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Abstract

We prove that the Willmore flow can drive embedded surfaces to self-inter-
sections in finite time.

1 Introduction

In this paper we consider the Willmore flow in three space dimensions. We prove
that embedded surfaces can be driven to a self-intersection in finite time. This
situation is in strict contrast to the behavior of hypersurfaces under the mean
curvature flow, where the maximum principle prevents self-intersections, but very
much analogous to the surface diffusion flow.

The Willmore flow is a geometric evolution law in which the normal veloc-
ity of a moving surface equals the Laplace-Beltrami of the mean curvature plus
some lower order terms. More precisely, we assume in the following that Γ0 is a
closed compact immersed and orientable surface in R3. Then the Willmore flow is
governed by the law

V (t) = ∆Γ(t)HΓ(t) + 2HΓ(t)(H2
Γ(t) −KΓ(t)) , Γ(0) = Γ0 . (1.1)

Here Γ = {Γ(t) ; t ≥ 0} is a family of smooth immersed orientable surfaces, V (t)
denotes the velocity of Γ in the normal direction at time t, while ∆Γ(t), HΓ(t), and
KΓ(t) stand for the Laplace-Beltrami operator, the mean curvature, and the Gauß
curvature of Γ(t), respectively.

The evolution law (1.1) does not depend on the local choice of the orientation.
However, if Γ(t) is embedded and encloses a region Ω(t) we always choose the outer
normal, so that V (t) is positive if Ω(t) grows, and so that HΓ(t) is positive if Γ(t)
is convex with respect to Ω(t).

Any equilibrium of (1.1), that is, any closed smooth surface that satisfies the
equation

∆H + 2H(H2 −K) = 0 (1.2)

is called a Willmore surface [18, p. 282]. There has been much interest over
the last years in characterizing Willmore surfaces, see for instance [15, 18] and
the references cited therein. Willmore surfaces arise as the critical points of the
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functional
W (f) :=

∫
f(M)

H2 dS, (1.3)

see [18, Section 7.4]. Here, M denotes a smooth closed orientable surface and
f : M → R

3 is a smooth immersion of M into R3. Associated with this functional
is a variational problem: Given a smooth closed orientable surface Mg of genus
g determine the infimum W (Mg) of W (f) over all immersions f : Mg → R

3 and
classify all manifolds f(Mg) which minimize W . We refer to [4, 8, 14, 15, 17, 18]
and the references therein for more details and interesting results.

The Willmore flow is the L2-gradient flow for the functional (1.3) on the moving
boundary, see for example [7], and also [10] for related work on gradient flows.
Thus the Willmore flow has the distinctive property that it evolves surfaces in
such a way as to reduce the total quadratic curvature. To be more precise, we
show that the flow decreases the total quadratic curvature for any C2+β initial
surface Γ0.

Proposition 1. Let 0<β<1 and let Γ0 be a closed compact immersed orientable
surface that is C2+β-smooth. Then∫

Γ(t)

H2(t) dµ ≤
∫

Γ0

H2(0) dµ, 0 ≤ t ≤ T,

where [0, T ] denotes the interval of existence guaranteed in the existence theorem
of [16], and where H(t) denotes the mean curvature of Γ(t).

To the best of our knowledge, the result of Proposition 1 is new (under the given
assumptions).
Next we show that the flow can force Γ(t) to lose embeddedness in order to decrease
the total quadratic curvature.

Theorem 2. Let 0<β<1 be fixed.
There exist a closed embedded surface Σ0 ∈ C2+β, a constant T0 > 0, numbers
t0, t1 ∈ (0, T0] with t0 < t1, and a C2+β–neighborhood U0 of Σ0 such that

(a) the Willmore flow (1.1) has a unique classical solution Γ = {Γ(t); t ∈ [0, T0]}
for all Γ0 ∈ U0,

(b) Γ(t) ceases to be embedded for every t ∈ (t0, t1) and every Γ0 ∈ U0.

(c) each surface Γ(t) is of class C∞ for t ∈ (0, T0] and smooth in t ∈ (0, T0).

It should be noted that the neighborhood U0 of Theorem 2 also contains C∞-
surfaces that will be driven to a self-intersection in finite time. Our approach
relies on results and techniques in [6, 12, 16], and we follow closely the original
argument in [12].
Lastly we mention that numerical simulations [13] seem to indicate that the Will-
more flow can drive immersed surfaces to topological changes in finite time.
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2 The mathematical setting

We first introduce some notations. Given an open set U ⊂ R3, let hs(U) denote the
little Hölder spaces of order s > 0, that is, the closure of BUC∞(U) in BUCs(U),
the latter space being the Banach space of all bounded and uniformly Hölder
continuous functions of order s. If Σ is a (sufficiently) smooth submanifold of R3

then the spaces hs(Σ) are defined by means of a smooth atlas for Σ. It is known
that BUCt(Σ) is continuously embedded in hs(Σ) whenever t > s. In the following,
we assume that Σ is a smooth compact closed immersed oriented surface in R3.
Let ν be the unit normal field on Σ commensurable with the chosen orientation.
Then we can find a > 0 and an open covering {Ul ; l = 1, . . . ,m} of Σ such that

Xl : Ul × (−a, a)→ R
3 , Xl(s, r) := s+ rν(s) ,

is a smooth diffeomorphism onto its image Rl := im(Xl), that is,

Xl ∈ Diff∞(Ul × (−a, a),Rl) , 1 ≤ l ≤ m.

This can be done by selecting the open sets Ul ⊂ Σ in such a way that they
are embedded in R3 instead of only immersed, and then taking a > 0 sufficiently
small so that each of the Ul has a tubular neighborhood of radius a. It follows
that R := ∪Rl consists of those points in R3 with distance less than a to Σ. Let
β ∈ (0, 1) be fixed. Then we choose numbers α, β1 ∈ (0, 1) with α < β1 < β. Let

W := {ρ ∈ h2+β1(Σ) ; ||ρ||∞ < a} . (2.1)

Given any ρ ∈ W we obtain a compact oriented immersed manifold Γρ of class
h2+β1 by means of the following construction:

Γρ :=
m⋃
l=1

Im
(
Xl : Ul → R

3 , [s 7→ Xl(s, ρ(s))]
)
. (2.2)

Thus Γρ is a graph in normal direction over Σ and ρ is the signed distance between
Σ and Γρ. On the other hand, every compact immersed oriented manifold Γ that
is a smooth graph over Σ and that is contained in R can be obtained in this way.
For convenience we introduce the mapping

θρ : Σ→ Γρ, θρ(s) := Xl(s, ρ(s)) for s ∈ Ul , ρ ∈W .

It follows that θρ is a well-defined global (2 +β1)–diffeomorphism from Σ onto Γρ.
The Willmore flow (1.1) can now be expressed as an evolution equation for the
distance function ρ over the fixed reference manifold Σ,

∂tρ = G(ρ) , ρ(0) = ρ0 . (2.3)

Here G(ρ) := Lρθ
∗
ρ(∆ΓρHΓρ + 2HΓρ(H

2
Γρ
− KΓρ)) for ρ ∈ h4+α(Σ) ∩ W , while

∆Γρ , HΓρ , and KΓρ are the Laplace-Beltrami operator, the mean curvature, and
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the Gauss curvature of Γρ, respectively, and L(ρ) is a factor that comes in by
calculating the normal velocity in terms of ρ, see [6] for more details. We are now
ready to state the following existence result for solutions of (2.3).

Proposition 2.1. Let σ ∈W be given.

(a) There exist a positive constant T0 > 0 and a neighborhood W0 ⊂ W of σ in
h2+β1(Σ) such that (2.3) has a unique solution

ρ(·, ρ0) ∈ C([0, T0],W ) ∩ C∞((0, T0)× Σ) for every ρ0 ∈W0.

(b) The map [(t, ρ0) 7→ ρ(t, ρ0)] defines a smooth local semiflow on W0.

(c) ρ(·, ρ0) ∈ C([0, T0], h4+α(Σ))∩C1([0, T0], hα(Σ)) for all ρ0 ∈ h4+α(Σ)∩W0.

Proof. (a) and (b) follow from [16, Proposition 2.2]. Moreover, [16, Lemma 2.1]
shows that the mapping [ρ 7→ G(ρ)] : h4+α(Σ) ∩W → hα(Σ) is smooth and that
the derivative is given by G′(ρ) = P (ρ) +B(ρ), where

P (ρ) ∈ L(h4+α(Σ), hα(Σ)), B(ρ) ∈ L(h2+α(Σ), hα(Σ)), ρ ∈ h4+α(Σ) ∩W .

In the following we fix ρ ∈ h4+α(Σ) ∩W . [16, Lemma 2.1] also shows that P (ρ)
generates a strongly continuous analytic semigroup on hα(Σ). A well-known per-
turbation result, see [1, Theorem I.1.3.1], then implies G′(ρ) ∈ L(h4+α(Σ), hα(Σ))
also generates a strongly continuous analytic semigroup on hα(Σ). It is known
that the little Hölder spaces are stable under the continuous interpolation method
[1, 2, 5, 9]. Therefore, the spaces (h4+α(Σ), hα(Σ)) form a pair of maximal regu-
larity for G′(ρ), see [1, Theorem III.3.4.1] or [2, 5, 9]. Part (c) follows now from
maximal regularity results, for instance [2, Theorem 2.7]. �

3 The proof of Proposition 1

We first note that any function in C2+β is also in h2+β1 for β1 ∈ (0, β). Let
Γ0 be a given surface in R3 that satisfies the assumptions of Proposition 1. We
can find a smooth surface Σ as in Section 2 and a function ρ0 ∈ W such that
Γ0 = Γρ0 , where Γρ0 is defined in (2.2). According to Proposition 2.1(a) there
exists a number T = T (ρ0) > 0 such that equation (2.3) has a unique solution
ρ(·, ρ0) with the smoothness properties stated in the proposition. It follows from
the construction in Section 2 that the family Γ := {Γ(t) ; 0 ≤ t ≤ T}, where
Γ(t) := Γρ(t) for 0 ≤ t ≤ T , is the unique classical solution for the Willmore flow
(1.1). In particular, we conclude that

[t 7→
∫

Γ(t)

H2(t) dµ] ∈ C∞((0, T ),R).
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Given x ∈ Γ(t), let {z(τ, x) ∈ R3 ; τ ∈ (−ε, ε)} be an orthogonal flow line through
x, that is, z(·, x) satisfies

z(τ, x) ∈ Γ(t+ τ) for τ ∈ (−ε, ε),
ż(τ) = (V N)(t+ τ, z(τ)) for τ ∈ (−ε, ε), z(0) = x,

where N(t, ·) denotes the unit normal field on Γ(t), and V (t, ·) is the normal
velocity of Γ(t). A proof for the existence of a unique trajectory {z(τ, x) ∈ R3 ; τ ∈
(−ε, ε)} with the above properties can for instance be found in [11, Lemma 2.1].
For further use we introduce the manifold M :=

⋃
t∈(0,T )

{t} × Γ(t). Given any

smooth function u on M we define

d

dt
u(t, x) :=

d

dτ
u(t+ τ, z(τ, x))

∣∣∣∣
τ=0

, (t, x) ∈M.

The following differentiation rule is well-known in differential geometry,

d

dt

∫
Γ(t)

u(t, x) dµ(x) =
∫

Γ(t)

d

dt
u(t, x) dµ(x) + 2

∫
Γ(t)

(uHV )(t, x) dµ(x). (3.1)

Let (t, x) ∈ M be fixed and let {z(τ, x) ; τ ∈ (−ε, ε)} be a flow line trough x.
Then one can show that

d

dτ
H2(t+ τ, z(τ, x))

∣∣∣∣
τ=0

= −H[∆Γ(t)V + (4H2 − 2K)V ](t, x), (3.2)

see for instance [18, Section 7.4]. If follows from (3.1)–(3.2), from the divergence
theorem, and from (1.1) that

d

dt

∫
Γ(t)

H2(t) dµ = −
∫

Γ(t)

[∆H + 2H(H2 −K)]V dµ ≤ 0. (3.3)

This is true for any t ∈ (0, T ). The mean value theorem now implies that∫
Γ(t)

H2(t) dµ−
∫

Γ(τ)

H2(τ) dµ ≤ 0 for 0 < τ ≤ t < T.

Taking the limit as τ → 0 and using that [τ 7→
∫

Γ(τ)
H2(τ) dµ] ∈ C([0, T ],R), see

Proposition 2.1(b), yields the assertion of Proposition 1. �

4 The proof of Theorem 2

In order to provide a proof of Theorem 2 we now choose Σ to be any smooth
compact closed immersed orientable surface in R3 such that its image contains the
flat 2–dimensional disk U := {(s, 0) ∈ R2 × R ; |s| ≤ 1} twice, and with opposite
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orientations. To be precise, let i : Σ→ R
3 be the immersion under consideration,

then we ask that
i−1(U) = U+ ∪ U−

with U+ ∩ U− = ∅ and both U+ and U− are flat 2–dimensional disks of radius 1.
Additionally we ask that Σ \ (U+ ∪ U−) is embedded in R3. Identifying U+ for
the moment with its image U we ask that the normal on U+ points upwards, that
is, ν(·)|U+ = e3, the 3rd basis vector of R3. It follows that ν(·)|U− = −e3.

Fig. 1 This is a possible choice of Σ, cut in halves.

Let W be as in (2.1) and let σ ∈ h4+α ∩W locally be radially symmetric with
regards to the centers of U±. This implies ∂jσ(0) = 0 for j = 1, 2. Observe that
θσ(s) = (s,±σ(s)) (these are coordinates in R3) for s ∈ U± and that θσ : U± →
θσ(U±) is an h4+α–diffeomorphism. It is straightforward to compute

G(σ)|U± := L(σ)θ∗σ
(
∆ΓσHΓσ + 2HΓσ (H2

Γσ −KΓσ )
)
|U±

in local coordinates, yielding

2G(σ)|U±(0) = −∆2σ(0) +
2∑

j,k=1

(∂j∂kσ(0))2∆σ(0)

+2
2∑

j,k,l=1

∂j∂kσ(0)∂j∂lσ(0)∂k∂lσ(0) ,

where ∆ is the Laplacian in Euclidean coordinates of R2 (see [6, Section 2] for
more details). Because of the radial symmetry of σ we have H2

Γσ
= KΓσ at the

center of the disks U±, so that lower order term θ∗σ(2HΓσ (H2
Γσ
−KΓσ )) vanishes at

the center of U±. We will now specify one more property of σ. We choose r > 0
small and we require that σ(s) = |s|4 for s ∈ U±r = {s ∈ U± ; |s| < r}. If r is
small enough then this is compatible with σ ∈ h4+α(Σ) ∩W . We conclude that

G(σ)|U±(0) = −16 < 0 . (4.1)
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It follows from Proposition 2.1 that the evolution equation (2.3) with initial value
ρ(0) = σ has a unique solution

ρ(·, σ) ∈ C([0, T0], h4+α(Σ)) ∩ C1([0, T0], hα(Σ)) . (4.2)

Next we consider the restriction ρ±(t, σ) on U± of the function ρ(t, σ), that is,
ρ±(t, σ) := ρ(t, σ)|U± for 0 ≤ t ≤ T0, and we set d±(t) := ρ±(t, σ)(0), to track the
position of the center. It follows from (4.2) that d± ∈ C1([0, T0]). Moreover, using
the local character of G, we conclude that d± satisfies the equation

(d±)′(t) = G(ρ(t, σ))|U±(0) for 0 ≤ t ≤ T0 , d±(0) = 0 . (4.3)

Equations (4.1)–(4.3) and the mean value theorem yield

d±(t) = −Mt+
(∫ 1

0

(
(d±)′(τt)− (d±)′(0)

)
dτ
)
t , (4.4)

whereM := 16. It follows from (4.4) that there exists a positive constant µ > 0 and
an interval (t0, t1) ⊂ (0, T0] such that ρ±(t, σ)(0) = d±(t) ≤ −µ for t ∈ (t0, t1). By
Proposition 2.1(b) we can find a function σ0 ∈W0 such that Σ0 := Γσ0 is embedded
and such that Γ(t) := Γρ(t,σ0) is immersed for at least t ∈ (t0, t1). By employing
Proposition 2.1(b) once more we conclude there is a neighborhood W (σ0) ⊂ W0

of σ0 in h2+β1(Σ) such that Γρ0 is still embedded, whereas Γρ(t,ρ0) is immersed for
t ∈ (t0, t1) and all ρ0 ∈ W (σ0). We note that C2+β(Σ) is contained in h2+β1(Σ)
with continuous injection j : C2+β(Σ) → h2+β1(Σ). Hence U0 := j−1(W (σ0)) is
a C2+β–neighborhood of σ0 and Theorem 2 follows by choosing Σ0 := Γσ0 and
Γ0 := Γρ0 for ρ0 ∈ U0. �

Fig. 2 This is half of Γ0, a surface that loses embeddedness and becomes
immersed. The gap might have to be much smaller than depicted.

Remark 4.2. The following is the essence of the construction: Γσ is an immersed
surface such that its image contains two opposing fourth-order paraboloids touch-
ing only at the vertex. The global symmetry of Γσ is irrelevant, we only need the
local symmetry at the center. Locally we can compute the initial velocity of Γσ,
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and it is such as to create an overlapping of the fourth-order paraboloids. A conti-
nuity argument then guarantees the same behavior for nearby embedded surfaces,
which do exist by construction of Γσ. We have chosen a fourth-order paraboloid
in order to facilitate the computation of G(σ)|U± . Any other configuration that
produces the same sign as in (4.1) will work as well.
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