linguistics and intelligent text processing.
Lecture Notes in Computer Science, 2009, Volume
5449/2009, 357-368, DOI: 10.1007/978-3-642-00382-0_29.

[5] Twitter, Streaming API. Online documentation at
https://dev.twitter.com/docs/streaming-api.

[6] Goodman, Joshua, 2002. Extended comment on "Language
Trees and Zipping". Microsoft Research, Feb 21 2002.

http://code.google.com/p/language-detection/

