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On Diffusion-Induced Grain-Boundary Motion

Uwe F. Mayer and Gieri Simonett

Abstract. We consider a sharp interface model which describes diffusion-

induced grain-boundary motion in a poly-crystalline material. This model
leads to a fully nonlinear coupled system of partial differential equations. We
show existence and uniqueness of smooth solutions.

1. Introduction

In this paper we consider a model which describes diffusion-induced grain-
boundary motion of a surface which separates different grains in a poly-crystalline
material. Let Γ0 be a compact closed hypersurface in Rn which is the boundary of
an open domain, and let u0 : Γ0 → R be a given function. Then we are looking
for a family Γ := {Γ(t) ; t ≥ 0} of hypersurfaces and a family of functions {u(·, t) :
Γ(t)→ R ; t ≥ 0} such that the following system of equations holds:

V = −HΓ − f(u), Γ(0) = Γ0,

u̇ = ∆Γu− VHΓu+ V u+ g(u), u(0) = u0.
(1.1)

Here V (t) denotes the normal velocity of Γ at time t, while HΓ(t) and ∆Γ(t) stand
for the mean curvature and the Laplace-Beltrami of Γ(t), respectively. The symbol
u̇ denotes the derivative of u along flow lines which are orthogonal to Γ(t), see the
definition in (2.6). We assume that

f, g ∈ C∞(R,R) and f(0) = 0, g(0) = U.

In two dimensions, the interface Γ(t) represents the boundary of a grain of a
thin poly-crystalline material with vapor on top (in the third dimension). The vapor
in the third dimension contains a certain solute which is absorbed by the interface
and which diffuses along the interface. Furthermore, as the interface moves, some
of the solute will be deposited in the bulk through which the interface has passed.
The chemical composition of the newly created crystal behind the advancing grain
will be different from that in front, because atoms of the solute have been deposited
there. For this physical background we consider only convex curves, and we choose
the signs so that a family of shrinking curves has negative normal velocity. A high
concentration u of the solute in the interface increases the velocity, because the
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interface tries to reduce that concentration by depositing the solute in the regions
it passes through. In addition, the stretching or shrinking of Γ during its motion
induces a change in the concentration of the solute.

This situation results in the following terms: V = −HΓ is the usual motion by
mean curvature that models motion driven purely by surface tension, and the term
f(u) results from the deposition effect. Here, f(u) = u2 is reasonable [9]. As for
the second equation, ∆Γu describes diffusion on a manifold, −VHΓu indicates the
concentration change due to the change of the length of the interface, Vu describes
the reduction of the solute due to deposition, and g(u) results from absorption of
the solute from the vapor. Physically, g(u) = U − u is meaningful, where U is the
concentration of the solute in the vapor [9].

DIGM is known to be an important component of many complicated diffusion
processes in which there are moving grain boundaries; see [3] and the references
cited therein. In this type of phenomenon, the free energy of the system can be
reduced by the incorporation of some of the solute into one or both of the grains
separated by the grain boundary. In the DIGM mechanism, this transfer is accom-
plished by the disintegration of one grain and the simultaneous building up of the
adjacent grain, the solute being added during the build-up process. This results
in the migration of the grain boundary [9]. The possibility of reducing the free
energy this way does not automatically imply that migration actually takes place;
mechanisms for this to happen have been proposed, including the recent one in [3].

In [3], a thermodynamically consistent phase-field model for DIGM is sug-
gested. This model has two phase fields, one being the concentration of the solute,
and the other one being an order parameter which distinguishes the two crystal
grains by the values +1 and −1, and which takes intermediate values in the grain
boundary.

In this paper we consider a sharp interface model for DIGM. The same model
has been studied in [14], where existence and uniqueness of classical Hölder solu-
tions is proved. Here we improve this result considerably. Namely, we prove that
solutions are in fact smooth in space and time.

Let Γ := {Γ(t) ; t ∈ [0, T )} be a family of closed compact embedded hypersur-
faces in Rn and let

M0 :=
⋃

t∈[0,T )

Γ(t)× {t} , M :=
⋃

t∈(0,T )

Γ(t)× {t} .(1.2)

Finally, let u be a function on M0. Then we call (Γ, u) a smooth C∞-solution of
(1.1) on [0, T ) if the following properties hold:

• M is an n-dimensional manifold of class C∞ in Rn+1 and u|M ∈ C∞(M),

• M0 is a C1-manifold with boundary M0 ∩ (Rn × {0}) and u ∈ C1(M0),

• M0 ∩ (Rn × {0}) = Γ0 × {0} ≡ Γ0 and u|Γ0 = u0,

• the pair (Γ, u) satisfies system (1.1).

We are now ready to state our main theorem on existence and uniqueness of smooth
solutions for (1.1)

Theorem 1.1. Let β ∈ (0, 1) be given and suppose that Γ0 ∈ C2+β and that
u0 ∈ C2+β(Γ0). Then system (1.1) has a smooth solution (Γ, u) on [0, T ) for some
T > 0. The solution is unique in the class (4.1).
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A detailed analysis shows that (1.1) is a fully nonlinear coupled system, where
the fully nonlinear character comes in through the term VHΓu. It is shown in [14]
that (1.1) admits classical solutions which are smooth in time and C2+α in space
for given initial data in C2+β , where 0 < α < β < 1.

In order to investigate system (1.1) we represent the moving hypersurface Γ(t)
as a graph over a fixed reference manifold Σ and then transform (1.1) to an evo-
lution equation over Σ. This leads to a fully nonlinear system which is parabolic
(in the sense that the linearization generates an analytic semigroup on an appro-
priate function space), as is shown in [14]. Since the fully nonlinear term occurs
on the cross diagonal we will be able to combine maximal regularity results and
bootstrapping arguments to show that solutions immediately regularize for positive
times.

System (1.1) reduces to the well-known mean curvature flow

V = −HΓ, Γ(0) = Γ0 ,(1.3)

if u0 = 0 and U = 0, since u ≡ 0 then solves the second equation of (1.1). It is
well-known that solutions of the mean curvature flow (1.3) remain strictly convex
if Γ0 is strictly convex, and that Γ(t) shrinks to a point in finite time [10, 12].
Moreover, embedded curves in the plane always become convex before they shrink
to a point [11]. We do not know if similar properties hold true for system (1.1).

2. Motion of the interface

In this section we briefly introduce the mathematical setting in order to re-
formulate (1.1) as an evolution equation over a fixed reference manifold. Here we
follow [14], see also [5, 6, 7, 8] for a similar situation.

Let Σ be a smooth compact closed hypersurface in Rn, and assume that Γ0 is
close in a C1 sense to this fixed reference manifold Σ. Let ν be the unit normal
field on Σ. We choose a > 0 such that

X : Σ× (−a, a)→ R
n , X(s, r) := s+ rν(s)

is a smooth diffeomorphism onto its image R := im(X), that is,

X ∈ Diff∞(Σ× (−a, a),R).

This can be done by taking a > 0 sufficiently small so that Σ has a tubular neighbor-
hood of radius a. It is convenient to decompose the inverse of X into X−1 = (S,Λ),
where

S ∈ C∞(R,Σ) and Λ ∈ C∞(R, (−a, a)).

S(x) is the nearest point on Σ to x ∈ R, and Λ(x) is the signed distance from x to
Σ, that is, to S(x). Moreover, R consists of those points in Rn with distance less
than a to Σ.

Let T > 0 be a fixed number. In the sequel we assume that Γ := {Γ(t), t ∈
[0, T )} is a family of graphs in normal direction over Σ. To be precise, we ask that
there is a function ρ : Σ× [0, T )→ (−a, a) such that

Γ(t) = im
(
[s 7→ X(s, ρ(s, t))]

)
, t ∈ [0, T ).

Γ(t) can then also be described as the zero-level set of the function

Φρ : R× [0, T )→ R , Φρ(x, t) := Λ(x)− ρ(S(x), t);(2.1)
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one has Γ(t) = Φρ(·, t)−1(0) for any fixed t ∈ [0, T ). Hence, the unit normal field
N(x, t) on Γ(t) at x can be expressed as

N(x, t) =
∇xΦρ(x, t)
|∇xΦρ(x, t)|

,(2.2)

and the normal velocity V of Γ at time t and at the point x = X(s, ρ(s, t)) is given
by

V (x, t) =
∂tρ(s, t)
|∇xΦρ(x, t)|

.(2.3)

We can now explain the precise meaning of the derivative u̇(x, t) for x ∈ Γ(t).
Given x ∈ Γ(t), let {z(τ, x) ∈ Rn ; τ ∈ (−ε, ε)} be a flow line through x such that

z(τ, x) ∈ Γ(t+ τ), ż(τ) = (V N)(z(τ), t+ τ), τ ∈ (−ε, ε), z(0) = x.(2.4)

The existence of a unique trajectory {z(τ, x) ∈ Rn ; τ ∈ (−ε, ε)} with the above
properties is established in the next result.

Lemma 2.1. Suppose ρ ∈ C2(Σ × (0, T )) and let Γ(t) := Φρ(·, t)−1(0) for t
in (0, T ). Then for every x ∈ Γ(t) there exist an ε > 0 and a unique solution
z(·, x) ∈ C1((−ε, ε),Rn) of (2.4).

Proof. This result is proved in [14, Lemma 2.1]. For the reader’s convenience
we include a short proof. Observe that (2.4) is equivalent to the ordinary differential
equation

(ż, ṫ) = ((V N)(z, t), 1) , (z(0), t(0)) = (x, t)(2.5)

on the manifold M =
⋃
t∈(0,T ) Γ(t)× {t}. We show that

((V N)(x, t), 1) ∈ T(x,t)(M) for any (x, t) ∈M .

For this let Ψρ := Φρ|R×(0,T ) and observe that M = Ψ−1
ρ (0), so that the vector

(∇xΦρ(x, t),−∂tρ(S(x), t))

is orthogonal to M at (x, t) ∈ M. Using the definition of Φρ it can easily be seen
that ∂νΦρ = 1, and hence the vector displayed above is nonzero. By (2.2) and (2.3)
we have (

((V N)(x, t), 1)|(∇xΦρ(x, t),−∂tρ(S(x), t))
)

= 0 , (x, t) ∈M ,

showing that ((V N)(x, t), 1) is tangential to M at (x, t). We can now conclude
that there is an ε > 0 such that (2.5) has a unique solution

[τ 7→ (z(τ, x), t+ τ)] ∈ C1((−ε, ε),M) .

It follows that [τ 7→ z(τ, x)] ∈ C1((−ε, ε),Rn) is the unique solution of (2.4).

Let (x, t) ∈M be given. Then we define

u̇(x, t) :=
d

dτ
u(z(τ, x), t+ τ)

∣∣∣∣
τ=0

.(2.6)

We now introduce the pull-back function v of u,

v : Σ× [0, T )→ R, v(s, t) := u(X(s, ρ(s, t)), t).(2.7)

Since u(x, t) = v(S(x), t), it follows from (2.4) and (2.6) that

u̇(x, t) =
d

dτ
v(S(z(τ, x)), t+ τ)

∣∣∣
τ=0

=(∇xv(S(x), t)|N(x, t))V (x, t) +
dv

dt
(S(x), t).
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Note that this formula also makes sense if t = 0 and x ∈ Γ(0), whereas we required
t > 0 in (2.6). We take this last formula as new definition for u̇, that is, we set

u̇(x, t) := (∇xv(S(x), t)|N(x, t))V (x, t) +
dv

dt
(S(x), t), (x, t) ∈M0 .(2.8)

Finally, we set

L(ρ)(s, t) :=|∇xΦρ(x, t)|
∣∣
x=X(s,ρ(s,t))

,

I(ρ, v)(s, t):=(∇xv(S(x), t)|N(x, t))
∣∣
x=X(s,ρ(s,t))

,
(2.9)

for (s, t) ∈ Σ× [0, T ) and we obtain

u̇(x, t)
∣∣∣
x=X(s,ρ(s,t))

=
dv

dt
(s, t) + I(ρ, v)(s, t)V (x, t)

∣∣∣
x=X(s,ρ(s,t))

.(2.10)

3. The transformed equations

Given an open set U ⊂ Rn, let hs(U) denote the little Hölder spaces of order
s > 0, that is, the closure of BUC∞(U) in BUCs(U), the latter space being the
Banach space of all bounded and uniformly Hölder continuous functions of order s.
If Σ is a (sufficiently) smooth submanifold of Rn then the spaces hs(Σ) are defined
by means of a smooth atlas for Σ. It is known that BUCt(Σ) is continuously
embedded in hs(Σ) whenever t > s. Moreover, the little Hölder spaces have the
interpolation property

(hs(Σ), ht(Σ))θ = h(1−θ)s+θt(Σ), θ ∈ (0, 1),(3.1)

whenever s, t, (1 − θ)s + θt ∈ R+ \ N, and where (·, ·)θ denotes the continuous
interpolation method of DaPrato and Grisvard [4], see also [1, 2, 13].

In the following we fix t ∈ (0, T ) and drop it in our notation. Given α ∈ (0, 1)
and k ∈ N we set

U(k, α) : = {ρ ∈ hk+α(Σ) ; ||ρ||C(Σ) < a}

U(k, α) : = U(k, α)× hk+α(Σ).
(3.2)

Clearly, the sets U(k, α) and U(k, α) are open in hk+α(Σ) and in (hk+α(Σ))2, re-
spectively. Given ρ ∈ U(k, α), we introduce the mapping

θρ : Σ→ R
n, θρ(s) := X(s, ρ(s)) for s ∈ Σ , ρ ∈ U.

It follows that θρ is a well-defined (k+α)-diffeomorphism from Σ onto Γρ := im(θρ).
Let

θ∗ρu := u ◦ θρ for u ∈ C(Γρ), θρ∗v := v ◦ θ−1
ρ for v ∈ C(Σ),

be the pull-back and the push-forward operator, respectively. Given ρ ∈ U(k, α),
k ≥ 2, we denote by ∆Γρ and HΓρ the Laplace–Beltrami operator and the mean
curvature, respectively, of Γρ. Finally we set

∆ρ := θ∗ρ∆Γρθ
ρ
∗, H(ρ) := θ∗ρHΓρ .

We will now consider the smoothness properties the substitution operators
induced by the local functions f and g, and of the operators L and I introduced in
(2.9). Moreover we investigate the structure of the transformed operators ∆ρ and
H(ρ).

For this, we introduce the set H(E1, E0) of generators of analytic semigroups.
To be more precise, we assume that E0 and E1 are Banach spaces such that E1
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is densely injected in E0, and we use the symbol H(E1, E0) to denote the set of
all linear operators A ∈ L(E1, E0) such that −A is the generator of a strongly
continuous analytic semigroup on E0. It is known that H(E1, E0) is an open subset
of L(E1, E0), which will be given the relative topology of L(E1, E0).

Lemma 3.1. Assume that α ∈ (0, 1) and k ∈ N.

(a) [v 7→ (f(v), g(v))] ∈ C∞(hk+α(Σ), hk+α(Σ)× hk+α(Σ)).

(b) [ρ 7→ L(ρ)] ∈ C∞(U(k + 1, α), hk+α(Σ)).

(c) [(ρ, v) 7→ I(ρ, v)] ∈ C∞(U(k + 1, α), hk+α(Σ)).

(d) There exists a function

C ∈ C∞(U(k + 2, α),H(hk+2+α(Σ), hk+α(Σ)))

such that ∆ρv = −C(ρ)v for (ρ, v) ∈ U(k + 2, α).

(e) There exist functions

P ∈ C∞(U(k + 1, α),H(hk+2+α(Σ), hk+α(Σ))),

K ∈ C∞(U(k + 1, α), hk+α(Σ))

such that H(ρ) = P (ρ)ρ+K(ρ) for ρ ∈ U(k + 2, α). Furthermore,

(f) [ρ 7→ L(ρ)P (ρ)] ∈ C∞(U(k + 1, α),H(hk+2+α(Σ), hk+α(Σ))).

Proof. This follows by similar arguments as in the proofs of [14, Lemmas 3.1–
3.3], and of [5, Section 2].

We are now ready to investigate the transformed system of equations

dρ

dt
= −L(ρ)P (ρ)ρ− L(ρ)K(ρ)− L(ρ)f(v), ρ(0) = ρ0,

dv

dt
= ∆ρv +

(
I(ρ, v) +H(ρ)v − v

)(
H(ρ) + f(v)

)
+ g(v), v(0) = v0.

(3.3)

In the following, we call (ρ, v) a smooth solution of (3.3) on [0, T ) if

(ρ, v) ∈ C1(Σ× [0, T ),R2) ∩ C∞(Σ× (0, T ),R2),(3.4)

and if (ρ, v) satisfies system (3.3).

Lemma 3.2. (1.1) and (3.3) are equivalent: Smooth solutions of (1.1) give rise
to smooth solutions of (3.3), and vice-versa.

Proof. This can be proved similarly as in [14, Lemma 4.1].

4. Existence and uniqueness of smooth solutions

Theorem 4.1. Let V := U(2, α). Given any w0 := (ρ0, v0) ∈ V there exists
a number T = T (w0) > 0 such that system (3.3) has a unique maximal smooth
solution

(ρ(·, w0), v(·, w0)) ∈ C([0, T ),V) ∩ C1([0, T ), hα(Σ)×hα(Σ)) ∩ C∞(Σ×(0, T ),R2).

The map [w0 7→ (ρ(·, w0), v(·, w0))] defines a smooth semiflow on V.
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Proof. It follows from [14, Theorem 4.3] that (3.3) has a unique maximal
solution

(ρ(·, w0), v(·, w0)) ∈ C([0, T ),V) ∩ C1([0, T ), hα(Σ)).(4.1)

Moreover, [14, Equation (4.7)] shows that the solution has the additional smooth-
ness property

(ρ(·, w0), v(·, w0)) ∈ C∞((0, T ), h2+α(Σ)× h2+α(Σ)).(4.2)

Let T0 ∈ (0, T ) be fixed and choose τ ∈ [0, T0). We consider the linear parabolic
equation

dρ

dt
+A(t)ρ = F (t), τ < t ≤ T0, ρ(τ) = ρ(τ, w0),(4.3)

on h1+α(Σ), with

A(t) : = L(ρ̄(t))P (ρ̄(t)),

F (t) : = −L(ρ̄(t))K(ρ̄(t))− L(ρ̄(t))f(v̄(t)),

for t ∈ [τ, T0], where ρ̄(t) := ρ(t, w0) and v̄(t) := v(t, w0). If follows from (4.1) that
ρ(τ, w0) ∈ h2+α(Σ). Moreover, (4.1) and Lemma 3.1 with k = 1 yield

(A,F ) ∈ C([τ, T0],H(h3+α(Σ), h1+α(Σ))× h1+α(Σ)).(4.4)

Let X0 := h1+γ(Σ) and X1 := h3+γ(Σ) for some fixed γ ∈ (0, α). It follows with
the same arguments as in Lemma 3.1 that A(t) ∈ H(X1, X0) for t ∈ [τ, T0]. Next,
note that the interpolation result (3.1) implies that

Xθ := (X0, X1)θ =̇h1+α(Σ) if θ = (α− γ)/2 ,

where =̇ indicates that the spaces are equal, except for equivalent norms. Let Aθ(t)
denote the maximal Xθ-realization of A(t), where A(t) is considered as an operator
in L(X1, X0), and let X1+θ(A(t)) denote its domain, equipped with the graph norm.
Using

A(t) ∈ H(h3+α(Σ), h1+α(Σ)) and Aθ(t) ∈ H(X1+θ(A(t)), Xθ),

we readily infer that

X1+θ(A(t)) =̇X1+θ(A(τ)) =̇h3+α(Σ) for t ∈ [τ, T0].

It follows from the maximal regularity result [1, Remark III.3.4.2.(c)], from (3.1)
and [1, Theorem III.2.3.3] with E0 := h1+α(Σ), E1 := h3+α(Σ) and (ρ, µ) =
(0, 1/2), and from [1, Proposition III.2.1.1] that equation (4.3) admits a unique
solution

ρ ∈ C([τ, T0], h2+α(Σ)) ∩ C((τ, T0], h3+α(Σ)) ∩ C1((τ, T0], h1+α(Σ)).(4.5)

It is a consequence of (4.5) and of (4.3) that ρ satisfies

ρ ∈ C([τ, T0], h2+α(Σ)) ∩ C1([τ, T0], hα(Σ)),

so that ρ has at least the same regularity as ρ(·, w0). Moreover, ρ solves the same
equation on hα(Σ) as ρ(·, w0) for t ∈ [τ, T0], and we conclude that ρ = ρ(·, w0)|[τ,T0].
Since τ and T0 can be chosen arbitrarily we obtain

ρ(·, w0) ∈ C((0, T ), h3+α(Σ)) ∩ C1((0, T ), h1+α(Σ)).(4.6)
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Now we use (4.6) to show that v(·, w0) also enjoys better regularity properties in
the space variable than stated in (4.1). Let τ ∈ (0, T0) be fixed and consider the
linear parabolic equation

dv

dt
+B(t)v = G(t), τ < t ≤ T0, v(τ) = v(τ, w0),(4.7)

on h1+α(Σ), with

B(t) : = C(ρ̄(t)),

G(t) : =
(
I(ρ̄(t), v̄(t)) +H(ρ̄(t))v̄(t)− v̄(t)

)(
H(ρ̄(t)) + f(v̄(t))

)
+ g(v̄(t)),

for t ∈ [τ, T0], where ρ̄(t) := ρ(t, w0) and v̄(t) := v(t, w0). It is a consequence of
(4.1), (4.6), and of Lemma 3.1 with k = 1, that

(B,G) ∈ C([τ, T0],H(h3+α(Σ), h1+α(Σ))× h1+α(Σ)),(4.8)

and that v(τ, w0) ∈ h2+α(Σ). As above we infer that (4.7) has a unique solution

v ∈ C([τ, T0], h2+α(Σ)) ∩ C((τ, T0], h3+α(Σ)) ∩ C1((τ, T0], h1+α(Σ)).(4.9)

This allows us to conclude, once again, that

v(·, w0) ∈ C((0, T ), h3+α(Σ)) ∩ C1((0, T ), h1+α(Σ)).(4.10)

In a next step we use (4.6) and (4.10) to deduce that ρ(·, ρ0) has more regularity than
noted in (4.6). It should be observed that this time we need to choose τ ∈ (0, T0),
whereas τ = 0 was admissible in (4.3)–(4.5). To be more precise, we consider

dρ

dt
+A(t)ρ = F (t), τ < t ≤ T0, ρ(τ) = ρ(τ, w0),

as an evolution equation on h2+α(Σ). It follows from (4.6), (4.10) and Lemma 3.1
with k = 2 that

(A,F ) ∈ C([τ, T0],H(h4+α(Σ), h2+α(Σ))× h2+α(Σ)),

and that ρ(τ, w0) ∈ h3+α(Σ). We conclude by similar arguments as above—
involving maximal regularity—that the solution of (4.3) satisfies

ρ ∈ C([τ, T0], h3+α(Σ)) ∩ C((τ, T0], h4+α(Σ)) ∩ C1((τ, T ), h2+α(Σ)),

and that ρ = ρ(·, w0)|[τ,T0]. Since τ and T0 are arbitrary we get

ρ(·, w0) ∈ C((0, T ), h4+α(Σ)) ∩ C1((0, T ), h2+α(Σ)).(4.11)

We can repeat the arguments and we arrive, after m steps, to the conclusion

(ρ(·, w0), v(·, w0)) ∈ C((0, T ), (hm+2+α(Σ))2) ∩ C1((0, T ), (hm+α(Σ))2).(4.12)

Let j ∈ N be a number such that 2j ≤ m. Then one also obtains

(ρ(·, w0), v(·, w0)) ∈ Cj((0, T ), (hm−2j+α(Σ))2).(4.13)

In order to show (4.13), let us assume that we have already verified that

(ρ(·, w0), v(·, w0)) ∈ Cj−1((0, T ), (hm−2(j−1)+α(Σ))2)

for some j in {2, · · · ,m}. Then it follows from Lemma 3.1 with k = m− 2j that

(A,F ), (B,G) ∈ Cj−1((0, T ),L(hm+2−2j+α(Σ), hm−2j+α(Σ))× hm−2j+α(Σ)).
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Now we go back to the evolution equation (4.3) and (4.7), respectively, and
conclude that(

d

dt
ρ(·, w0),

d

dt
v(·, w0)

)
∈ Cj−1((0, T ), (hm−2j+α(Σ))2),

and hence (ρ(·, w0), v(·, w0)) ∈ Cj((0, T ), (hm−2j+α(Σ))2). Since m ∈ N can be
chosen arbitrarily we have proved that

(ρ(·, w0), v(·, w0)) ∈ C∞((0, T ), C∞(Σ)× C∞(Σ)).(4.14)

This completes the proof of Theorem 4.1

Remarks 4.2. (a) The strategy for the bootstrapping arguments in the proof
of Theorem 4.1 relies on the following observation: The equation for ρ in (3.3), while
coupled, is quasilinear in ρ and involves no derivatives of v. Therefore, if we insert
v(·, w0) into the first equation, we can take advantage of the regularizing effect
to establish more regularity for ρ(·, w0). As the equation for v is also quasilinear
once ρ is frozen, we can now use that ρ(·, w0) has more regularity to improve the
regularity of v(·, w0). These steps can then be repeated.

(b) The bootstrapping arguments used in the proof of Theorem 4.1 could also
be based on [1, Theorem II.1.2.1]. Indeed, it follows from equations (3.1), (4.1),
and from [1, Proposition II.1.1.2] that

(ρ(·, w0), v(·, w0)) ∈ C1−θ([0, T ), h2+γ(Σ)) if γ ∈ (0, α) and θ = 1− (α− γ)/2 .

A slightly modified version of Lemma 3.1 then yields

(A,F ) ∈ C1−θ([0, T ),H(h3+γ(Σ), h1+γ(Σ))× h1+γ(Σ)).

Theorem II.1.2.1 in [1] shows that the solution of the linear parabolic equation
(4.3) has better regularity properties than stated in (4.1). One can then go on and
reiterate the arguments.

(c) It is important to note that system (1.1) or (3.3), respectively, is fully non-
linear. This indicates that one needs maximal regularity results—which compensate
for the loss of derivatives—in order to get a solution via a fixed point argument.
This has been achieved in [14].

(d) Theorem 1.1 allows to construct solutions even if they are not represented
as graphs over the initially fixed reference manifold Σ. Indeed, we can take Γ(t1)
for some t1 ∈ [0, T ) as new reference manifold and then get solutions on a time
interval [t1, t2]. Thus we are not restricted to hypersurfaces which are graphs over
a fixed manifold.

Proof of Theorem 1.1. Let Γ0 be a given compact, closed C2+β-manifold
in Rn. As in Section 2 we find a smooth reference manifold Σ and a function
ρ0 ∈ C2+β(Σ) such that

Γ0 = im([s 7→ X(s, ρ0(s))]) .

Since C2+β(Σ) ⊂ h2+α(Σ) for α ∈ (0, β) we also have that ρ0 ∈ U(2, α). Given
u0 ∈ C2+β(Γ0), let v0 : Σ → R be defined by v0(s) := u0(X(s, ρ0(s))) for s ∈ Σ.
We can conclude that v0 ∈ h2+α(Σ). Theorem 4.1 yields the existence of a unique
solution

(ρ(·, w0), v(·, w0)) ∈ C([0, T ),V) ∩ C1([0, T ), hα(Σ)× hα(Σ)) ∩ C∞(Σ× (0, T ))

for system (3.3), where we have set w0 = (ρ0, v0). Clearly, this solution also sat-
isfies the regularity assumptions in (3.4). Lemma 3.2 then shows that (1.1) has a
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classical solution on [0, T ). The solution is unique in the class (4.1), as follows from
Theorem 4.1, and the proof of Theorem 1.1 is now completed.
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