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Abstract

We prove that the surface diffusion flow and the volume preserving mean
curvature flow can drive embedded hypersurfaces to self-intersections.
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1 Introduction

In this paper we consider two geometric evolution laws: the surface diffusion flow
and the volume preserving mean curvature flow. We prove that embedded hyper-
surfaces can be driven to a self-intersection in finite time. This situation is in strict
contrast to the behavior of hypersurfaces under the mean curvature flow, where
the maximum principle prevents self-intersections.
The surface diffusion flow is a geometric evolution law in which the normal velocity
of a moving hypersurface equals the Laplace-Beltrami of the mean curvature. More
precisely we assume in the following that Γ0 is a closed embedded hypersurface in
R
n. Then the surface diffusion flow is governed by the law

V (t) = ∆Γ(t)HΓ(t) , Γ(0) = Γ0 . (1.1)

Here Γ = {Γ(t) ; t ≥ 0} is a family of smooth immersed orientable hypersurfaces,
V (t) denotes the velocity of Γ in the normal direction at time t, while ∆Γ(t) and
HΓ(t) stand for the Laplace-Beltrami operator and the mean curvature of Γ(t),
respectively. The volume preserving mean curvature flow is governed by the law

V (t) = −(H(t)−H(t)) , Γ(0) = Γ0 , (1.2)

where H(t) := |Γ(t)|−1
∫

Γ(t)
H(t) dσ denotes the average of the mean curvature.

The evolution laws (1.1) and (1.2) do not depend on the local choice of the orienta-
tion. However, if Γ(t) is embedded and encloses a region Ω(t) we always choose the
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outer normal, so that V (t) is positive if Ω(t) grows, and so that HΓ(t) is positive
if Γ(t) is convex with respect to Ω(t).
The surface diffusion flow (1.1) was first proposed by Mullins [20] to model the
dynamics for the motion of the surface of a crystal when all mass transport is
by curvature driven diffusion along the surface. It has also been examined in a
more general mathematical and physical context by Dav̀ı and Gurtin [10], and by
Cahn and Taylor [7]. The surface diffusion flow has recently attracted attention by
various researchers, see [3, 4, 6, 8, 11, 12, 13, 16, 19, 21]. We refer to [5, 14, 15, 17]
for work related to the volume preserving mean curvature flow.
The surface diffusion flow and the volume preserving mean curvature flow evolve
hypersurfaces in such a way that the surface area decreases. Moreover, if Γ is em-
bedded then both flows preserve the volume of the region Ω(t) enclosed by Γ(t),
see for instance [12, 14]. The results herein show that both flows can force Γ(t) to
lose embeddedness in order to decrease surface area.

Theorem 1. Let 0<β<1. There exist a closed embedded hypersurface Σ0 ∈ C2+β,
a constant T0 > 0, numbers t0, t1 ∈ (0, T0] with t0 < t1, and a C2+β–neighborhood
U0 of Σ0 such that the surface diffusion flow (1.1) has a unique classical solution
Γ = {Γ(t) ; t ∈ [0, T0]} for all Γ0 ∈ U0, and such that Γ(t) ceases to be embedded
for every t ∈ (t0, t1) and every Γ0 ∈ U0. Each hypersurface Γ(t) is of class C∞ for
t ∈ (0, T0] and smooth in t ∈ (0, T0).

It was conjectured in [11] and later proved in [16] that the surface diffusion flow
can drive a dumbbell curve of an appropriate shape to a self-intersection. Theo-
rem 1 extends this result considerably: we can handle nonsymmetric hypersurfaces
in any dimension, whereas the method of [16] seems restricted to (symmetric)
curves. It should be noted that the neighborhood U0 of Theorem 1 also contains
C∞-hypersurfaces that will be driven to a self-intersection in finite time. Our ap-
proach relies on results and techniques in [12].

Theorem 2. Let 0<β<1. There exist a closed embedded hypersurface Σ0 ∈ C1+β,
a constant T0 > 0, numbers t0, t1 ∈ (0, T0] with t0 < t1, and a C1+β–neighborhood
U0 of Σ0 such that the volume preserving mean curvature flow (1.2) has a unique
classical solution Γ = {Γ(t) ; t ∈ [0, T0]} for all Γ0 ∈ U0, and such that Γ(t) ceases
to be embedded for every t ∈ (t0, t1) and every Γ0 ∈ U0. Each hypersurface Γ(t) is
of class C∞ for t ∈ (0, T0] and smooth in t ∈ (0, T0).

To the best of our knowledge, Theorem 2 provides the first rigorous proof for the
occurrence of self-intersections for the volume preserving mean curvature flow. In
particular, we give a proof for an example proposed by Gage [15] who considered
a curve similar to our Fig. 3.
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2 The surface diffusion flow

In this section we prove Theorem 1. We first introduce some notations. Given
an open set U ⊂ Rn, let hs(U) denote the little Hölder spaces of order s > 0,
that is, the closure of BUC∞(U) in BUCs(U), the latter space being the Banach
space of all bounded and uniformly Hölder continuous functions of order s. If Σ
is a (sufficiently) smooth submanifold of Rn then the spaces hs(Σ) are defined by
means of a smooth atlas for Σ. It is known that BUCt(Σ) is continuously embedded
in hs(Σ) whenever t > s. In the following, we assume that Σ is a smooth compact
closed immersed oriented hypersurface in Rn. Let ν be the unit normal field on Σ
commensurable with the chosen orientation. Then we can find a > 0 and an open
covering {Ul ; l = 1, . . . ,m} of Σ such that

Xl : Ul × (−a, a)→ R
n , Xl(s, r) := s+ rν(s)

is a smooth diffeomorphism onto its image Rl := im(Xl), that is,

Xl ∈ Diff∞(Ul × (−a, a),Rl) , 1 ≤ l ≤ m.

This can be done by selecting the open sets Ul ⊂ Σ in such a way that they are
embedded in Rn instead of only immersed, and then taking a > 0 sufficiently
small so that each of the Ul has a tubular neighborhood of radius a. It follows
that R := ∪Rl consists of those points in Rn with distance less than a to Σ. Let
β ∈ (0, 1) be fixed. Then we choose numbers α, β0 ∈ (0, 1) with α < β0 < β. Let

W := {ρ ∈ h2+β0(Σ) ; ||ρ||∞ < a} . (2.1)

Given any ρ ∈ W we obtain a compact oriented immersed manifold Γρ of class
h2+β0 by means of the following construction:

Γρ :=
m⋃
l=1

Im
(
Xl : Ul → R

n , [s 7→ Xl(s, ρ(s))]
)
.

Thus Γρ is a graph in normal direction over Σ and ρ is the signed distance between
Σ and Γρ. On the other hand, every compact immersed oriented manifold Γ that
is a smooth graph over Σ and that is contained in R can be obtained in this way.
For convenience we introduce the mapping

θρ : Σ→ Γρ, θρ(s) := Xl(s, ρ(s)) for s ∈ Ul , ρ ∈W .

It follows that θρ is a well-defined global (2 +β0)–diffeomorphism from Σ onto Γρ.
The surface diffusion flow (1.1) can now be expressed as an evolution equation for
the distance function ρ over the fixed reference manifold Σ,

∂tρ = G(ρ) , ρ(0) = ρ0 . (2.2)
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Here G(ρ) := Lρθ
∗
ρ(∆ΓρHΓρ) for ρ ∈ h4+α(Σ) ∩W , while ∆Γρ and HΓρ are the

Laplace-Beltrami operator and the mean curvature of Γρ, respectively, and L(ρ) is
a factor that comes in by calculating the normal velocity in terms of ρ, see [12] for
more details. We are now ready to state the following existence result for solutions
of (2.2).

Proposition 2.1.

(a) Let σ ∈ W be given. Then there exist a positive constant T0 > 0 and a
neighborhood W0 ⊂W of σ in h2+β0(Σ) such that (2.2) has a unique solution

ρ(·, ρ0) ∈ C([0, T0],W ) ∩ C∞((0, T0)× Σ) for every ρ0 ∈W0 .

(b) The map [(t, ρ0) 7→ ρ(t, ρ0)] defines a smooth local semiflow on W0.
(c) ρ(·, ρ0) ∈ C([0, T0], h4+α(Σ))∩C1([0, T0], hα(Σ)) for every ρ0 ∈ h4+α(Σ)∩W0.

Proof. (a) and (b) follow from [12, Theorem 2.2]. Moreover, [12, Lemma 2.1]
shows that the mapping [ρ 7→ G(ρ)] : h4+α(Σ) ∩W → hα(Σ) is smooth and that
the derivative is given by G′(ρ) = P (ρ) +B(ρ), where

P (ρ) ∈ L(h4+α(Σ), hα(Σ)), B(ρ) ∈ L(h2+α(Σ), hα(Σ)), ρ ∈ h4+α(Σ) ∩W .

In the following we fix ρ ∈ h4+α(Σ) ∩W . Lemma 2.1 in [12] also shows that P (ρ)
generates a strongly continuous analytic semigroup on hα(Σ). A well-known per-
turbation result, see [1, Theorem I.1.3.1], then implies G′(ρ) ∈ L(h4+α(Σ), hα(Σ))
also generates a strongly continuous analytic semigroup on hα(Σ). It is known (see
[1, Vol II], for instance) that the little Hölder spaces are stable under the contin-
uous interpolation method [1, 2, 9, 18]. Therefore, the spaces (h4+α(Σ), hα(Σ))
form a pair of maximal regularity for G′(ρ), see [1, Theorem III.3.4.1] or [2, 9, 18].
Part (c) follows now from maximal regularity results, for instance [2, Theorem
2.7]. �

In order to provide a proof of Theorem 1 we now choose Σ to be any smooth com-
pact closed immersed orientable hypersurface in Rn such that its image contains
the flat (n − 1)-dimensional disk U := {(s, 0) ∈ Rn−1 × R ; |s| ≤ 1} twice, and
with opposite orientations. To be precise, let i : Σ→ R

n be the immersion under
consideration, then we ask that

i−1(U) = U+ ∪ U−

with U+ ∩ U− = ∅ and both U+ and U− are flat (n − 1)-dimensional disks of
radius 1. Additionally we ask that Σ \ (U+ ∪ U−) is embedded in Rn. Identifying
U+ for the moment with its image U we ask that the normal on U+ points upwards,
that is, ν(·)|U+ = en, the nth basis vector of Rn. It follows that ν(·)|U− = −en.
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Fig. 1 This is a possible choice of Σ, cut in halves.

Let W be as in (2.1) and let σ ∈ h4+α ∩W have the following local symmetry:
σ(−s) = σ(s) for every s ∈ U±. This implies ∂jσ(0) = 0 for 1 ≤ j ≤ n − 1.
Observe that θσ(s) = (s,±σ(s)) (these are coordinates in Rn) for s ∈ U± and that
θσ : U± → θσ(U±) is an h4+α–diffeomorphism. It is straightforward to compute

G(σ)|U± := L(ρ)θ∗σ
(
∆ΓσHΓσ

)
|U±

in local coordinates, yielding

(n− 1)G(σ)|U±(0) = −∆2
n−1σ(0) +

n−1∑
j,k=1

(∂j∂kσ(0))2∆n−1σ(0)

+2
n−1∑
j,k,l=1

∂j∂kσ(0)∂j∂lσ(0)∂k∂lσ(0) ,

where ∆n−1 is the Laplacian in Euclidean coordinates of Rn−1 (see [12, Section 2]
for more details). We will now specify one more property of σ. We choose r > 0
small and we require that σ(s) = |s|4 for s ∈ U±r = {s ∈ U± ; |s| < r}; if r is small
enough then this is compatible with σ ∈ h4+α(Σ) ∩W . We conclude that

G(σ)|U±(0) = −24 < 0 . (2.3)

It follows from Proposition 2.1 that the evolution equation (2.2) with initial value
ρ(0) = σ has a unique solution

ρ(·, σ) ∈ C([0, T0], h4+α(Σ)) ∩ C1([0, T0], hα(Σ)) . (2.4)

Next we consider the restriction ρ±(t, σ) on U± of the function ρ(t, σ), that is,
ρ±(t, σ) := ρ(t, σ)|U± for 0 ≤ t ≤ T0, and we set d±(t) := ρ±(t, σ)(0), to track the
position of the center. It follows from (2.4) that d± ∈ C1([0, T0]). Moreover, using
the local character of G, we conclude that d± satisfies the equation

(d±)′(t) = G(ρ(t, σ))|U±(0) for 0 ≤ t ≤ T0 , d±(0) = 0 . (2.5)
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Equations (2.3)–(2.5) and the mean value theorem yield

d±(t) = −Mt+
(∫ 1

0

(
(d±)′(τt)− (d±)′(0)

)
dτ
)
t , (2.6)

where M := 24. It follows from (2.6) that there exists a positive constant µ > 0 and
an interval (t0, t1) ⊂ (0, T0] such that ρ±(t, σ)(0) = d±(t) ≤ −µ for t ∈ (t0, t1). By
Proposition 2.1(b) we can find a function σ0 ∈W0 such that Σ0 := Γσ0 is embedded
and such that Γ(t) := Γρ(t,σ0) is immersed for at least t ∈ (t0, t1). By employing
Proposition 2.1(b) once more we conclude there is a neighborhood W (σ0) ⊂ W0

of σ0 in h2+β0(Σ) such that Γρ0 is still embedded, whereas Γρ(t,ρ0) is immersed for
t ∈ (t0, t1) and all ρ0 ∈ W (σ0). We note that C2+β(Σ) is contained in h2+β0(Σ)
with continuous injection j : C2+β(Σ) → h2+β0(Σ). Hence U0 := j−1(W (σ0)) is
an open C2+β–neighborhood of σ0 and Theorem 1 follows by choosing Σ0 := Γσ0

and Γ0 := Γρ0 for ρ0 ∈ U0. �

Fig. 2 This is half of Γ0, a surface that loses embeddedness and becomes
immersed. The gap might have to be much smaller than depicted.

Remark 2.2. The following is the essence of the construction: Γσ is an immersed
hypersurface such that its image contains two opposing fourth-order paraboloids
touching only at the vertex. The symmetry of Γσ is irrelevant. Locally we can
compute the initial velocity of Γσ, and it is such as to create an overlapping of the
paraboloids. A continuity argument then guarantees the same behavior for nearby
embedded hypersurfaces, which do exist by construction of Γσ. We have chosen
a fourth-order paraboloid in order to facilitate the computation of G(σ)|U± . Any
other configuration that produces the same sign as in (2.3) will work as well.

3 The volume preserving mean curvature flow

As in the previous section Σ denotes a smooth compact closed immersed orientable
hypersurface in Rn and we define W := {ρ ∈ h1+β0(Σ) ; ||ρ||∞ < a} for a > 0
appropriate. The volume preserving mean curvature flow (1.2) in R is equivalent
to the following evolution equation for the distance function ρ:

∂tρ = G(ρ), ρ(0) = ρ0 , (3.1)
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where ρ0 ∈W is chosen such that Γ0 = Γρ0 , and where

G(ρ) := L(ρ)
(
HΓρ − θ∗ρHΓρ

)
, ρ ∈ h2+α(Σ) ∩W . (3.2)

Here HΓρ is the mean curvature of Γρ and L(ρ) comes from calculating the nor-
mal velocity in coordinates of Σ, see [14] for more details. We have the following
existence result for solutions of (3.1).

Proposition 3.1.
(a) Let σ ∈ W be given. Then there exists a positive constant T0 > 0 and a
neighborhood W0 ⊂W of σ in h1+β0(Σ) such that (3.1) has a unique solution

ρ(·, ρ0) ∈ C([0, T0],W ) ∩ C∞((0, T0)× Σ) for every ρ0 ∈W0 .

(b) The map [(t, ρ0) 7→ ρ(t, ρ0)] defines a smooth local semiflow on W0.
(c) ρ(·, ρ0) ∈ C([0, T0], h2+α(Σ))∩C1([0, T0], hα(Σ)) for every ρ0 ∈ h2+α(Σ)∩W0.

Proof. Part (a) and part (b) follow from the results in [14, Section 2]. To be
more precise, in [14] only embedded surfaces are considered. However, a careful
analysis of the proof shows that the existence, uniqueness, and semiflow results
remain valid for immersed hypersurfaces, provided one defines the mappings X
and Φρ of [14, Section 2] by their local analogs as in [12, Section 2]. Part (c) can
be established by similar arguments as in the proof of Proposition 2.1. �

We proceed to prove Theorem 2. Our first goal is to construct a suitable reference
manifold Σ. We take a positively oriented immersed curve in R

2, such as the
one in Fig. 3. The immersed image contains a line segment twice, with opposite
orientations, and the image without this line segment is an embedded curve.

d+ c

x

d

Fig. 3 Rotation of this curve in Rn yields the hypersurface Σ.
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For the two-dimensional case this curve will be Σ, while for the higher dimensional
case we rotate the curve to generate a hypersurface, as outlined below. Let [s 7→
(x(s), y(s))] : [0, L]→ R

2 be a parameterization by arc length of the curve and let
Sn−2 ⊂ Rn−1 be the standard (n− 2)-dimensional unit sphere. Then we set

Σ = {(x(s), y(s)ω) ; s ∈ [0, L], ω ∈ Sn−2} .

Let κ1 denote the scalar curvature of the curve [s 7→ (x(s), y(s))]. Then a standard
computation yields the mean curvature of Σ as

H =
1

n− 1

(
κ1 − (n− 2)

x′

y

)
. (3.3)

Furthermore, the symmetry of Σ can be used to compute the average of H as

H =
|Sn−2|
|Γ|

∫ L

0

H(s)y(s) ds .

Using equation (3.3) and setting d = min{y(s)} one derives

(n− 1)
∫ L

0

H(s)y(s) ds = d

∫ L

0

κ1(s) ds+
∫ L

0

κ1(s)(y(s)− d) ds− (n− 2)
∫ L

0

x′(s) ds .

The theorem of the turning tangents implies that
∫
κ1(s)ds = 2π, and hence it is

clear that H > 0 provided d is large enough, which amounts to shifting the curve
far enough away from the axis of rotation. By continuity the average of the mean
curvature of Γρ is therefore also positive provided ρ ∈W is small enough. Finally,
it is clear that by construction Σ contains a flat (n − 1)-dimensional annulus U
twice, with opposite orientations, and that Γρ is in fact embedded in Rn provided
ρ < 0 on the annulus.

We let U± be the two components of i−1(U), where i : Σ→ R
n is the immersion

under consideration, and U is the flat annulus from above. We now choose σ ∈
h2+α(Σ) ∩W with σ ≡ 0 on U± (in fact we could choose σ ≡ 0 on Σ so that
Γσ = Σ), then by (3.2)

G(σ)|U± = HΓσ > 0 . (3.4)

Let ρ(·, σ) be the unique solution of (3.1) with initial value ρ(0) = σ and note that

ρ(·, σ) ∈ C([0, T0], h2+α(Σ)) ∩ C1([0, T0], hα(Σ)) (3.5)

due to Proposition 3.1. As in Section 2 we let ρ±(t, σ) denote the restriction of
ρ(t, σ) on U±. We set d±(t) := ρ±(t, σ)(s0, ω) with s0 any fixed point on the line
segment that generated U and any fixed ω ∈ Sn−2. It follows that d± ∈ C1[0, T0]
and it is easy to see that d± solves the equation

(d±)′(t) = G(ρ(t, σ))|U±(s0, ω) for 0 ≤ t ≤ T0 , d±(0) = 0 . (3.6)
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Equations (3.4)–(3.6) and the mean value theorem show that

d±(t) = Mt+
(∫ 1

0

(
(d±)′(τt)− (d±)′(0)

)
dτ
)
t

with M := HΓσ . Using Proposition 3.1(b) we can choose a function σ0 in W0 such
that Γσ0 is embedded and such that Γρ(t,σ0) ceases to be embedded on a time
interval (t0, t1) ⊂ (0, T0]. The idea is that the time derivative of d± is positive, and
hence so will be d± for some later time even if it was initially negative, see Section 2
for more details. According to Proposition 3.1(b) the same behavior will still prevail
for ρ0 in a small enough h1+β0(Σ)–neighborhood W (σ0) ⊂ W0 of σ0. Theorem 2
now follows by setting U0 := j−1(W (σ0)) with j := C1+β(Σ) → h1+β0(Σ) the
natural injection. �

Remark 3.2. The following is the essence of the construction: Γσ is an immersed
hypersurface such that its image contains an (n− 1)-dimensional flat piece twice,
with opposite orientation, and Γσ has a positive average of its mean curvature. The
symmetry of Γσ is irrelevant. Locally we can compute the initial velocity of Γσ,
and it is such as to create an overlapping near the two flat pieces of the surface. We
can find embedded hypersurfaces as close to Γσ as we want. A continuity argument
then guarantees the same behavior for nearby embedded hypersurfaces.
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