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ABSTRACT

In this paper we present recent existence, uniqueness, and stability results for the motion
of immersed hypersurfaces driven by surface diffusion. We provide numerical simulations
for curves and surfaces that exhibit the creation of singularities. Moreover, our numerical
simulations show that the flow causes a loss of embeddedness for some initially embedded
configurations.

1. INTRODUCTION

The surface diffusion flow is a geometric evolution law in which the normal ve-
locity is equal to the Laplace-Beltrami of the mean curvature. More precisely,
we assume that Γ0 is a compact closed immersed orientable hypersurface in
R
n of class C2+β . Then one is looking for a family Γ = {Γ(t) ; t ≥ 0} of

smooth immersed orientable hypersurfaces satisfying the following evolution
equation

V (t) = ∆Γ(t)HΓ(t) , Γ(0) = Γ0 . (1.1)

Here V (t) denotes the velocity in the normal direction of Γ at time t, while
∆Γ(t) and HΓ(t) stand for the Laplace-Beltrami operator and the mean curva-
ture of Γ(t), respectively. Both the normal velocity and the curvature depend
on the choice of the orientation, however, (1.1) does not, and so we are free to
choose whichever one we like. In particular, if Γ(t) is embedded and encloses
a region Ω(t) we always choose the outer normal, so that V (t) is positive if
Ω(t) grows, and so that HΓ(t) is positive if Γ(t) is convex with respect to Ω(t).

The surface diffusion flow (1.1) was first proposed by Mullins (Mu57) to
model the dynamics for the motion of the surface of a crystal when all mass
transport is by curvature driven diffusion along the surface. It has also been
examined in a more general mathematical and physical context by Dav̀ı and
Gurtin (DG90), and by Cahn and Taylor (CT94). More recently, Cahn, El-
liott, and Novick-Cohen (CEN96) showed by formal asymptotics that the sur-
face diffusion flow is the singular limit of the zero level set of the solution to the
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Cahn-Hilliard equation with a concentration dependent mobility. The Cahn-
Hilliard equation is a model describing the phase separation and coarsening
phenomena in a quenched binary alloy. The surface diffusion model describes
the coarsening phenomena after the distinct phases have already been well es-
tablished, and is derived from the Cahn-Hilliard model with a concentration
dependent mobility as a limit as the thickness of the mushy region between
the two phases approaches zero. In the case of constant mobility in the Cahn-
Hilliard equation, Alikakos, Bates, and Chen (ABC94) proved that the motion
of the singular limit is governed by the Mullins-Sekerka model (also called the
Hele-Shaw model with surface tension), rigorously establishing a result that
was formally derived by Pego (Pe89).

Due to the local nature of the evolution we may assume the hypersurface
Γ0 to be connected. However, unlike the well-studied mean curvature flow
(Hu84; GH86; Gr87), the surface diffusion flow does not enjoy the luxury of a
maximum principle, as the equations are of fourth order. In particular, several
disjoint components may collide, which is easily seen by putting a stationary
sphere into the path of a moving surface.

The motion given by (1.1) has some interesting geometrical features. As-
sume that Γ is a smooth solution to (1.1) and let A(t) denote the area of Γ(t).
Then the function A is smooth and we find for its derivative (see e.g. (La80,
Theorem 4) or (GH86, p. 70))

1
n− 1

d

dt
A(t) =

∫
Γ(t)

V (t)HΓ(t) dσ =
∫

Γ(t)

[∆Γ(t)HΓ(t)]HΓ(t) dσ (1.2)

= −
∫

Γ(t)

|gradΓ(t)HΓ(t)|2Γ(t)dσ ≤ 0 .

Hence the motion driven by surface diffusion is area decreasing. In fact, the
surface diffusion flow is a gradient flow for the area functional (Ma97b), if
interpreted in the sense of Fife (Fi91a; Fi91b). Additionally, if Γ consists of
embedded hypersurfaces which enclose a region Ω(t), and if Vol(t) denotes the
volume of Ω(t), then the derivative of the smooth function Vol is given by

d

dt
Vol(t) =

∫
Γ(t)

V (t) dσ =
∫

Γ(t)

∆Γ(t)HΓ(t) dσ = 0 ,

thus the motion driven by surface diffusion is also volume preserving in the
embedded case.

Clearly every compact surface of constant mean curvature is an equilibrium
for (1.1), and the converse is also true by Liouville’s Theorem. In the embed-
ded case this leaves only the spheres, see (Al56), while in the immersed case
there are many such surfaces, as for example the Wente tori (We86).
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2. EXISTENCE OF SOLUTIONS

The surface diffusion flow was studied by Baras, Duchon, and Robert (BDR84)
for strip-like domains in two space dimensions. They prove global existence
for rather weak assumptions on the initial data. Also in two dimensions,
the surface diffusion flow for closed embedded curves was analyzed by Elliott
and Garcke (EG97) who show local existence and regularization for C4-initial
curves, but not uniqueness. Polden (Po96) and, independently, Giga and
Ito (GI97) show short-term existence and uniqueness for immersed H4-initial
curves. The general case of immersed hypersurfaces in any space dimension is
considered by the authors (EMS97). We show uniqueness and local existence
of smooth solutions for the motion of any immersed C2+β-initial hypersurface
in Rn.

In order to give precise results, let us introduce the following notation.
Given an open set U ⊂ Rn, let hs(U) denote the little Hölder spaces of order
s > 0, that is, the closure of BUC∞(U) in BUCs(U), the latter space being
the Banach space of all bounded and uniformly Hölder continuous functions
of order s. If Σ is a (sufficiently) smooth submanifold of Rn then the spaces
hs(Σ) are defined by means of a smooth atlas for Σ. The following results
have been proved in (EMS97).

Theorem 1 Assume that 0 < β < 1, and let Γ0 be a compact closed immersed
orientable hypersurface in Rn belonging to the class h2+β.

(a) The surface diffusion flow (1.1) has a unique local classical solution
Γ = {Γ(t) ; t ∈ [0, T )} for some T > 0. Each hypersurface Γ(t) is of class
C∞ for t ∈ (0, T ). Moreover, the mapping [t 7→ Γ(t)] is continuous on [0, T )
with respect to the h2+β-topology and smooth on (0, T ) with respect to the
C∞-topology.

(b) Suppose that the initial hypersurface Γ0 is a h2+β-graph in the normal
direction over some smooth immersed hypersurface Σ. Then the mapping
ϕ := [(t,Γ0) 7→ Γ(t)] induces a smooth local semiflow on a open subset of
h2+β(Σ).

As mentioned in the introduction, every embedded equilibrium of the sur-
face diffusion flow is a Euclidean sphere. However, none of these equilibria is
isolated, since in every neighborhood of a fixed sphere there is a continuum
of further spheres. Thus the dynamics of the flow generated by (1.1) is even
near spheres difficult to analyze. For curves, it is shown in (EG97) that small
embedded perturbations of circles exist globally in time, and furthermore,
assuming global existence, that any closed curve will become circular under
this evolution. The methods used in (EG97) are restricted to the evolution
of curves. For higher space dimensions, if the initial surface is embedded
and close to a sphere, we prove analogously, but with entirely different meth-
ods, that the solution exists globally and converges exponentially fast to some
sphere (EMS97).
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Theorem 2 Let S be a fixed Euclidean sphere and let M denote the set of
all spheres which are sufficiently close to S. Then M attracts all embedded
solutions which are h2+β(S)-close to M at an exponential rate. In particular,
if Γ0 is sufficiently close to S in h2+β(S) then Γ exists globally and converges
exponentially fast to some sphere inM enclosing the same volume as Γ0. The
convergence is in the Ck-topology for every initial hypersurface Γ0 which is in
a sufficiently small h2+β(S)-neighborhood W = W (k) of S, where k ∈ N is a
fixed number.

It is interesting to note that the volume-preserving mean curvature flow and
the Mullins-Sekerka model share many properties with the surface diffusion
flow (1.1). They all preserve the enclosed volume, decrease the area of the
surface, and for all three the invariant manifoldM of spheres is exponentially
attracting (ES96; ES98).

Theorem 1 constitutes a precise local existence and uniqueness result for
classical solutions to (1.1) starting out as immersed hypersurfaces. The evolu-
tion (1.1) has in fact a quasilinear parabolic structure. This structure effects,
for example, a parabolic regularization of the flow ϕ since we are allowed to
choose initial surfaces Γ0 of class h2+β , although ∆Γ0HΓ0 is for such Γ0 in
general not a classical function. It also provides the foundation for the study
of the qualitative behavior of the semiflow ϕ. Our approach for proving exis-
tence, uniqueness, and regularity of solutions is based on the general theory
of Amann (Am93; Am95) for quasilinear parabolic evolution equations.

The proof of Theorem 2 consists of two steps. We first show that the semi-
flow ϕ admits a stable (n + 1)-dimensional local center manifold Mc. This
means, in particular, that Mc is a locally invariant manifold and that Mc

contains all small global solutions of ϕ. In a second step we then prove that
Mc coincides with the manifold M of the theorem. It is well-known that
local center manifolds are generally not unique. However since each local cen-
ter manifold of the surface diffusion flow consists of equilibria only this forces
uniqueness. Under suitable spectral assumptions for the linearization the
existence of center manifolds is well-known for finite-dimensional dynamical
systems. The corresponding construction for quasilinear infinite-dimensional
semiflows (e.g. for ϕ) is considerably more involved. The basic technical tool
here is the theory of maximal regularity, due to G. Da Prato and P. Gris-
vard (DG79), see also (Am95; An90; Lu95). In particular, these results al-
low to treat (1.1) as a fully-nonlinear perturbed linear evolution equation,
see (DL88; Lu95; Si95).

3. NUMERICAL SIMULATIONS

In this section we will consider various initial configurations which display
several phenomena of the flow. All statements in this section are to be under-
stood as being based on numerical simulations, and not on analytical proofs.
One of our examples is an embedded curve that loses and regains embedded-
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ness twice, and ultimately approaches a circle. The resulting evolution exists
for all time. On the other hand, some immersed curves develop singularities.
For example, we provide evidence that the surface diffusion flow shrinks a
figure-eight to a point in finite time. Also, a two-dimensional surface shaped
like a dumbbell with a sufficiently thin neck will pinch off, thereby forming an
essential singularity since the curvature becomes infinite. A surface shaped
like an erythrocyte (a red blood cell) with a thin enough center will cease to be
embedded and become immersed, similar to the behavior of a dumbbell curve
in two dimensions. For dumbbell curves, this behavior was conjectured by
Elliot and Garcke (EG97), numerically established by the authors (EMS97),
and proven by Giga and Ito (GI97). This situation is in clear contrast to
the mean curvature flow, where the maximum principle prevents creation of
self-intersections.

Our approach for analytically proving existence and uniqueness of solutions
involves parameterizing the hypersurfaces as graphs over some fixed reference
hypersurface. The evolution law is then recast as an equation for functions
defined on this reference manifold. For the numerical scheme we compute
the linearizations of the operators involved and set up a semi-implicit finite
difference equation. The main idea then is to choose the reference manifold
to be equal to the initial hypersurface, which simplifies the equations, and to
compute only one time step, and then to consider the newly computed man-
ifold as a new reference manifold. This is the approach taken in (EMS97),
implemented numerically for curves in R2. A different theoretical background
can be given to the numerical scheme by considering the gradient flow struc-
ture of the surface diffusion flow (Ma97b), see also (Ma97a). The relevant
definition of gradient flow (Fi91a; Fi91b) establishes a gradient for the area
of an evolving hypersurface. This definition of the gradient of the area at a
given time t depends on the hypersurface at that time t. In other words, the
space with respect to which one computes the gradient is constantly changing.
Implementation of a finite difference scheme based on this gradient flow struc-
ture leads then naturally to a scheme for functions defined on a constantly
changing reference manifold, and one is lead to the same numerical scheme.
The implementation for surfaces in R3 is given in (Ma97b).

3.1. A figure-eight

One can make perfect sense of the enclosed signed area of a figure-eight, which
is for a symmetric figure-eight equal to zero. As the evolution decreases the
length of the curve, and preserves the enclosed area, it can be expected that
the limiting figure has zero area and zero length. In fact, Polden (Po96) shows
analytically that a symmetric figure-eight either develops a singularity, or has
to shrink in finite time to a point. His argument starts with equation (1.2) for
curves (writing L for length instead of A, and κ for curvature instead of H),
and then uses Poincaré’s inequality (the curvature has average zero), Hölder’s
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inequality, and finally the Fenchel-Fary inequality:

dL

dt
= −

∫
Γ(t)

|∇κ|2 ds ≤ −
(

2π
L

)2 ∫
Γ(t)

κ2 ds

≤ −
(

2π
L

)2 1
L

(∫
Γ(t)

|κ| ds

)2

≤ − 16π4

L3
.

Hence one obtains
dL4

dt
≤ −64π4 ,

so that the length of the curve reduces to zero in finite time, assuming no
singularity arises sooner. This shrinking to a point is exactly what happens
for the symmetric figure-eight. The argument in fact applies to any curve for
which the curvature has average zero, so that evolutions starting with such
a curve exist only for a finite time, at least as far as classical solutions are
concerned.
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Fig. 1 The figure-eight r(θ) =
√

cos(θ).
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3.2. A spiral

A spiral exhibits the phenomenon that it undergoes several stages under the
surface diffusion flow, switching back and forth between being embedded and
being immersed. The area enclosed by the curve remains constant, provided
one counts those patches twice where the curve overlaps while being immersed.
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Fig. 2 A spiral modeled on r =
√
θ. The times of the snapshots are at

t = 0, 3, 10, 17.5, 25, 40, top-left to bottom-right.
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3.3. An erythrocyte

As demonstrated by the previous example, certain curves can lose their em-
beddedness and become immersed, see also (EG97; EMS97; GI97). Here we
provide an example of a surface that exhibits the same effect. The snapshot at
t = 0.003 shows maximal overlap (this is the second graph below), the surface
will then start to separate again, and will ultimately evolve into a sphere.

Fig. 3 This is a surface that loses its embeddedness and becomes im-
mersed. The first graph is the starting configuration, the second
is at time t = 0.003. Notice the small bump in the center of
the second graph, where the lower half of the surface has pierced
through the upper half. The main diameter of the figure is about
4 space units.
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Fig. 4 These are the central portions of the cross-sections of the surfaces

pictured above. The first section is the starting configuration, the
diameter of the neck is 0.02, and the second section is at time
t = 0.003, at which time the surface is immersed.
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3.4. A dumbbell surface

A dumbbell with a thin neck has a maximum of the mean curvature at the
neck, and hence the Laplacian of the mean curvature will be negative. This
leads to an inwards motion at the neck, and hence to an increased pinching
effect, so that pinching-off can be expected, and it, in fact, occurs.

Fig. 5 A dumbbell with a sufficiently thin neck leads to a pinch-off. The
first graph is the starting configuration, the second is at time
t = 0.0044. The length of the dumbbell is about 11 space units.

This effect is well-known for motion by mean curvature and was proved by
Grayson (Gr89), see also (An92) and (St96, Section 2.2). The proof uses in
an essential way the maximum principle, which is unavailable for the surface
diffusion flow. There is no analytical proof known to the authors for this
pinching effect of the surface diffusion flow.
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