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Abstract

An embedded curve is presented which under numerical simulation of the averaged mean curvature flow
develops first a loss of embeddedness and then a singularity where the curvature becomes infinite, all in
finite time. This leads to the conjecture that not all smooth embedded curves persist for all times under
the averaged mean curvature flow.
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1 INTRODUCTION

We describe numerical experiments in two space dimensions for a well-established geometric evolution law,
the averaged mean curvature flow, also known as the area-preserving mean curvature flow, or, in higher
dimensions, as the volume-preserving mean curvature flow. The key example presented in this paper is an
embedded curve that develops first a self-intersection and then a singularity of blowup type for the curvature,
all in finite time.

It had been generally believed that this type of flow will keep embedded curves smooth, so this example
comes as a surprise. Of course, it has been conjectured for quite some time that the averaged mean curvature
flow can drive curves to a loss of embeddedness; such a conjecture enters the literature with [Gage 1986]. This
has recently analytically been proved to be correct [Mayer and Simonett 2000]. However, the general belief
remained that no essential singularity will occur, and has been founded on the behavior of the nonaveraged
mean curvature flow. The pioneering work of Gage and Hamilton [1986] and of Grayson [1987] showed that
the nonaveraged mean curvature flow, if rescaled homothetically to preserve the enclosed area, will evolve
any embedded curve into a circle.

Let Γ0 be a closed embedded curve in IR2. The averaged mean curvature flow is governed by

V (t) = −(κ(t)− κ(t)) , Γ(0) = Γ0 , (1.1)

where κ(t) := |Γ(t)|−1
∫

Γ(t)
κ(t) dσ denotes the average of the curvature. Here Γ = {Γ(t) : t ≥ 0} is a

family of smooth immersed orientable curves, V (t) denotes the velocity of Γ in the normal direction at time
t, while κ(t) stands for the curvature function of Γ(t). The name mean curvature flow comes from the
higher-dimensional model.

The averaged mean curvature flow evolves curves in such a way that the length decreases. Also, if Γ is
embedded the flow preserves the area of the region Ω(t) enclosed by Γ(t) [Huisken 1987; Escher and Simonett
1998]; this explains the alternative name of this flow, “area-preserving” mean curvature flow. Note that the
evolution law (1.1) does not depend on the local choice of the orientation.

The example studied here is similar to, but not identical with, the one proposed in [Gage 1986], where
it was suggested as an example which should exhibit a loss of embeddedness under the averaged mean
curvature flow. A curve modeled on the one proposed by Gage was also numerically investigated in [Mayer
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and Simonett 2000], but the curve in the latter paper remains regular due to a slight variation of parameters
as compared to the curve studied here. This will be explained in more detail below.

The assumption of embeddedness constitutes the novelty of this example. It is general mathematical
folklore—based on numerical simulations—that for the averaged mean curvature flow certain immersed
curves, such as a figure-eight or a lima con, will develop a singularity, even though no analytical proof is
known. But all previously proposed singularity-producing immersed curves have a turning number different
from one, while any curve arising from an initially embedded curve must necessarily have a turning number
equal to one. Also, this lack of analytical results is in contrast to the nonaveraged mean curvature flow,
where Angenent gave detailed results on the nature of the singularity that occurs for a lima con [Angenent
1991].

The numerical experiments have been performed using two independent implementations of the averaged
mean curvature flow. The first uses a numerical scheme developed by the author. It is based on the gradient-
flow structure of certain free boundary problems, of which the averaged mean curvature flow is the special
case of the L2

0–gradient, the index 0 stands for functions of zero average; see [Mayer 2000]. The second
implementation is the multi-model Surface Evolver developed by Brakke [1992], also based on a gradient
approach. In closing of this introduction we formally state the conjecture obtained from the numerical
experiments.

Conjecture There are smooth embedded curves in IR2 which, under the averaged mean curvature flow,
develop in finite time a singularity where the curvature becomes infinite.

2 THE EXPERIMENTS

2A The Example

The images on these two pages are based on computations with the algorithm presented in [Mayer 2000].
The time step for this semi-implicit method was 10−7, with a lower spatial threshold of 10−4. The initial
curve had about 1400 points. Every 100 iteration steps a check was performed whether two neighboring
points on the curve were closer than the spatial threshold, and if so, then one of them was removed. Every
500 iteration steps each point was replaced with a point equidistant to the current two closest neighbors.
The replacement point was chosen on a circular arc through the two neighbors, so as to preserve the numeric
curvature. As already mentioned, the computations were confirmed with the Evolver [Brakke 1992], to
minimize the chance that the results are a numerical fluke of the particular algorithm. Of course, the
parameters at which the singularity occurred were slightly different with the different numerical methods,
but the phenomenon occurred just the same.
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Fig. 1 Left: the initial curve; the two parallel segments in the center of
the curve are about 0.065 units apart. Right: close-up of the slit;
the vertical scale has been magnified about 10 times more than
the horizontal one.
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Fig. 2 Left: the curve at time t = 0.4; the two parallel segments in the
center of the initial curve have created an overlap. Right: close-up
of the overlap.
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Fig. 3 Left: The curve at time t = 0.73; the center loop is fairly tight
already. Right: close-up of the center.
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Fig. 4 Left: The curve at time t = 0.746; the center appears to be already
singular. Right: close-up of the center; the small loop will close
down before the overlap has time to pull apart, and the curvature
will blow up (become infinite).
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One motivation for looking at this example was the work by Angenent [1991], in which the effect of the
nonaveraged mean curvature flow on a lima con is studied. The small loop of the lima con is reminiscent of
the small loop occurring in the curve depicted above. By the theorem of turning tangents for a simple closed
curve Γ one has the formula

κ =
1
L

∫
Γ

κ ds =
2π
L
, (2.1)

where L is the length of Γ. It follows that if L is bounded from below and if κ is big, then the normal
velocity V = −κ+ κ ought to be dominated by κ alone. This is roughly the case in the center of the curve,
and so it ought to behave similarly to the lima con. On the other hand we do not have quite this scenario,
because the curvature in the example has a sign change in the small loop, hence the curvature is not big
everywhere in the small loop. Angenent’s lima con example is convex and does not have this sign change of
the curvature.

2B Variation of Parameters

The curve is made up of several clearly identifiable parts: the straight pieces in the center, the straight pieces
in the outside, the inner circle, the two semi-circles on the left, the outer semi-circle on the right, plus the
necessary transitions to make the curve smooth. The question arises, what happens if one changes some of
those parameters? In the next few paragraphs, unless said otherwise, we change only one parameter at a
time.

The length of the outer straight parts.

The effect of changing the length of the outer straight part is essentially coming through the change of the
length L of the curve, and hence of the average of the curvature. The overlap in the center occurs because the
curvature there is initially zero, and adding the average of the curvature to the normal velocity creates the
outward movement. Increasing the length L results in reducing κ—compare equation (2.1)—and therefore
reduces the force that causes the overlap. The overlap is after all what keeps the inner circle from pulling
through the slit, hence a sufficiently large increase of L should cause an avoidance of the singularity. We
do not call a loss of embeddedness a singularity. This is the case. For example, is the length of the outer
straight parts increased by 1, then the curve stays regular. For comparison, the original example above has
outer straight parts of length about 3.

The length of the inner straight parts.

The effect of changing the length of the inner straight part is essentially coming through the change of the
size of the overlap of the curve, and the reasoning is then analogous to the one in the previous paragraph.
Hence a sufficiently big reduction of the length of the inner straight parts should cause an avoidance of the
singularity, and this is the case. For example, is the length of the inner straight parts decreased by 1/4, then
the curve stays regular. The original example above has inner straight parts of length about 7/4.

The radius of the inner circle.

If the radius of the inner circle is increased, the inner circle will move in more slowly and will give more time
for the rest of the curve to follow its tendency to pull the overlap back apart. This effect does in fact occur.
However, increasing the inner radius does of course also increase the length of the curve, and hence there
is a coupling with the effect described two paragraphs above. If one increases the radius from 1, which is
the radius of the example, to 5/4, then the curve pulls back apart before the inner circle closes down, and
the curve stays regular. Is on the other hand the radius of the inner circle reduced significantly, then it will
close down before the overlap at all has time to occur, and the evolution will pull the part coming from the
inner circle through the slit, and no singularity will occur. Numerically this happens when the inner radius
is 1/4, for example, but does not yet happen when the inner radius is 1/2.
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Other comments.

It is quite obvious that one can of course change the width of the slit directly and obtain similar effects
to the ones described above. The idea of the previous three sections was not to give an exhaustive list of
parameter twiddling, but rather to show that the behavior of the evolution is very subtle. As mentioned
in the introduction, a curve similar to the example presented here was already numerically investigated in
[Mayer and Simonett 2000]. The curve there had an inner radius of 1/4 larger and outer straight parts that
were about 1/5 shorter than the corresponding sizes of the example here. The combined effect on the length
of the curve is such that the example here is shorter. As outlined in the previous paragraphs both the change
of the inner radius and the change of the length tend to remove the singularity, and they did. In fact, the
author had no idea at the time of writing of the former paper that with a slight change of parameters a
singularity could be forced to occur.

As of this writing the mathematical literature contains essentially two types of results about existence
of smooth solutions: short-term existence results for arbitrary curves, and long-term existence results for
convex curves [Gage 1986; Huisken 1987; Escher and Simonett 1998]. Escher and Simonett also show that if
the embedded initial curve is close to a circle but not necessarily convex, existence is still guaranteed for all
time, and the curve will approach some possibly other circle. According to our conjecture, in contrast, we
do not expect that one can show long-term existence for all embedded smooth initial curves, and it is at this
stage far from clear which initial curves enjoy a long-term future under the averaged mean curvature flow.
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