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Many moving boundary problems that are driven in some way by the curvature of the

free boundary are gradient flows for the area of the moving interface. Examples are the

Mullins-Sekerka flow, the Hele-Shaw flow, flow by mean curvature, and flow by averaged

mean curvature. The gradient flow structure suggests an implicit finite differences approach

to compute numerical solutions. The proposed numerical scheme will allow to treat such

free boundary problems in both IR2 and IR3. The advantage of such an approach is the

re-usability of much of the setup for all of the different problems.

As an example of the method we will compute solutions to the averaged mean curvature

flow that exhibit the formation of a singularity.

1 Introduction

In this paper we will study geometric evolution problems for surfaces driven by curvature.
These moving boundary problems arise from models in physics and the material sciences,
and they describe phase changes, or more generally, phenomena in fluid flow.

The Hele-Shaw model (named after H.S. Hele-Shaw [47]) describes the pressure of two
immiscible viscous fluids trapped between two parallel glass plates and has attracted
considerable attention in the literature, both on the analytical side [23, 27, 28, 29, 33,
38, 51, 54, 63] and on the numerical side [2, 6, 7, 8, 12, 25, 26, 49, 50, 65]. This list
of references also encompasses work related to the one-sided Hele-Shaw model, which
arises as a limit when the viscosity of one of the fluids approaches zero. Furthermore,
the Hele-Shaw model has classically been considered on a bounded domain, but many of
the references above also address the problem on an unbounded domain. We shall only
consider the problem on all of IRn; for the precise formulation see (4.4).

The Mullins-Sekerka model was first proposed by (and much later named after) Mullins
and Sekerka to study solidification of materials of negligible specific heat [58]. For a while
this model was also called the Hele-Shaw model, leading to a somewhat confused litera-
ture. Pego [61], and then Alikakos, Bates, and Chen [3], and also Stoth [68], established
this model as a singular limit of the Cahn-Hilliard equation [17], a fourth order partial
differential equation modelling nucleation and coarsening phenomena in a melted binary
alloy. The Mullins-Sekerka model is considered to be a good model to describe the stage
of Ostwald ripening in phase transitions, which is the stage after the initial nucleation has
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essentially been completed and where some particles grow at the cost of others in an effort
to decrease interfacial energy (surface area). The literature focuses mainly on the mod-
elling and analytical aspects of the problem [11, 16, 18, 19, 21, 32, 34, 46, 56, 66, 71, 72]
though there are numerical simulations for the two-dimensional case [10, 73]. We shall
consider the two-phase problem on all of IRn, see (4.3).

The mean curvature flow is probably the most studied geometric moving boundary
problem, it is in some way also the simplest: the normal velocity is equal to the mean
curvature of the interface. This sharp interface model arises, for example, as a singular
limit of the Allen-Cahn equation [4], see the paper by Evans, Soner, and Souganidis [36].
Physically, the Allen-Cahn equation describes the motion of phase-antiphase boundaries
between two grains in a solid material. There is also a volume preserving version of
the mean curvature flow, for which one subtracts the average of the mean curvature
from the normal velocity. A plethora of analytical results and theories of weak solutions
exists, for example, see [20, 22, 30, 35, 36, 37, 43, 44, 52, 53, 57, 67], and for numerical
solutions [1, 9, 13, 14, 15, 60, 69], to name but a few.

The algorithm proposed below is a front-tracking boundary-integral method. It has
the advantage that one does not have to differentiate across the front, as compared to a
level-set approach. Also, at least if the inner product (see below) is of local character, it
makes no difference whether the moving interface is immersed or embedded. Both front-
tracking methods and the level-set methods have been used intensively in the literature,
see for example the recent review article by Hou [48].

Now let us describe what we mean under a gradient flow for the area of the free
boundary. First of all, area means surface area if the problem setting is IR3, or length
if the setting is IR2. The notion of gradient depends on a function space defined on the
free boundary. This function space is assumed to be a (pre-)Hilbert space H contained
in L2 of the free boundary Γ(t). Each (sufficiently small) element of H gives rise to a
graph in the normal direction over Γ(t), and one can compute the area of that graph.
Under suitable assumptions this functional, which maps functions on the interface to
the area of the resulting graph, is differentiable, and its derivative, being linear, can be
represented by a vector in the space H. This gradient vector clearly depends on the metric
of H and is of course an element of H, that is a function on Γ(t). If now for all times t
the normal velocity of the moving boundary coincides with the negative gradient of the
area functional with respect to H(Γ(t)), then this free boundary problem is considered
a gradient flow for the area. This notion is due to P. Fife [39, 40]. The free boundary
problems mentioned above fall within the characterisation as gradient flows.

We propose to replace the normal velocity by a finite difference, and the scheme should
be chosen to be implicit. That means that the computation of the velocity will depend on
the interface at the next time step. This is essential for the stability of the computations.
This dependence will then be replaced by an approximate linearised dependence, which
makes the system semi-implicit. Finally, discretisation of the surface in the spatial vari-
ables and then averaging over (small) patches of the surface will lead to a linear system
for the velocities of the surface patches. This is where the nature of the operator S giving
the scalar product of H plays an essential role. We will assume that either S is of local
character, or that one of S or S−1 has an integral representation on the interface. For the
mean curvature flow S is local; for the Mullins-Sekerka flow S has an integral represen-
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tation with a kernel that happens to be independent of the free boundary, while for the
Hele-Shaw problem there is an integral representation for S−1 with a kernel depending
only in a local manner on the unknown interface. The special form of the kernels is of
practical importance for the spatial discretisation.

Some of these ideas have been implicitly used by Bates, Chen, and Deng [10] for the
two-sided Mullins-Sekerka problem in two space dimensions (the interface is a curve in
the plane and spatial discretisation amounts to approximating a curve by a polygon).
However, their approach is ad-hoc and does not address the gradient flow nature of
the problem. Also for the Mullins-Sekerka in two space dimensions, there is the refined
method by Zhu, Chen, and Hou [73] which avoids the numerically laborious step of
inversion of a matrix to compute the next time step. The idea of a semi-implicit scheme
appears also elsewhere in the literature, see for example [8, 6, 50]. Of particular interest
is a paper by Petersson [62], in which he computes numerical solutions to a free boundary
problem in the plane. There he uses the idea of adding a perturbation of order ε to a
solution and expanding the perturbed solution in ε. Collecting first order terms in ε leads
then to a semi-implicit scheme for the perturbation. This is clearly similar in spirit to
what we do below. We consider the interface at the next time step as a normal variation
of the current interface, and then compute a linear approximation of the curvature of the
interface at the next time step. However, we have more structure in our equations, and
it turns out we need to linearise only the curvature, and no other state variable. This
then leads to a simple and elegant iterative scheme because we have a linear relationship
between curvature and normal velocity. This is, in fact, the main advantage of the gradient
flow structure, because all nonlocal and nonlinear dependencies can be hidden away in
the inner product.

Of related interest is the paper by Almgren, Taylor, and Wang [5], in which another
variational approach to curvature driven flows is given. Finally, for an overview of other
methods used to treat geometric moving interface problems the reader is referred to the
paper by Taylor, Cahn, and Handwerker [70].

2 Analytical background material

The author owes much of the material in this section to P. Fife [39, 40].

2.1 Definition of Gradient Flows

Gradient flows are a natural model for the dynamics of a system that is known to cause
some quantity A to decrease as time evolves; that is, one seeks to solve

d u(t)
dt

= −∇A(u(t))

where u(t) describes the state of the system. In this paper the system will be characterised
by a compact (n − 1)-dimensional surface Γ(t) embedded or immersed in IRn, which
need not necessarily be connected, and A will be the (n − 1)-dimensional surface area
functional. We are interested in the physically relevant cases n = 2 or n = 3. We assume
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the evolution is sufficiently smooth, that is, for small enough times τ we have

Γ(t+ τ) = {x ∈ IRn : x = y + ρ(τ, y)N(t, y), y ∈ Γ(t)}

for some smooth function ρ and unit outer normal N of Γ(t). Let V (t, y) =
∂ρ

∂τ
(τ, y)

∣∣∣
τ=0

denote the normal velocity of Γ(t). The following two basic formulae from differential
geometry are the starting point:

d

dt
A(Γ(t)) =

∫
Γ(t)

V (x)κ(x) dσx , (2.1)

d

dt
Vol(Γ(t)) =

∫
Γ(t)

V (x) dσx . (2.2)

Here κ denotes the curvature of Γ(t) if n = 2, and the mean curvature of Γ if n =
3. Throughout this paper the mean curvature is defined as the sum of the principal
curvatures; this avoids having a factor of (n− 1) in formula (2.1). The sign is chosen so
that a sphere has positive curvature with respect to the outer normal; by the definition
of V a family of expanding spheres has positive normal velocity. Vol(Γ(t)) denotes the
n-dimensional volume enclosed by Γ(t).

For any fixed Γ consider a (pre-)Hilbert space H(Γ) ⊂ L2(Γ). The right-hand side of
equation (2.1) can be interpreted as a linear functional for the function V ,

dA/dt : H(Γ)→ IR , V 7→
∫

Γ

V κ dσ .

In some cases this will be a bounded linear functional on H(Γ). We assume that this is
the case and that we can represent the functional as the scalar product with some unique
element ∇H(Γ)A. By the Riesz representation theorem this is certainly possible if H(Γ)
is complete. Hence for any v ∈ H(Γ)∫

Γ

vκdσ = <v,∇H(Γ)A>H(Γ)
, (2.3)

and in particular the following equation holds:

dA
dt

= <V,∇H(Γ)A>H(Γ)
. (2.4)

Γ(t) is said to be a gradient flow for A if for all times t

V (t) = −∇H(Γ(t))(A) .

Notice that the space with respect to which the gradient is computed is constantly
changing.

As the easiest example set H(Γ(t)) = L2(Γ(t)). From equation (2.3) we have <v, κ> =
<v,∇H(Γ(t))A> with both inner products in L2(Γ(t)), therefore ∇H(Γ(t))A = κ holds,
and the L2-gradient flow is given by V = −κ. This is the usual flow by mean curvature.
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2.2 Volume preserving flows

We write a superscript zero when we talk about a function space containing only functions
with average zero. Zero-average subspaces are particularly important because gradient
flows in these spaces preserve the enclosed volume by (2.2).

Let S be a positive definite symmetric operator whose domain and range are (dense) lin-
ear subspaces in L0

2(Γ). Define H(Γ) to be the (pre-)Hilbert space consisting of the func-
tions in the domain of S endowed with the scalar product <u,w>H(Γ) = <u, Sw>L0

2(Γ).
Denote the average of κ on Γ by κ. Then for v ∈ H(Γ), using (2.3) for the first equality,

<v,∇H(Γ)A>H(Γ)
= <v, κ>L2

= <v, κ− κ>L0
2

= <v, S−1(κ− κ)>H(Γ) ,

and the gradient flow with respect to the space H is given by

V = −S−1(κ− κ) . (2.5)

3 Discretisation

The proposed scheme for the gradient flows involves essentially two steps. First discretise
in time, and then triangulate the surface (if n = 3, for n = 2 approximate the curve by
a polygon). In this outline we will only treat volume preserving flows that can be set up
as outlined in Section 2.2. The notation of Section 2 will be used below.

3.1 Finite differences

The main idea for discretisation in time is as follows. For some abstract gradient flow

du(t)
dt

= −∇A(u(t))

one replaces the time derivative by a finite difference

u(t+ h)− u(t)
h

= −∇A(u(t+ h)) .

Hence one has formally

u(t+ h) = (id + h∇A)−1u(t) ;

here id stands for the identity map. Now set h = t/k, then it can be expected that

u(t)
def= (I +

t

k
∇A)−ku(0)

is a good approximation for the exact solution uexact(t) at time t. One can show that
under suitable assumptions the exact solution is given by the exponential formula

uexact(t) = lim
k→∞

(I +
t

k
∇A)−ku(0) ,

see for example [24, 55]. This motivates our numerical approach here, even as the setting
in those two references is essentially different.

First we introduce a bit of notation. Let Σ be a fixed manifold immersed or embedded
in IRn and assume Γ(t) is a parameterised as a graph in the normal direction over Σ, that
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is Γ(t) = im(φ(., t)) with φ : Σ× (t− ε, t+ ε)→ IRn. In fact, for the computations we will
simply use Σ = Γ(t), but for the derivation is is better to keep the roles separate. For free
boundary problems the time derivative of an abstract evolution problem corresponds to
the normal velocity, hence equation (2.5) yields the following finite difference equation

N(φ(x, t), t) · φ(x, t+ h)− φ(x, t)
h

= −S−1(κ(., t+ h)− κ(t+ h))(φ(x, t+ h)) .

One should actually write φ̃ and so on because the above equation describes approximate
solutions; by a similar abuse of notation we will call the left side of the above equation
V (φ(x, t), t) again and hence

φ(x, t+ h) = φ(x, t) + hV (φ(x, t), t)N(φ(x, t), t) ,

V (φ(x, t), t) = −S−1(κ(., t+ h)− κ(t+ h))(φ(x, t+ h)) .

Finally approximate the dependency of the curvature of the next time step by

κ(φ(x, t+ h), t+ h) ≈ κ(φ(x, t), t) + hLV (φ(x, t))

where L is a linear operator which is formally defined via

L(V (φ(x, t), t)) =
d

dh
κ(φ(x, t) + hV (φ(x, t), t)N(φ(x, t), t))

∣∣∣∣
h=0

. (3.1)

As V (., t) is in the range of S−1 it has average zero, and hence by linearity of L so does
L(V (., t)), thus

V (., t) = −S−1(κ(., t) + hL(V (., t))− κ(t)) .

This finally leads to the (semi-)implicit scheme given by (here id stands for the identity
map)

(id + hS−1L)(V (., t)) = −S−1(κ(., t) + κ(t)) , (3.2)

or equivalently

(S + hL)(V (., t)) = −κ(., t) + κ(t) . (3.3)

It should be mentioned here, that it is now clear that this setup not only works for
gradient flows, but also for others, that are given by a not necessarily invertible linear
operator A defined on L2 or L0

2, such that

V = −A(κ) or V = −A(κ− κ) . (3.4)

The scheme is then the one given by (3.2) with S−1 replaced by A,

(I + hAL)(V (., t)) = −A(κ(., t) + κ(t)) .

However, if A is not linear, then this elegant setup no longer works. The point of this
paper is that gradient flows provide an interesting class of free boundary problems sat-
isfying (3.4).

3.2 Spatial discretisation

As mentioned above, let Σ = Γ(t), so that in particular φ(x, t) = x. Subdivide the
interface Γ into a finite collection of disjoint surface patches (line segments) Γi and choose



A numerical scheme for moving boundary problems 7

points zi ∈ Γi. Let |Γi| denote the surface area (length) of Γi. Use the approximations

κ(zi, t) ≈
1
|Γi|

∫
Γi

κ(x, t) dσx

κ(t) ≈
∑
i

|Γi|
|Γ|

κ(zi, t) (3.5)

and average equation (3.3). This leads to

1
|Γi|

∫
Γi

(S + hL)(V (x, t)) dσx = −κ(zi, t) + κ(t) .

Assume S to be an integral operator, that is, there is a function k(x, y) associated with
S so that for any suitable function w(x) one has

(Sw)(x) =
∫

Γ

k(x, y)w(y) dσy .

Approximate further by using V (y, t) ≈ V (zj , t) for y ∈ Γj . This leads to

1
|Γi|

∫
Γi

SV (x, t) dσx ≈
1
|Γi|

∑
j

V (zj , t)
∫

Γi

∫
Γj

k(x, y) dσydσx

Finally, as L is a linear mapping on V we seek an approximation of the form∑
j

lijV (zj , t) ≈
1
|Γi|

∫
Γi

LV (x, t) dσx (3.6)

for some coefficients lij depending on Γ(t) but independent of V (x, t). If we also define

sij =
1
|Γi|

∫
Γi

∫
Γj

k(x, y) dσydσx (3.7)

then we obtain a linear system for the unknown velocity at the points zi

∀i :
∑
j

(sij + hlij)V (zj , t) = −κ(zi, t) + κ(t) . (3.8)

In case it is not S but S−1 which is an integral operator it will be preferable to start
from (3.2) and to proceed as above. If we use k(x, y) to denote the kernel corresponding
to S−1 and use equation (3.7) again to define the matrix now belonging to S−1, then the
numerical scheme is given by

∀i :
∑
j

(δij +
∑
k

hsiklkj)V (zj , t) = −
∑
j

sij(κ(zj , t)− κ(t)) . (3.9)

3.3 Approximation of the curvature

The surface will be represented as a list of vertices {z1, . . . , zm}, edges, and, if n = 3,
oriented triangular facets. Furthermore, if n = 3, then every edge is assumed to belong
to exactly two facets; a vertex, however, can belong to arbitrarily many facets.

The (mean) curvature is considered to be located at the vertices. The motivation of
the formula used is as follows. Let η be a piecewise linear function of one real variable
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with η(0) = 1 and η(t) = 0 for |t| > ε. Pick a point z on a smooth surface Γ embedded
in IRn and consider the variation of Γ with variation field V (x) = η(|x− z|)N(x). Then
by (2.1)

dA
dt

=
∫
Bε(z)

(1− 1
ε
|x− z|)κ(x) dσx ≈ ωn−1κ(z)

∫ ε

0

(1− ρ

ε
)ρn−2 dρ =

ωn−1

n2 − n
πεn−1κ(z) .

Here ωn−1 stands for the surface area of the unit sphere in IRn. For the following assume
n = 3. On the triangulated surface the same effect of this variation can be achieved by
the (normal) movement of one vertex. The star of a vertex z is the union of all facets
containing z, and we choose ε from above in such a way that the area of star(z) equals
the area of the ε-ball about z. Consider the area of the triangulated surface as a function
of the position of z, all other vertices are fixed. It is clear that the biggest rate of change
occurs under normal variations for a given magnitude of variation, hence∣∣∣∣dAdt

∣∣∣∣ ≈ |∇zA| .
The reasoning for n = 2 proceeds analogously, and the final formula for the mean curva-
ture at the vertex zi then is (where Ni denotes the outer normal at zi)

κi =
∇ziAi ·Ni

(|zi − zi−1|+ |zi − zi+1|)/2
for n = 2 , (3.10)

κi =
∇ziAi ·Ni

(area of star(zi))/3
for n = 3 . (3.11)

For the case n = 3 this formula for the mean curvature can also be derived using
the soap film model for the triangulated surface. There ∇ziA is the force due to surface
tension at the vertex zi, and to get the mean curvature one divides by one-third of the
area of the star as each facet belongs to three stars. This interpretation appears in [15].

Now for n = 3 let Ai =area of star(zi), then

Ai = 1
2

∑
|(zj − zi) ∧ (zk − zi)|

where the sum ranges over those indices so that zi, zj , and zk span a positively oriented
facet of star(zi). The outward normals on the facets are given by

Nijk =
(zj − zi) ∧ (zk − zi)
|(zj − zi) ∧ (zk − zi)|

.

A standard computation leads to

∇ziA = ∇ziAi = 1
2

∑(
Nijk ∧ (zk − zj)

)
.

The outward pointing vector of ±∇ziAi/|∇ziAi| can then be defined to be the unit outer
normal Ni. For n = 2 the computations are similar in spirit, but easier.

3.3.1 Linearisation of the mean curvature

In this section we want to compute the discretised version of (3.1), that is the linear
approximation of the curvature of a normal perturbation of a surface. For a general
perturbation of a smooth curve such a formula can be found in [62].
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Fix a time t and use Vi to denote the velocities of the vertices zi. We seek coefficients
lij such that for the operator L as defined in (3.1) we have

LV (zi, t) ≈
∑
j

lijVj .

Let tildes denote quantities referring to the configuration at the next time step. In partic-
ular, the vertices are given by z̃i = zi +hViNi. Denote the mean curvature by κi = κ(zi)
and by κ̃i = κ(z̃i). The coefficients are then given by

d κ̃i
dh

∣∣∣∣
h=0

=
∑
j

lijVj ,

and the coefficients lij depend only on the vertices zk.
Now assume n = 3, for n = 2 the following is much easier. Let tildes denote quantities

referring to the configuration at the next time step. In particular, the vertices are given
by z̃i = zi + hViNi and the mean curvature is given by κ̃i = (∇z̃iÃi · Ñi)/(Ãi/3). Also,
∇z̃iÃi · ddhÑi = 0 because Ñi is a unit vector and ∇z̃iÃi is parallel to Ñi. Hence we define
the lij via

∑
j

lijVj =
d

dh
κ̃i

∣∣∣∣
h=0

=
d
dh (∇z̃iÃi)

∣∣∣
h=0
·Ni

Ai/3
− ∇ziAi ·Ni

A2
i /3

· d
dh
Ãi

∣∣∣∣
h=0

. (3.12)

Standard computations lead to

d

dh
(∇z̃iÃi)

∣∣∣∣
h=0

=

1
2

∑
star(zi)

{
− Nk ∧ (zj − zi)−Nijk(Nijk · (Nk ∧ (zj − zi)))

|(zj − zi) ∧ (zk − zi)|
∧ (zk − zj)Vk

−Nj ∧ (zi − zk)−Nijk(Nijk · (Nj ∧ (zi − zk)))
|(zj − zi) ∧ (zk − zi)|

∧ (zk − zj)Vj

−Ni ∧ (zk − zj)−Nijk(Nijk · (Ni ∧ (zk − zj)))
|(zj − zi) ∧ (zk − zi)|

∧ (zk − zj)Vi

+Nijk ∧NkVk −Nijk ∧NjVj
}

and to
d

dh
Ãi

∣∣∣∣
h=0

= −1
2

∑
star(zi)

{
Nijk · (Nk ∧ (zj − zi))Vj +Nijk · (Nj ∧ (zi − zk))Vk

+Nijk · (Ni ∧ (zk − zj))Vi
}
.

The sums above are over all positively oriented facets {zi, zj , zk} of the surface contained
in the star of zi. A bit more notation makes it easier to write down specific formulae for
the lij . We define

fijk = Nijk · (Ni ∧ (zk − zj)) ,
Fijk = Ni ∧ (zk − zj)− fijkNijk ,
Aijk = |(zj − zi) ∧ (zk − zi)| ,
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mijk = Nijk · (Nj ∧Nk) .

Then

lii =
1

2Ai

∑
star(zi)

( 3
Aijk

|Fijk|2 + κifijk

)
,

and if {zi, zl, zj} and {zi, zj , zk} determine two adjacent positively oriented facets of
star(zi),

lij =
1

2Ai

( 3
Aijk

Fijk · Fjki +
3
Ailj

Filj · Fjil

+3(mjki +mjil) + κi(fjki + fjil)
)
.

All other lij are zero.

3.4 Tangent disks

Now that the manifold has been spatially discretised we indicate how to compute the sij
as defined in (3.7). For n = 3 the surface patches Γi will be approximated by planar disks
Di perpendicular to Ni, having zi as their centre, and having area equal to a third of the
area of star(zi), that is the radii satisfy πR2

i = Ai/3. For n = 2 one can use straight line
segments with length equal to one-half of the sum of the distance to the two neighbouring
vertices. Therefore we use

sij =
1
|Di|

∫
Di

∫
Dj

k(x, y) dσydσx . (3.13)

4 Applicable models

In this section we will describe three free boundary problems that fall within the char-
acterisation as gradient flows. The notation is the same as in section 2.2.

4.1 Averaged mean curvature flow

This is the obvious example which arises by choosing S to be the identity map.

V = −(κ− κ) . (4.1)

4.2 Two-phase Mullins-Sekerka flow in IRn

This model arises when one chooses S to be the single layer potential on the interface Γ.
More precisely, let

r(x) =


1

2π ln |x| for n = 2 ,

− 1
4π |x|

−1 for n = 3 ,
(4.2)

and set

SV (x) =
∫

Γ

r(x− y)V (y) dσy .
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Potential theory allows one to infer many properties of this operator S, and of its inverse
(see for example [41]). In particular SV is a harmonic function off Γ, which is continuous
across the interface and which has a jump in the normal derivative across Γ equal to
V . Using properties of SV at infinity one can show that S is invertible, and hence one
determines that the gradient flow V = −S−1(κ− κ) will satisfy the following problem,

∆xu(x, t) = 0 in IRn \ Γ(t) ,
u(x, t)− κ(t) = O(1/|x|2) as |x| → ∞ ,

u(x, t) = κ(x, t) on Γ(t) ,
[∂Nu(x, t)] = V (x, t) on Γ(t) .

(4.3)

Here u is an auxiliary function and [∂Nu] denotes the jump of the outer normal derivative
of u across Γ. The second line in the system assumes n = 3, for n = 2 it should be replaced
by |∇u(x, t)| = O(1/|x|2) as |x| → ∞. If IRn is replaced by a bounded region, then the
second line in the system needs to be replaced by a zero-Neumann boundary condition.
Existence and regularity of smooth solutions on a bounded domain have recently been
established by Escher and Simonett [31], and independently and at the same time by
Chen, Hong, and Yi [21].

A physical interpretation of this model arises from spinodal decomposition where a
chemical mixture is cooled into an unstable state. Separation into (two) different but
miscible phases occurs by diffusion against the concentration gradients. The nonlinear
Cahn–Hilliard equation models this process. It contains an interaction parameter, which
one may think of as describing the width of the layer between the two regions containing
mostly one phase or the other. It has been shown that the two-sided Mullins-Sekerka
model arises as a singular limit when the interaction parameter approaches zero [3, 61].

4.3 Two-phase Hele-Shaw flow in IRn

Take the operator S−1 to be the double layer potential on Γ, that is for the function r(x)
from (4.2) define

S−1V (x) =
∫

Γ

<∇yr(x− y), N(y)>V (y) dσy ,

where N denotes the outer unit normal. Using well-known properties of the double layer
potential, S−1V is an harmonic function off Γ, which has a discontinuity across Γ but also
has a well-defined normal derivative on Γ, and that latter is equal to −V . In particular
S−1 is invertible, so that its notation as an inverse is justified. These facts leads to
the following description of the arising gradient flow (as in the previous section u is an
auxiliary function), 

∆xu(x, t) = 0 on IRn \ Γ(t) ,
u(x, t) = O(1/|x|2) as |x| → ∞ ,

[u(x, t)] = −κ(x, t) on Γ(t) ,
[∂Nu(x, t)] = 0 on Γ(t) ,
∂Nu(x, t) = V (x, t) on Γ(t) .

(4.4)

Physically this model describes the movement of the interface Γ of two viscous incom-
pressible immiscible fluids with all parameters set to unity; in particular the viscosities
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of the two fluids are assumed to be equal. Balancing forces at a point of the interface
between the two fluids leads to [u] = −κ where −u represents the pressure of the liquids
and [u] stands for the jump of u from the inside to the outside of Γ. The incompressibility
of the fluids implies ∆u = 0. Continuity implies [∂Nu] = 0 at the interface. The fluids
flow against the pressure gradient. Again, the second line of the system assumes n = 3
and can be adjusted for the case n = 2, or for a bounded domain, as described in the
section above for the Mullins-Sekerka flow. The incompressibility and immiscibility of the
fluids also implies that the volume enclosed by each component Γi(t) of Γ(t) is preserved,
that is

∫
Γi
V (x, t) dσx = 0 for all i. For this model it is therefore natural to work on a

(dense) subspace of L ≡ L0
2(Γ1)× L0

2(Γ2)× · · · × L0
2(Γm) ⊂ L0

2(Γ) for a given surface Γ.

5 Implementation: The averaged mean curvature flow

This is the easiest example of volume preserving flows and is just meant as an illustration
that the proposed numerical scheme is at all sensible. The two examples below have
been chosen from the literature as they illustrate the formation of a singularity. Other
applications of the scheme will appear elsewhere.
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Figure 1. At time t = 0.156 the singularity has formed.



A numerical scheme for moving boundary problems 13

-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2

t=0.2

-0.04

-0.02

0

0.02

0.04

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

immersed at t=0.2

-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2

t=0.8

-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2

t=1.1

-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2

t=1.5

-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2

t=5

Figure 2. Allowing the curve to become immersed.

5.1 The example of Gage in two dimensions

It is known that the (non-averaged) mean curvature flow preserves convexity [43, 52],
and that plane curves will become convex [44] before they shrink to a point. However,
for the averaged mean curvature flow the behaviour is different. The following example
was first mentioned in the paper of M. Gage [42] for the problem

V = −(κ− 2π
L

) .
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Here of course L is the length of the curve, and it is used that∫
Γ

κ(s) ds = 2π

for any simple closed positively oriented curve in the plane. Hence in our notation κ =
2L/π, so that this is exactly the flow from section 4.1. The idea of the example is that
on straight parts of a curve the curvature is zero, and hence because of the subtracted
average one obtains an outward tendency. Choosing a figure with a narrow slit one should
obtain a curve evolving to a self-intersection, see Figure 1.
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Figure 3. Allowing the curve to become disconnected.
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Figure 4. The initial surface with a thin neck. A cross section consists of a circular arc, one
period of a cosine wave, and another circular arc. The length of the figure is about 10.68 units,
the diameter of the neck is 2.2 units.

The evolution of the curve can be continued as an immersion due to the local character
of the equation. As the evolution has the tendency to generate convex shapes (for which
κ is positive) the curves are expected to separate again, and to finally approach a circular
limit shape, see Figure 2.

Another way of dealing with the singularity is to let the curve pop into two components,
which leads to a configuration that is topologically an annulus, which will finally evolve
back into a simply connected region, and then into a circle, see Figure 3.

5.2 The example of Grayson in three dimensions

In three space dimensions one may consider a dumbbell with a sufficiently thin neck.
The mean curvature at the neck will be rather large, forcing a movement inwards, which
should in due course create a singularity. This was analytically proved by Grayson [45]
for the non-averaged mean curvature flow. Here is a numerical illustration of this example
for the averaged mean curvature flow. Short term existence of classical solutions for the
averaged mean curvature flow was established recently in [35], but there is no analytic
result so far rigorously proving the development of the singularity. This example has also
been numerically investigated by Blowey and Elliott [13], who use a phase-field approach.
Their computations use the axial symmetry to reduce the computational complexity,
while the numerical method described herein does not use any symmetry. Of course,
Blowey and Elliott come to the same numerical conclusion, namely pinch-off at the
neck. The graphics were generated using geomview, a graphics package produced at the
Geometry Center at the University of Minnesota [59].

At this point the numerical simulation was stopped and restarted with two coinciding
points located at the singularity, one connected to the left half and one connected to the
right half of the figure, respectively. Then the simulation was allowed to continue.

Given any collection of spheres which evolve under the averaged mean curvature flow,
one finds—provided the spheres are far enough from each other so that they do not
coalesce—that the smaller spheres shrink, and the larger ones grow [64]. This has been
termed—somewhat humorously—the survival of the fattest. In particular, the two ap-
proximate spheres above cannot be expected to be stable, if only because of numerical
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perturbation, see also similar remarks in [13]. For the case of two exact spheres it is
straightforward to write down a system of ordinary differential equations for the two
radii; the difference of the two differential equations can be used to obtain an upper
bound for the time the smaller sphere will survive. For the experiment above, by chance,
it is the left sphere that ultimately shrinks to a point.

Figure 5. The thin neck has contracted to a point at about t = 0.65 .

Figure 6. The thin neck has popped apart at about t = 0.67 .

Figure 7. Evolving towards two spheres at t = 1.15 .
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Figure 8. The configuration at t = 3.65 .

6 Final remarks

As the theory stands at this point, each step involves computing the inverse of a matrix.
The number of floating point operations necessary to invert the (full) matrix is of cubic
order in the number of vertices. However, for the example of the (averaged or not) mean
curvature flow in two space dimensions one will get banded matrices due to the local
structure of the problem (this assumes one numbers the vertices consecutively on the
curve). Inversion of the resulting matrices is then only of linear order in the number of
vertices. A similar result can be expected for axially symmetric configurations in three
space dimensions. However, such a result cannot be easily achieved for arbitrary surfaces
in three space dimensions, as there is no natural order of the vertices.

Also in two space dimensions, for the Mullins-Sekerka flow the matrix inversion prob-
lem can be avoided due to the special form of the kernel of the corresponding integral
operator. The singular part of the kernel can be isolated and the inverse of it can be han-
dled well using the Hilbert transform in combination with the fast Fourier transform [73].
Further research should show if something similar is also possible in higher space dimen-
sions, or for the other problems. It is clear that inversion of a dense matrix at each step
is unrealistic for large scale simulation. Of course, as the matrix, the right-hand side,
and the solution of the linear system do not differ much from step to step, an iterative
scheme should alleviate the computational cost somewhat. Better still would be an in-
corporation of a small scale decomposition technique, as developed by Hou, Lowengrup,
and Shelly [50], or as used by Petersson [62]. Also, our numerical experiments have shown
that the simulations are essentially not changing much with the time-step size, provided
the time step is small enough to keep the experiment stable. Furthermore, this critical
time-step size of course depends on the mesh size of the triangulation, the inner product,
and on the size of the curvature and of its derivative. This is clearly an area for future
research.

The proposed algorithm should allow to numerically determine geometric properties
of the various flows, such as preservation of convexity, location of the centre of mass,
pinch-off, or coalescence of separate components of the interface. It has been conjectured
that the Mullins-Sekerka flow has similar behaviour as the mean curvature flow. However,
contrary to this conjecture it has been shown in two dimensions that the Mullins-Sekerka
flow does not preserve convexity [54, 56]. We believe the same result is true in higher
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dimensions, but there is no proof. Also for the Mullins-Sekerka flow, there is the result
that (not necessarily convex) initial configurations close to spheres (circles) converge
exponentially fast to spheres (circles) [34] ([18]). In two dimensions there is numerical
evidence that several particles could coalesce, and that a single particle could pinch
off into two [10], but there are no results in three dimensions. Numerically it has been
shown that the one-sided interior Hele-Shaw flow in two dimensions can drive a dumbbell
shaped initial curve to self-intersection [6], and the characteristic fingering of the two-
sided Hele-shaw flow in the plane is a well-studied phenomenon, see the references in the
introduction. However, there are no results for the behaviour of the two-sided Hele-Shaw
flow in three dimensions that the author is aware of, and it is hoped that the proposed
algorithm will alleviate this situation.
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