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BLOWUP FROM RANDOMLY SWITCHING BETWEEN STABLE
BOUNDARY CONDITIONS FOR THE HEAT EQUATION∗

SEAN D. LAWLEY†

Abstract. We find a pair of boundary conditions for the heat equation such that the solution
goes to zero for either boundary condition, but if the boundary condition randomly switches, then
the average solution grows exponentially in time. Specifically, we prove that the mean of the random
solution grows exponentially under certain mild assumptions, and we use formal asymptotic methods
to argue that the random solution grows exponentially almost surely. To our knowledge, this could be
the first PDE example showing that randomly switching between two globally asymptotically stable
systems can produce a blowup. We devise several methods to analyze this random PDE. First, we
use the method of lines to approximate the switching PDE by a large number of switching ODEs
and then apply recent results to determine if they grow or decay in the limit of fast switching. We
then use perturbation theory to obtain more detailed information on the switching PDE in this fast
switching limit. To understand the case of finite switching rates, we characterize the parameter regimes
in which the first and second moments of the random PDE grow or decay. This moment analysis reveals
rich dynamical behavior, including a region of parameter space in which the mean of the random PDE
oscillates with ever increasing amplitude for slow switching rates, grows exponentially for fast switching
rates, but decays to zero for intermediate switching rates. We also highlight cases in which the second
moment is necessary to understand the switching system’s qualitative behavior, rather than just the
mean. Finally, we give a PDE example in which randomly switching between two unstable systems
produces a stable system. All of our analysis is accompanied by numerical simulation.

Keywords. piecewise deterministic Markov process; switched dynamical systems; stochastic hy-
brid system; random PDE; thermostat model.
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1. Introduction
Randomly switching dynamical systems have generated much interest in the prob-

ability literature recently [2–4, 7–9, 21, 29, 30, 48] and are involved in a growing number
of applications to biology [11, 12, 20, 52], physics [6, 18], engineering [25, 31, 53], and fi-
nance [57]. Due to the diversity of the groups studying these switching systems, they
have been given several names, including stochastic hybrid systems, piecewise determin-
istic Markov processes, dichotomous Markov noise processes, velocity jump processes,
and random evolutions.

Such a switching system can be described by a continuous component {U(t)}t≥0

and a discrete component {J(t)}t≥0. The discrete component J is a jump process, and
for each element of its state space we assign some continuous dynamics to U . In between
jumps of J , the component U evolves according to the dynamics associated with the
current state of J . When J jumps, U switches to following the dynamics associated
with the new state of J . Typically, one assumes that U takes values in Rd and is driven
by an ordinary differential equation (ODE) in between jumps of J ,

d
dtU(t) =FJ(t)

(
U(t)

)
∈Rd, (1.1)

where {Fj(u)}j are a given set of vector fields.
Benaim et al. [8] have recently demonstrated that systems of the form (1.1) can

exhibit surprising qualitative behavior (see also [10,40,44,49]). Specifically, they showed
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that a planar process U(t)∈R2 driven by a pair of linear ODEs,

d
dtU(t) =AJ(t)U(t), (1.2)

with A0,A1∈R2×2, J(t)∈{0,1} can blowup,

‖U(t)‖→∞ almost surely as t→∞,

even if all the eigenvalues of both matrices A0 and A1 have strictly negative real
part. That is, the individual systems d

dtU =A0U and d
dtU =A1U decay to zero, but

the switched system (1.2) grows without bound. A key to the proof in [8] is writing
(1.2) in polar coordinates and determining the behavior of the radial coordinate from
the invariant measure of the angular coordinate.

In this paper, we analyze a randomly switching partial differential equation (PDE)
whose qualitative behavior is similar in spirit to the ODE systems in [8]. Specifically, we
find a pair of boundary conditions (BCs) for the heat equation such that the solution goes
to zero for either BC, but if the BC randomly switches, then the average solution grows
exponentially in time. In particular, we prove that the mean of the random solution
grows exponentially under certain mild assumptions, and we use formal asymptotic
methods to argue that the random solution grows exponentially almost surely. To
our knowledge, this could be the first PDE example showing that randomly switching
between two globally asymptotically stable systems can produce a blowup. This system
is motivated by recent biological models involving the diffusion equation with randomly
switching boundary conditions [14–16,42,43,45].

In order to analyze this random PDE, we employ a variety of methods. First, we use
the method of lines to discretize space and approximate the switching PDE by a large
number of switching ODEs. We then use recent results to determine if these switching
ODEs grow or decay in the limit of fast switching. Next, we use perturbation theory
to obtain more detailed information on the switching PDE in this fast switching limit.
In particular, this perturbation argument shows that the PDE converges formally for
fast switching to a deterministic PDE which we solve explicitly. To understand the case
of finite switching rates, we characterize the parameter regimes in which the first and
second moments of the random PDE grow or decay. This moment analysis reveals rich
dynamical behavior, including a region of parameter space in which the mean of the
random PDE oscillates with ever increasing amplitude for slow switching rates, grows
exponentially for fast switching rates, but decays to zero for intermediate switching
rates. We also highlight cases in which the second moment is necessary to understand
the switching system’s qualitative behavior, rather than just the mean. Throughout the
paper, we compare our analytical results to numerical simulations.

The paper is organized as follows. In Section 2, we setup our randomly switching
PDE. In Section 3, we analyze the random PDE in the limit of fast switching. In
Section 4, we analyze the first and second moments of the random PDE for finite
switching rates. In Section 5, we give a PDE example in which randomly switching
between two unstable systems produces a stable system. We note that the average
system for this final example is stable. We conclude with a brief discussion.

2. Problem setup
The following PDE boundary value problem is the so-called thermostat model,

∂
∂tu= ∂2

∂x2u, x∈ (0,1),t>0,
∂
∂xu(0,t) =γu(1,t), ∂

∂xu(1,t) = 0,
(2.1)
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with parameter γ>0, which models the temperature u(x,t) in a one-dimensional cor-
ridor [0,1]. First proposed by Guidotti and Merino [27, 28], this model has been well-
studied due to its rich behavior [19, 23, 32–34, 36–38, 50, 51, 54–56]. The key feature of
this model is the nonlocal BC in which the amount of heating at x= 0 depends on the
temperature at x= 1. This models the generic situation in which a heating unit and its
temperature sensor are at different locations. It is known that a Hopf bifurcation from
the trivial solution occurs at a critical parameter value γc>0 [27,36]. Indeed, if γ<γc,
then solutions decay to zero, but if γ>γc, then solutions oscillate with ever increasing
amplitude. Reference [27] determined that (see also [36])

γc≈17.8. (2.2)

Note that swapping the locations of the heater and the sensor yields

∂
∂tu= ∂2

∂x2u, x∈ (0,1),t>0,
∂
∂xu(0,t) = 0, ∂

∂xu(1,t) =−γu(0,t).
(2.3)

In this paper, we analyze the following randomly switching thermostat model,

∂
∂tu= ∂2

∂x2u, x∈ (0,1),t>0,
∂
∂xu(0,t) = (1−J(t))γu(1,t), ∂

∂xu(1,t) =−J(t)γu(0,t),
(2.4)

where J(t)∈{0,1} is a two-state Markov jump process with jump rate α>0,

0
α


α

1. (2.5)

When J(t) = 0, (2.4) reduces to (2.1), and when J(t) = 1, (2.4) reduces to (2.3). Hence,
(2.4) corresponds to repeatedly swapping the locations of the heater and the sensor. We
note that (2.4) was mentioned briefly in our previous work [41] in order to motivate the
general theorems proved therein.

We will seek to choose γ<γc so that the randomly switching system (2.4) grows
without bound, even though the two individual non-switched systems ((2.1) and (2.3))
decay to zero for this choice of γ.

We conclude this section by constructing the random solution to (2.4). Let

exp(A0t) :L2[0,1]→L2[0,1]

denote the solution operator of (2.1). That is, exp(A0t) takes an initial condition and
maps it to the solution of (2.1) at time t≥0. Similarly, let exp(A1t) denote the solution
operator of (2.3). These operators are analytic C0-semigroups [28]. Random solutions
of (2.4) are constructed by repeatedly composing exp(A0t) and exp(A1t) according to
the jumps of J . Let {ξk}∞k=1 denote the sequence of states visited by J , and {sk}∞k=1 be
the sojourn times in each state. That is, let ξ1∈{0,1} be a Bernoulli random variable
with mean 1/2 and let ξk = 1−ξk±1 and J(t) = ξk if

t∈
[k−1∑
j=1

sj ,

k∑
j=1

sj

)
,

where {sk}∞k=1 is a sequence of independent exponential random variables, each with
rate α>0. Let N(t) be the number of jumps of J before time t,

N(t) := sup
{
k∈N∪{0} :

k∑
j=1

sj<t
}
,
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and let a(t) := t−∑N(t)
j=1 sj be the time since the last jump (often called the “age” process

in renewal theory). Then the solution to (2.4) at time t≥0 is

u(x,t) = exp(AξN(t)+1
a(t))exp(AξN(t)

sN(t)) ·· ·exp(Aξ1s1)u(x,0). (2.6)

3. Fast switching
In this section, we investigate (2.4) in the fast switching limit (α�1). Our analysis

predicts that the critical value of γ for the switched system in this limit is

γsw
c = 4<γc≈17.8.

That is, if γ∈ (4,γc), then the switched system (2.4) grows without bound for sufficiently
fast switching, whereas the two individual systems ((2.1) and (2.3)) decay to zero.

3.1. Method of lines. We begin by using the method of lines [46] to approx-
imate the randomly switching PDE (2.4) by a randomly switching ODE. We then use
recent results [44] to analyze this randomly switching ODE in the limit of fast switching.
In addition, the switching ODE that we derive here will continue to inform our study
of the switching PDE (2.4) in later sections.

To derive the approximating ODEs, ignore the switching for the moment and con-
sider the deterministic PDE (2.1). Introduce a spatial discretization ∆x= 1/N for N ∈N
and evaluate the solution u(x,t) at grid points to form N+1 functions of time

ui(t) :=u(i∆x,t), i= 0,1,. ..,N.

Discretizing the Laplacian operator in (2.1), we have the following ODE at interior grid
points,

d
dtui(t) =N2

[
ui+1(t)−2ui(t)+ui−1(t)

]
+O(N−2), i= 1,. ..,N−1. (3.1)

To implement the BCs in (2.1), we first introduce so-called ghost points [17],

u−1(t) :=u(−∆x,t), uN+1(t) :=u(1+∆x,t),

by extending u(x,t) to x∈ (−1,2) according to

u(−x,t) =−u(x,t)+2u(0,t), u(1+x,t) =u(1−x,t), x∈ (0,1).

It follows that (3.1) is satisfied at i= 0 and i=N . Since the BCs in (2.1) are satisfied
by the extension to (−1,2), we have that

∂
∂xu(0,t) = (N/2)

[
u1(t)−u−1(t)

]
+O(N−2) =γuN (t)

∂
∂xu(1,t) = (N/2)

[
uN+1(t)−uN−1(t)

]
+O(N−2) = 0.

(3.2)

Combining (3.2) with (3.1) to eliminate the ghost points, we have that

d
dtu0(t) =N2

[
2u1(t)−2u0(t)−2(γ/N)uN (t)

]
+O(N−2),

d
dtuN (t) =N2

[
2uN (t)−2uN−1(t)

]
+O(N−2).

(3.3)

Putting (3.1) and (3.3) in vector notation and dropping the O(N−2), we approxi-
mate the solution to (2.1) by the ODE

d
dtUN (t) =A0UN (t), (3.4)
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where

UN (t) = (u0(t),u1(t),. ..,uN (t))∈RN+1,

and A0∈R(N+1)×(N+1) is the matrix

A0 =N2


−2 2 −2γ/N
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −2

. (3.5)

Analogously, we approximate the solution to (2.3) by

d
dtUN (t) =A1UN (t), (3.6)

where A1 is given by A0 after swapping the last entry in the first row with the first
entry in the last row.

The derivation of (3.4) and (3.6) is the standard numerical method known as the
method of lines [46], which approximates a PDE by a large number of ODEs. Assuming
the ODEs (3.4) and (3.6) are good approximations of the corresponding PDEs (2.1)
and (2.3), it follows that we can approximate the randomly switching PDE (2.4) by a
randomly switching ODE. We make this precise in the following proposition.

Proposition 3.1. For N ∈N, let DN :L2[0,1]→RN+1 denote the discretization op-
erator that maps a function to the vector obtained from evaluating the function at grid
points,

DN (f) := (f(0),f(1/N),. ..,f(1))∈RN+1.

Let u(x,t) be the solution to the randomly switching PDE (2.4) and suppose UN (t)∈
RN+1 satisfies the randomly switching ODE

d
dtUN (t) =AJ(t)UN (t), (3.7)

with initial condition UN (0) =DN (u(x,0)). Assume that for each f ∈L2[0,1], t>0, and
j∈{0,1}, we have that

‖exp(Ajt)DN (f)−DN (exp(Ajt)f)‖→0, as N→∞. (3.8)

Further, assume that for each t>0, there exists a constant κ(t) such that for all N ∈N
and j∈{0,1}, we have that

‖exp(Ajt)‖≤κ(t). (3.9)

Then

‖UN (T )−DN (u(x,T ))‖→0 almost surely as N→∞. (3.10)

Proof. Fix T ≥0. To show the almost sure convergence in (3.10), fix a realization
of the jump process {J(t)}t≥0. For this realization of J , there exists a finite sequence
of positive times {τk}Kk=1 and a finite sequence {ξk}Kk=1 with ξk ∈{0,1} such that

u(x,T ) = exp(AξK τK)exp(AξK−1
τK−1) ·· ·exp(Aξ1τ1)f ∈L2[0,1],

UN (T ) = exp(AξK τK)exp(AξK−1
τK−1)·· ·exp(Aξ1τ1)DNf ∈RN+1,

(3.11)
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Fig. 3.1. The error in approximating (2.4) by (3.7) decays like N−2 as N grows. Both panels
plot the relative error, |UN −U2N |/|U2N |, as a function of the spatial discretization, N . Each dashed
curve corresponds to a particular stochastic realization of the jump process, J. The vectors UN ,U2N

are evaluated at their first entry at t= 1. We set γ= 3 in the left plot and set γ= 5 in the right plot.

where f(x) :=u(x,0).
Using the representations in (3.11), the proof proceeds by induction on K≥1. The

base case K= 1 holds by assumption. For K>1, observe that

‖UN (T )−DN (u(x,T ))‖
≤‖UN (T )−exp(AξK τK)DN exp(AξK−1

τK−1) ·· ·exp(Aξ1τ1)f‖
+‖exp(AξK τK)DN exp(AξK−1

τK−1) ·· ·exp(Aξ1τ1)f−DN (u(x,T ))‖
≤M‖exp(AξK τK)‖+‖exp(AξK τK)DNg−DN exp(AξK τK)g‖,

where

M :=‖exp(AξK−1
τK−1)·· ·exp(Aξ1τ1)DNf−DN exp(AξK−1

τK−1)·· ·exp(Aξ1τ1)f‖,
g := exp(AξK−1

τK−1)·· ·exp(Aξ1τ1)f.

Using (3.9), the inductive hypothesis and (3.8) the proof is complete.

While we do not rigorously verify the hypotheses (Equations (3.8) and (3.9)) of
Proposition 3.1, extensive numerical tests suggest that they hold. Furthermore, Fig-
ure 3.1 suggests that the error in approximating (2.4) by (3.7) decays like N−2 as N
grows. In light of this, we proceed with studying the randomly switching ODE (3.7)
in the remainder of this subsection. We will find that the result of our analysis (the
critical value of γ in Theorem 3.1) agrees with both (a) the limiting PDE derived from
perturbation theory in Section 3.2, and (b) the analysis of the mean PDE in Section 4
(see (4.18)). We note that the mean PDE analysis in Section 4 is independent of the
ODE approximation in the present section.

In general, the behavior of switching linear ODEs such as (3.7) can depend on the
switching rate α>0 in an extremely complicated way [44]. However, it is known that
for fast switching (α�1), the behavior is determined by the spectrum of the average
matrix, A := 1

2 (A0 +A1) [22,44]. The following proposition investigates the spectrum of
A as a function of the parameter γ >0. For simplicity, we henceforth assume that N is
odd.
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Proposition 3.2. If γ<4, then all the eigenvalues of A are strictly negative. If
γ>4, then A has a strictly positive eigenvalue.

Proof. We seek the eigenvalues {λk}Nk=0 of the matrix B := 1/N2A+2I since the
eigenvalues of A are then given by

{N2(λk−2)}Nk=0. (3.12)

Writing Bv =λv component wise, we have

vk−1 +vk+1 =λvk, k= 1,. ..,N, (3.13)

2v1−∆xγvN =λv0, (3.14)

2vN−1−∆xγv0 =λvN . (3.15)

If λ= 2cos(ϕ) for ϕ∈C and vk = cos(θ+kϕ), then (3.13) is satisfied by an elementary
trigonometric identity. Letting θ=−ϕN/2 makes (3.14) and (3.15) into the same equa-
tion, which after some manipulation is

2N tan(ϕN/2)sin(ϕ) =γ. (3.16)

Since tan(yN/2) has bN/2c-many points y0∈ (0,π) such that limy→y0∓ tan(N/2y) =±∞,
it is easy to see that (3.16) has at least bN/2c-many solutions ϕ∈ (0,π).

Further, observe that

lim
ϕ→π

2N tan(ϕN/2)sin(ϕ) = 4.

Hence, if γ<4, then there is an additional solution ϕ∈ (0,π) to (3.16) yielding a total
of dN/2e-many real solutions to (3.16). Furthermore, it is easy to see from (3.13)-(3.15)
that if (λ,v) is an eigenpair, then (−λ,v′) is also an eigenpair with

v′k := (−1)kvk.

Hence if γ<4, then we have found the N+1 eigenvalues of B, each of the form λ=
±2cos(ϕ) with ϕ∈R. Since the eigenvalues of A are then given by (3.12), it follows that
all the eigenvalues of A are strictly negative.

On the other hand, if γ>4, then there is a complex solution to (3.16) given by

ϕ=π+bi∈C,

where b∈R\{0} satisfies

2N coth(bN/2)sinh(b) =γ.

Hence, there is an eigenvalue of B given by λ= 2cos(π+bi) = 2cosh(b)>2 and thus A
has a positive eigenvalue by (3.12).

Having characterized the spectrum of the average matrix A, we now determine the
behavior of (3.7) for fast switching (α�1).

Theorem 3.1. If γ<4, then there exists an αc>0 such that if α>αc, then

‖UN (t)‖→0 almost surely as t→∞.



1138 BLOWUP OF A RANDOMLY SWITCHED PDE

If γ>4, then ‖exp(At)‖→∞ as t→∞, and for each t>0 we have that

‖UN (t)−exp(At)DN (u(x,0))‖→0 in probability as α→∞. (3.17)

Proof. By Proposition 3.2, if γ<4, then all the eigenvalues of A are strictly
negative. Hence, the first assertion of the theorem follows directly from Theorem 2.4
of [44].

Next, assume γ>4. By Proposition 3.2, A has a strictly positive eigenvalue and
thus ‖exp(At)‖→∞ as t→∞. To show the convergence in (3.17), we need some more
notation. Recalling {ξk}∞k=1, {sk}∞k=1, {N(t)}t≥0, and {a(t)}t≥0 introduced in Section 2,
define the solution operator for (3.7),

S(t) := exp(AξN(t)+1
a(t))exp(AξN(t)

sN(t)) ·· ·exp(Aξ1s1).

Next, let {J (1)(t)}t≥0 be a Markov process on {0,1} with switching rate 1 and define

{ξ(1)
k }∞k=1, {s(1)

k }∞k=1, {N (1)(t)}t≥0, and {a(1)(t)}t≥0 as in Section 2 but now with respect
to {J (1)(t)}t≥0. For each α>0, define the operator

S̃(α)(t) := exp
(
A
ξ
(1)
1

s
(1)
1

α

)
·· ·exp

(
Aξ

N(1)(αt)

s
(1)

N(1)(αt)

α

)
exp

(
Aξ

N(1)(αt)+1

a(1)(αt)

α

)
.

By construction, S̃(α)(t) and S(t) are equal in distribution.

Applying Theorem 2.1 of [39], we have that S̃(α)(t)→ exp(At) almost surely in the
strong operator topology as α→∞. Since RN+1 is finite-dimensional, the convergence
actually holds in the uniform operator topology. That is,

‖S̃(α)(t)−exp(At)‖→0 almost surely as α→∞.

Since almost sure convergence implies convergence in probability, and since S̃(α)(t) and
S(t) are equal in distribution, the proof is complete.

3.2. Limiting PDE. The analysis in the previous subsection allowed us to prove
that discretized approximations to (2.4) either decay to zero or grow without bound in
the limit of fast switching, depending if the parameter γ is less than or greater than
4. However, we have not proven that the actual PDE (2.4) exhibits this behavior.
In this subsection, we use perturbation theory to argue formally that the PDE (2.4)
does indeed exhibit this behavior. Furthermore, our perturbation argument yields more
detailed information on the behavior of the PDE (2.4) in this fast switching limit.

As above, suppose UN (t) satisfies (3.7) and denote its probability density by

pj(u,t)du=P(UN (t)∈ (u,u+du)∩J(t) = j), j∈{0,1}, u∈RN+1. (3.18)

Assuming the density exists, it evolves according to the forward differential Chapman-
Kolmogorov equation [24]

∂
∂tpj(u,t) =−∇·((Aju)pj(u,t))+α(p1−j(u,t)−pj(u,t)), j= 0,1. (3.19)

Let ε= 1/α�1 and introduce the following asymptotic expansion for pj ,(
p0(v,t)
p1(v,t)

)
=

(
p

(0)
0 (v,t)

p
(0)
1 (v,t)

)
+ε

(
p

(1)
0 (v,t)

p
(1)
1 (v,t)

)
+ε2

(
p

(2)
0 (v,t)

p
(2)
1 (v,t)

)
+ .. .. (3.20)
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If W denotes the matrix

W :=

(
−1 1
1 −1

)
, (3.21)

then plugging the expansion (3.20) into (3.19) yields the O(1/ε) equation

W

(
p

(0)
0 (v,t)

p
(0)
1 (v,t)

)
= 0, (3.22)

and the O(1) equation

W

(
p

(1)
0 (v,t)

p
(1)
1 (v,t)

)
=
∂

∂t

(
p

(0)
0 (v,t)

p
(0)
1 (v,t)

)
+

(
∇·
(
(A0v)p

(0)
0 (v,t)

)
∇·
(
(A1v)p

(0)
1 (v,t)

)). (3.23)

Equation (3.22) implies that p
(0)
0 =p

(0)
1 =:p(0). In order for (3.23) to be solvable,

the Fredholm alternative stipulates that the righthand side of (3.23) must be orthogonal
to the nullspace of the transpose of W . Hence,

∂
∂tp

(0)(v,t)+∇·
(
(A0v)p(0)(v,t)

)
=−

{
∂
∂tp

(0)(v,t)+∇·
(
(A1v)p(0)(v,t)

)}
. (3.24)

Rearranging (3.24), we find that p(0) satisfies the Liouville equation

∂
∂tp

(0)(v,t) =−∇·
(
(Av)p(0)(v,t)

)
,

with A := 1
2 (A0 +A1). Assuming deterministic initial conditions, the Liouville equation

is equivalent to the deterministic ODE

d
dtUN (t) =AUN (t).

Observing the structure of A and retaking the continuum limit N→∞ implies that
the random solution u(x,t) to (2.4) converges formally in the fast switching limit to a
deterministic function u(x,t) which satisfies

∂
∂tu= ∂2

∂x2u, x∈ (0,1),t>0,
∂
∂xu(0,t) = (γ/2)u(1,t), ∂

∂xu(1,t) =−(γ/2)u(0,t).
(3.25)

As one might expect, these BCs are the BCs obtained by replacing J(t) by its average
1/2 in (2.4).

Under some technical assumptions, we can also obtain this result by appealing
to previous work on abstract random evolutions. To set it up, define the operator
A := 1

2 (A0 +A1) with domain given by the intersection of the domains of A0 and A1.
Assume this domain of A and the range of µ−A are both dense in L2[0,1] for sufficiently
large µ>0. Then Theorem 2.1 of [39] ensures that the closure of A is the infinitesimal
generator of a strongly continuous semigroup exp(At) defined on L2[0,1], which we
assume to be the solution operator of (3.25). Theorem 2.1 of [39] gives the convergence,

u(x,t)→ exp(At)u(x,0), in probability as α→∞,

where u(x,t) is the solution of (2.4) (defined in (2.6)), for each initial condition u(x,0)∈
L2[0,1].
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It is straightforward to solve (3.25). In particular, if γ<4, then

u(x,t) =

∞∑
k=1

e−λktak
(

sin(
√
λkx)+

(
2/γ
√
λk sec(

√
λk
)
−tan(λk))cos(

√
λkx)

)
, (3.26)

where {λk}∞k=1 are positive solutions to the transcendental equation(
γ2/4+λ

)
sin(
√
λ) =γ

√
λ,

and {ak}∞k=1 are chosen to satisfy the initial conditions. If γ>4, then

u(x,t) =eλ0ta0

(
sinh(

√
λkx)+

(
2/γ
√
λksech(

√
λk
)
−tanh(λk))cosh(

√
λkx)

)
+

∞∑
k=1

e−λktak
(

sin(
√
λkx)+

(
2/γ
√
λk sec(

√
λk
)
−tan(λk))cos(

√
λkx)

)
,

(3.27)

where {λk}∞k=1 are as before, but λ0>0 is the positive solution to the transcendental
equation (

γ2/4−λ
)
sinh(

√
λ) =γ

√
λ.

Hence, we recover the critical value γsw
c = 4 found in Theorem 3.1 in the fast switch-

ing limit. Comparisons of u(x,t) and stochastic simulations of u(x,t) are shown in
Figure 3.2 for γ= 3.9<4 and γ= 4.1>4. From these plots, we see that as α increases,
the mean of u approaches u and the standard deviation of u vanishes.

4. Moment PDEs and finite switching rates
The analysis in Section 3 allowed us to study (2.4) in the limit of fast switching

(α�1). In this section, we study (2.4) for finite switching rates by analyzing PDEs for
its first and second moments.

Define the expectation

mj(x,t) :=E[u(x,t)1J(t)=j ], j∈{0,1}, (4.1)

where 1{A} denotes the indicator function on an event A. Since

E[u(x,t)] =m0(x,t)+m1(x,t),

we will study m0, m1 in order to study the mean of u(x,t).
Assume that

E‖u(x,t)‖∞<∞, E‖ ∂∂xu(x,t)‖∞<∞, t≥0. (4.2)

Then, we can apply Theorem 1 in [41] to obtain that m0 and m1 satisfy the following
deterministic PDE,

∂

∂t

(
m0

m1

)
=

∂2

∂x2

(
m0

m1

)
+αW

(
m0

m1

)
∂
∂xm0(0,t) =γm0(1,t), ∂

∂xm0(1,t) = 0,
∂
∂xm1(0,t) = 0, ∂

∂xm1(1,t) =−γm1(0,t),

(4.3)



S.D. LAWLEY 1141

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

−0.1

0

0.1

0.2

x

M
ea
n

α = 103

α = 104

α = 105

u(x, t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

x

M
ea
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−4

10−3

10−2

10−1

x

S
ta
n
d
ar
d
d
ev
ia
ti
on

α = 103

α = 104

α = 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

x

S
ta
n
d
ar
d
d
ev
ia
ti
on

Fig. 3.2. Random solution becomes deterministic in the limit of fast switching. The top left panel
plots the empirical (Monte Carlo) mean (4.26) for γ= 3.9, N = 101, at time t= 1 for K= 103 trials, for
various values of the switching rate, α. As α increases, the empirical mean converges to the solution
u(x,t) of (3.25) given by the dashed green curve. The initial conditions are such that a1 = 1 and ak = 0
for k>1 in (3.26). The bottom left panel plots the corresponding empirical standard deviations. The
right two panels are the same, but with γ= 4.1, and the initial conditions are such that a0 = 1 and
ak = 0 for k>0 in (3.27).

where W is the matrix (3.21).

Assuming (4.2), Theorem 1 in [41] guarantees that (4.3) holds. To provide intuition,
we note that one can use the method of lines discretization from Section 3 above to
quickly rederive (4.3). Suppose UN (t) is the spatially discretized approximation to
u(x,t) satisfying (3.7). Adapting previous analysis of a different random PDE [13],
define the spatially discretized analog of (4.1),

Mj(t) :=E[UN (t)1J(t)=j ] =

∫
pj(u,t)udu, (4.4)

where pj(u,t) is the probability density in (3.18). To derive an equation for the time
evolution of Mj , multiply both sides of the Chapman-Kolmogorov Equation (3.19) by
u and integrate with respect to u to obtain

∂
∂tMj =−

∫
∇·(Ajupj)udu+α(M1−j−Mj)

=AjMj+α(M1−j−Mj), j= 0,1, (4.5)

where we have integrated by parts and used that pj(u,t)→0 as ‖u‖→∞. Formally
retaking the continuum limit N→∞ then yields (4.3).

4.1. Mean PDE spectral analysis. To analyze (4.3), we introduce the ansatz

mj(x,t) =eλtϕj(x), (4.6)
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which yields the spectral problem

λ

(
ϕ0

ϕ1

)
=

d2

dx2

(
ϕ0

ϕ1

)
+αW

(
ϕ0

ϕ1

)
,

ϕ′0(0) =γϕ0(1), ϕ′0(1) = 0,

ϕ′1(0) = 0, ϕ′1(1) =−γϕ1(0).

(4.7)

Changing coordinates by defining

ψ0 :=α(ϕ0 +ϕ1), ψ1 :=α(ϕ1−ϕ0), (4.8)

we have that (4.7) becomes

d2

dx2

(
ψ0

ψ1

)
=

(
λ 0
0 λ+2α

)(
ψ0

ψ1

)
, (4.9)

ψ′0(1)−ψ′1(1) = 0, ψ′0(0)−ψ′1(0) =γ
(
ψ0(1)−ψ1(1)

)
,

ψ′0(0)+ψ′1(0) = 0, ψ′0(1)+ψ′1(1) =−γ
(
ψ0(0)+ψ1(0)

)
.

(4.10)

Solving (4.9), the eigenfunctions are of the form

ψ0(x) =asinh(
√
λx)+bcosh(

√
λx),

ψ1(x) = csinh(
√
λ+2αx)+dcosh(

√
λ+2αx).

(4.11)

Plugging these solution forms into (4.10) yields the following system of linear equations
for the constants a, b, c, and d,

R(a,b,c,d)T = 0, (4.12)

where R is the matrix

R=


√
λ 0

√
λ+2α 0√

λcosh(
√
λ)

√
λsinh(

√
λ) −

√
λ+2αcosh(

√
λ+2α) −

√
λ+2αsinh(

√
λ+2α)√

λcosh(
√
λ) γ+

√
λsinh(

√
λ)

√
λ+2αcosh(

√
λ+2α) γ+

√
λ+2αsinh(

√
λ+2α)

γ sinh(
√
λ)−
√
λ γ cosh(

√
λ) −γ sinh(

√
λ+2α)+

√
λ+2α −γ cosh(

√
λ+2α)

 .

Since we seek non-trivial ψ0 and ψ1, we need the determinant of R to be zero, which
gives the following transcendental equation for λ:

f(λ) = 0, (4.13)

where

f(λ) = sinh
(√
λ
)[

2γλ
√

2α+λ+sinh
(√

2α+λ
)(

2λ2 +(4α−γ2)λ−γ2α
)]

+
√
λγ2
√

2α+λcosh
(√
λ
)
cosh

(√
2α+λ

)
+
√
λγ
[
2(2α+λ)sinh

(√
2α+λ

)
+γ
√

2α+λ
]
.

We seek conditions on α>0 and γ>0 to ensure that (4.13) has a solution λ∈C with
positive real part.

Observe that if λ∈C and Re(λ)>0, then λ is a root of f(λ) if and only if λ is a
root of

F(λ) :=
f(λ)

(λ2 +λ+1)sinh(
√
λ)sinh(

√
2α+λ)

. (4.14)
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Note that F has a removable singularity at λ= 0, and so we define

F(0) = lim
λ→0
F(λ) =γ2

√
2αcoth

(√
α/2

)
+αγ(4−γ)∈R. (4.15)

Further, we have defined F such that

lim
|λ|→∞

F(λ) = 2, if Re(λ)≥0. (4.16)

Hence, the continuity of F and the intermediate value theorem imply that if F(0)<0,
then F has at least one strictly positive real root. Rearranging (4.15), we have that F
has a strictly positive real root if α>0 and γ>0 satisfy

γ>γ∗(α) := 4
(

1−
√

2/αcoth
(√

α/2
))−1

>0. (4.17)

Further, note that

lim
α→∞

γ∗(α) = 4, (4.18)

which recovers the critical value of γ found in Section 3 in the fast switching limit.

To summarize, if γ>γ∗(α)>0, then our spectral analysis predicts that the mean
of u(x,t) grows exponentially in magnitude. We are interested in the case in which
γ<γc≈17.8 so that solutions to the two individual systems ((2.1) and (2.3)) decay
to zero, but the mean of the switched system (2.4) grows exponentially in magnitude.
Setting γ∗(α)<γc and solving for α>0, we find that if α is greater than approximately
4.162 and γ∈ (γ∗(α),γc), then we obtain such a system. This region of parameter space
where the mean of the switched system grows exponentially but the individual systems
decay is shown in Figure 4.1.

We note that since the operator involved in (4.3) is not necessarily self-adjoint, we
cannot make rigorous statements about the large-time behavior of the mean of u(x,t)
for arbitrary initial conditions. However, we can make such statements about certain
initial conditions. For example, if γ>γ∗(α)>0, then we have proven above that there
exists a positive λ>0 satisfying (4.13). Hence, there exists nontrivial a,b,c,d satisfying
(4.12). Define ϕ0,ϕ1 by (4.8), where ψ0,ψ1 are defined by (4.11) using this choice of
α>0,λ>0 and a,b,c,d. Define the random initial condition,

u(x,0) =

{
2ϕ0(x) if J(0) = 0,

2ϕ1(x) if J(0) = 1,

where J starts in its invariant measure, P(J(0) = 0) =P(J(0) = 1) =1/2. It follows that
mj(x,t) :=eλtϕj(x) satisfies (4.3), and thus the mean of u is given by

E[u(x,t)] =m0(x,t)+m1(x,t) =eλtα−1
(
asinh(

√
λx)+bcosh(

√
λx)
)
,

as long as (4.3) has a unique solution for the initial condition, mj(x,0) =ϕj(x). It
follows from (4.10) that if a= b= 0, then ψ1≡0, and thus a,b,c,d are trivial. Thus, a
and b cannot both be zero, and we conclude that the mean grows exponentially for this
initial condition.



1144 BLOWUP OF A RANDOMLY SWITCHED PDE

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

α

γ

Re(λ) > 0 and Im(λ) 6= 0
γc ≈ 17.8
λ > 0

Fig. 4.1. Phase diagram for E[u(x,t)]. If the parameters (α,γ) lie in the red (upper left), blue
(upper right), or white (lower) regions, then the mean oscillates with ever increasing amplitude, grows
exponentially in magnitude, or decays to zero, respectively. The boundary of the blue region is γ∗(α) in
(4.17), and the red region was found numerically from (4.20). The blue and red dashed curves are the
boundaries of the corresponding regions for the mean (4.4) of the discretized system (3.7) with N = 3
(thin dashed curves) and N = 5 (thicker dashed curves). The intersection of the red curve with the
vertical axis recovers the critical value γc≈17.8 (dotted black line) found for the non-switching system
(2.3) [27, 36]. If (α,γ) is above the blue curve, but below the black dotted line, then the mean of the
switched system (2.4) grows exponentially in magnitude while the non-switched systems systems (2.1)
and (2.3) decay to zero. The three black dots are at (α,γ) equal to (1,25), (3,25), or (5,25), which are
the parameters in Figs. 4.2 and 4.3.

4.1.1. Winding number analysis. So far, we have given a sufficient condition
for the existence of an odd number of strictly positive real roots of (4.13). To determine
the number of real or complex roots of F(λ) in Re(λ)>0 and thereby complete the
phase diagram of E[u(x,t)], we follow [16,26] and use the argument principle of complex
analysis.

Specifically, we compute the change in the argument of F(λ) over the contour

ΓR∪Γ+∪Γ−∈C,

where ΓR is the semicircle, |λ|=R with Re(λ)>0, and Γ±=±iλI for λI ∈ [0,R]. As-
suming there are no pure imaginary roots of F(λ), the argument principle [1] implies
that the number of roots, n, of F(λ) in Re(λ)>0 is

n=
1

2π

(
lim
R→∞

[argF ]ΓR + lim
R→∞

[argF ]Γ+
+ lim
R→∞

[argF ]Γ−

)
+p, (4.19)

where [argF ]Γ denotes the change in the argument of F over the contour Γ oriented
counterclockwise, and p is the number of poles of F(λ) in Re(λ)>0 counted by their
multiplicity.

We now analyze (4.19) to determine n. It is easy to see that p= 0. Further, if z de-
notes the complex conjugate of z∈C, then F(λ) =F(λ), and thus [argF ]Γ+ = [argF ]Γ− .
Further, it follows from (4.16) that limR→∞[argF ]ΓR = 0. Putting this together, we
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have that (4.19) becomes

n=
1

π
lim
R→∞

[argF ]Γ+
. (4.20)

Indeed, it follows from (4.15) and (4.16) that limR→∞[argF ]Γ+
must be a multiple of

π.
By (4.20), computing the change in the argument of F (i.e., the winding number)

over the contour Γ+⊂C yields the number of roots of F(λ) in Re(λ)>0. This is
illustrated in Figure 4.2, where we plot in the complex plane the path of F(iλI) for λI
ranging from a large positive value to 0. For one parameter set (α= 1 and γ= 25), the
path of F wraps around the origin once (black curve), so the change in the argument of
F is 2π and thus F has two roots with positive real part (n= 2). To determine if these
two roots are real or complex, observe that F can be written in the form

F(λ) =
(
λ2 +λ+1

)−1(
h(λ)+q(λ)

)
,

where

h(λ) =γ
√
λcsch

(√
λ
)
csch

(√
2α+λ

)[
γ
√

2α+λ+γ
√

2α+λcosh
(√
λ
)
cosh

(√
2α+λ

)
+2(2α+λ)sinh

(√
2α+λ

)
+2
√
λ
√

2α+λsinh
(√
λ
)]
,

and q(λ) is the quadratic

q(λ) = 2λ2 +(4α−γ2)λ−γ2α.

Since h(λ)>0 if λ>0, and q(λ)>0 if λ>λ+>0, where

λ+ :=
γ2−4α+

√
(γ2−4α)2 +8γ2α

4
,

it follows that any positive real root of F must lie in the interval (0,λ+). It is straight-
forward to numerically verify that F has no positive real roots for α= 1 and γ= 25
by evaluating F(λ) for λ ranging from 0 to λ+. Hence, the two roots of F for α= 1
and γ= 25 are complex conjugates, and thus the mean oscillates with ever increasing
amplitude.

Keeping γ= 25 and increasing the switching rate to α= 3, we see in Figure 4.2 that
the change in the argument of F is zero (blue curve) and thus n= 0. Hence, the mean
decays to zero for this parameter choice.

Finally, if we keep γ= 25 and raise the switching rate to α= 5, then γ >γ∗(α)>0,
and therefore there are an odd number of strictly positive real roots of (4.13). Plotting
the path of F in Figure 4.2 (red curve), we see that the change in the argument of F
is π, and thus (4.13) has no complex roots. Therefore, the mean grows exponentially in
magnitude for this parameter choice.

Putting this together, if γ= 25, then the mean oscillates with ever increasing am-
plitude for slow switching (α= 1), decays to zero for intermediate switching (α= 3),
and grows exponentially in magnitude for fast switching (α= 5). These predictions are
confirmed by simulations of (4.3) in Figure 4.3.

In Figure 4.1, we use (4.17) and this numerical calculation of the winding number
to create a phase diagram of (4.3) indicating the regions of parameter space in which
the mean of u either decays, grows exponentially in magnitude, or oscillates with ever
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Fig. 4.3. The mean solution can oscillate with ever increasing amplitude (left plot), decay to zero
(middle plot), or grow exponentially (right plot) depending on the switching rate α>0. By numerically
solving (4.3), we plot the mean E[u(x,t)] evaluated at x= 1 as a function of time for γ= 25 and either
α= 1 (left plot), α= 3 (middle plot), or α= 5 (right plot).

increasing amplitude. We also plot in Figure 4.1 the phase diagram of the mean (4.4)
of the discretized system (3.7) for N = 3 and N = 5 (dashed curves). That is, since the
evolution Equation (4.5) for the discretized mean can be written in the form

d

dt

(
M0(t)
M1(t)

)
=

(
A0−αI αI
αI A1−αI

)(
M0(t)
M1(t)

)
∈R2(N+1),

we plot the regions of parameter space in which the block matrix(
A0−αI αI
αI A1−αI

)
∈R2(N+1)×2(N+1), (4.21)

has a positive eigenvalue or a complex eigenvalue with positive real part. These regions
of parameter space for the discretized system (3.7) converge rapidly to the corresponding
regions of the PDE (2.4). Indeed, they are close to indistinguishable for N ≥10, so we
only show them for N = 3 and N = 5 in Figure 4.1.

4.2. Two-point correlations. To obtain more detailed information on realiza-
tions of (2.4), we now investigate its second moment. Define the two-point correlation
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functions,

cj(x,y,t) :=E[u(x,t)u(y,t)1J(t)=j ], j∈{0,1}.

If we again assume (4.2), then we can apply Theorem 1 in [41] to obtain that c0 and c1
satisfy the following deterministic PDE on the square [0,1]2,

∂

∂t

(
c0
c1

)
=

∂2

∂x2

(
c0
c1

)
+
∂2

∂y2

(
c0
c1

)
+αW

(
c0
c1

)
, (x,y)∈ [0,1]2,t>0

∂
∂xc0(0,y,t) =γc0(1,y,t), ∂

∂xc0(1,y,t) = 0,
∂
∂xc1(0,y,t) = 0, ∂

∂xc1(1,y,t) =−γc1(0,y,t),
∂
∂y c0(x,0,t) =γc0(x,1,t), ∂

∂y c0(x,1,t) = 0,

∂
∂y c1(x,0,t) = 0, ∂

∂y c1(x,1,t) =−γc1(x,0,t).

(4.22)

The variance of u as a function of x and t is then given in terms of the solutions to (4.3)
and (4.22),

Var(u(x,t)) =E
[(
u(x,t)−E[u(x,t)]

)2]
= c0(x,x,t)+c1(x,x,t)−

(
m0(x,t)+m1(x,t)

)2
.

We are not able to solve (4.22) analytically. However, one can discretize the two
spatial variables x and y in (4.22) and use the method of lines to find a numerical
approximation. Equivalently, one can first consider the spatially discretized system (3.7)
for UN (t)∈RN+1, and then derive evolution equations for its two-point correlations.
That is, analogous to the evolution Equation (4.5) for the first moments (4.4), the
two-point correlations,

Cj(t) :=E[UN (t)(UN (t))T 1J(t)=j ]∈R(N+1)×(N+1), j∈{0,1}, (4.23)

evolve according to

d
dtCj(t) =AjCj(t)+Cj(t)A

T
j +α(C1−j(t)−Cj(t)) j∈{0,1}. (4.24)

Putting the matrices C0(t),C1(t)∈R(N+1)×(N+1) into a vector C(t)∈R2(N+1)2 , the evo-
lution Equation (4.24) can be written in the form

d
dtC(t) =BC(t), (4.25)

for a matrix B∈R2(N+1)2×2(N+1)2 chosen appropriately.

We can therefore analyze the spectrum of B to determine the asymptotic growth
or decay of C(t). In Figure 4.4, we plot the regions of (α,γ) parameter space in which
B has a positive eigenvalue or all negative eigenvalues, which yields a phase diagram
for C(t). From this plot, we see that there is a region of parameter space in which the
mean of UN (t) decays exponentially, but its second moment (and therefore its variance)
grows exponentially.

We note that in the region of Figure 4.4 in which both the mean and the variance
of UN (t) decay to zero (below the green curve), it follows from Chebyshev’s inequality
that UN (t)→0 in probability as t→∞.
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Fig. 4.4. Comparison of empirical mean with actual mean and variance. Above the green curve,
the variance of UN (t) grows exponentially in time (we take N = 51). Above the red and blue curves, the
mean of E[u(x,t)] grows in magnitude. The colors of the heat map give the logarithm of the absolute
value of a realization of the empirical (Monte Carlo) mean (4.26) with K= 102, N = 51, and T = 102,
where we take this logarithm to be 10 if it is greater than 10 and −10 if it is less than −10. As
expected, there is a region of parameter space in which the mean decays in time, but the computed
empirical mean is large. This discrepancy is because the variance grows exponentially in this region,
and therefore it is not computationally feasible to verify that the empirical mean decays to zero.

4.3. Stochastic simulations. Finally, we compare our predictions of the mean
behavior with empirical means computed from a large number of stochastic realizations
of (2.4). That is, for T >0 we generate K independent stochastic realizations of the

jump process {{J (k)(t)}t=Tt=0 }Kk=1, and then compute the corresponding solution U
(k)
N (T )

to (3.7) in order to approximate the solution u(k)(x,T ) to (2.4). We then compare
realizations of the empirical (Monte Carlo) mean,

1

K

K∑
k=1

U
(k)
N (T ), (4.26)

with the actual mean E[u(x,t)] whose behavior we determined by analyzing (4.3).
In Figure 4.4, we plot realizations of the empirical mean (4.26) as a function of

parameters α and γ for K= 104, N = 10, and T = 102. From this plot, we see that the
behavior of the empirical mean agrees with our predictions, except in a portion of the
region of parameter space in which the variance grows, but the mean decays (above the
green curve but below the red and blue curves). In this region, the actual mean decays
exponentially in time, but the computed empirical means can be quite large.

This discrepancy is to be expected and is due to the number of trials K= 104

being too small. Indeed, it follows from elementary probability theory that we can only
expect the empirical mean of a random variable to be close to its actual mean if the
number of trials is much larger than the variance of the random variable. Hence, it
is not computationally feasible to verify that the empirical mean (4.26) converges to
the actual mean in this region of parameter space, since one would need to take K
exponentially large in time. To illustrate, if α= 3, γ= 20, and N = 10, then a quick
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numerical computation gives that the dominant eigenvalue of the matrix controlling the
mean behavior (4.21) has real part ≈−1.6, and the dominant eigenvalue of the matrix
controlling the second moment in (4.25) is ≈13.9. Therefore, to show that at time T >0
the empirical mean (4.26) is of order e−1.6T , one would have to take the number of trials
K to be at least of order e13.9T .

Therefore, this highlights the necessity of our mathematical analysis in order to
compute the mean since an estimate of the mean through Monte Carlo simulation is
computationally intractable. In addition, this underscores that looking only at the
mean can be misleading, and higher order moments are often necessary to understand
a randomly switching system’s qualitative behavior.

5. Switching between unstable BCs can be stable
So far in this paper, we have shown that a PDE that switches between two stable

BCs can result in a solution that grows without bound. In this section, we briefly
propose and analyze a model that yields the opposite result. Namely, we find a PDE
that switches between two unstable BCs but results in a solution that decays to zero.
We note that the average system for this example is stable.

Suppose u(x,t) satisfies the heat equation on the interval (0,1) and suppose the
BCs randomly switch between

∂
∂xu(0,t) =γ0u(1,t), ∂

∂xu(1,t) = 0, (5.1)

and

∂
∂xu(0,t) =−γ1u(1,t), ∂

∂xu(1,t) = 0, (5.2)

for γ0>γ1>0. That is, u(x,t) satisfies the switching BCs

∂
∂xu(0,t) = ((1−J(t))γ0−J(t)γ1)u(1,t), ∂

∂xu(1,t) = 0, (5.3)

where J(t)∈{0,1} is a two-state Markov jump process with jump rate α>0.
The heat equation with the BC (5.1) is again the thermostat model, but the BC

in (5.2) yields a sort of anti-thermostat model in which a high temperature at x= 1
causes more heating x= 0. Not surprisingly, solutions with only the BC in (5.2) grow
exponentially for all γ1>0. Nevertheless, we will show that one can choose γ0>γc and
γ1>0 so that solutions to the randomly switching system (5.3) decay to zero, even
though solutions to the two individual non-switched systems ((5.1) and (5.2)) grow
without bound. As our analysis of (5.3) is similar to our analysis of (2.4), we merely
outline the key steps and give the main results.

5.1. Method of lines. As in Section 3, we can study the randomly switching
PDE (5.3) by studying the randomly switching linear ODE

d
dtUN (t) =BJ(t)UN (t), (5.4)

where B0,B1∈R(N+1)×(N+1) are the matrices

Bj =
1

(∆x)2


−2 2 −((1−j)γ0−jγ1)2∆x
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −2

, j∈{0,1}.
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Again, for fast switching (α�1) the behavior is determined by the average matrix,
B := 1

2 (B0 +B1). Consulting (3.5), we see that B is the matrix one obtains by a method
of lines discretization of the thermostat model with parameter γ= 1

2 (γ0−γ1). Therefore,
(5.3) is stable (respectively, unstable) for sufficiently fast switching if 1

2 (γ0−γ1)∈ (0,γc)
(respectively, 1

2 (γ0−γ1) /∈ [0,γc]). Therefore, one can choose γ0 and γ1 such that the
two individual non-switched systems ((5.1) and (5.2)) are unstable, but the switched
system (5.3) is stable for sufficiently fast switching (for example, let γ0 = 20, γ1 = 10).

5.2. First moment. To analyze the mean of (5.3), define mj(x,t) as in (4.1)
and use the same argument as in Section 4 to show that m0 and m1 satisfy

∂

∂t

(
m0

m1

)
=

∂2

∂x2

(
m0

m1

)
+αW

(
m0

m1

)
∂
∂xm0(0,t) =γ0m0(1,t), ∂

∂xm0(1,t) = 0,
∂
∂xm1(0,t) =−γ1m1(1,t), ∂

∂xm1(1,t) = 0.

(5.5)

The ansatz (4.6) yields the spectral problem

λ

(
ϕ0

ϕ1

)
=

∂2

∂x2

(
ϕ0

ϕ1

)
+αW

(
ϕ0

ϕ1

)
ϕ′0(0) =γ0ϕ0(1), ϕ′0(1) = 0,

ϕ′1(0) =−γ1ϕ1(1), ϕ′1(1) = 0.

(5.6)

Letting ψ0 =α(ϕ0 +ϕ1) and ψ1 =α(ϕ1−ϕ0), it follows that

ψ0(x) =acosh(
√
λ(x−1)), ψ1(x) = bcosh(

√
λ+2α(x−1)),

where a and b satisfy

−(
√
λsinh(

√
λ)+γ0)a+(

√
λ+2αsinh(

√
λ+2α)+γ0)b= 0

−(
√
λsinh(

√
λ)−γ1)a−(

√
λ+2αsinh(

√
λ+2α)−γ1)b= 0.

Since we are looking for a nontrivial solution, we need

f2(λ) = 0, (5.7)

where

f2(λ) :=
√

2α+λ(γ0−γ1)sinh
(√

2α+λ
)

+
√
λsinh

(√
λ
)(

2
√

2α+λsinh
(√

2α+λ
)

+γ0−γ1

)
−2γ0γ1.

It is easy to see that

lim
λ→+∞

f2(λ) = +∞.

Therefore, if f2(0)<0, then f has at least one strictly positive real root. Rearranging
the condition f2(0)<0, we have that if α>0, γ0>0, γ1>0 are such that

0<γ0<γ
∗
0 (α,γ1) :=

(
1/γ1−

√
2/αcsch(

√
2α)
)−1

, (5.8)
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Fig. 5.1. Phase diagram for the mean of (5.3) and corresponding stochastic simulations. If the
parameters (α,γ0) lie to the left of the blue or red curves, then the mean grows without bound. The
blue curve is γ∗0 (α,γ1) in (5.8), and the red curve was found numerically from (5.11). To the left of
the green curve, the variance of UN (t) in (5.4) grows exponentially in time (we take N = 21). The
colors of the heat map give the logarithm of the absolute value of a realization of the empirical (Monte
Carlo) mean (4.26) of (5.4) with K= 102, N = 21, and T = 102, where we take this logarithm to be 10
if it is greater than 10 and −10 if it is less than −10. We take γ1 = 10.

then (5.7) has a positive solution λ>0. Further, if γ0>γ1>0, then f2(λ) is strictly
increasing for λ>0 and thus f2(λ) can have at most one real positive root, and it has
such a root if and only if f2(0)<0. We plot γ∗0 (α,γ1) in Figure 5.1 (blue curve) for
γ1 = 10.

To analyze the roots of f2(λ) in Re(λ)>0 in more detail, we use the argument
principle of complex analysis as in Section 4. Observe that if λ∈C and Re(λ)>0, then
λ is a root of f2(λ) if and only if λ is a root of

F2(λ) :=
f2(λ)

(λ+1)e
√
λ+
√

2α+λ
. (5.9)

Defining the contour ΓR∪Γ+∪Γ− as in Section 4.1.1 and assuming there are no pure
imaginary roots of F2, the argument principle implies that the number of roots, n, of
F2(λ) in Re(λ)>0 is

n=
1

2π

(
lim
R→∞

[argF2]ΓR + lim
R→∞

[argF2]Γ+
+ lim
R→∞

[argF2]Γ−

)
+p, (5.10)

where [argF2]Γ and p are as in Section 4.1.1.
It is easy to see that p= 0. Further, F2(λ) =F2(λ), and thus [argF2]Γ+ = [argF2]Γ− .

Next, we have defined F2 in (5.9) such that

lim
|λ|→∞

F2(λ) =
1

2
, if Re(λ)≥0.

Therefore, limR→∞[argF2]ΓR = 0. Putting this together, we have that (4.19) becomes

n=
1

π

(
lim
R→∞

[argF2]Γ+

)
(5.11)
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Equation (5.11) can be calculated numerically from (5.9). Using this method, we give
the phase diagram of the mean of (5.3) in Figure 5.1. Specifically, if (α,γ0) lie to the left
of the red curve in Figure 5.1, then (5.7) has imaginary roots with positive real part.

5.3. Second moment. Defining the two-point correlations, C0(t),C1(t), of
(5.4) as in (4.23), it follows that they evolve according to (4.24) with Bj replacing Aj .
Analyzing the spectrum of the linear operator associated with this equation yields the
phase diagram for the two-point correlations shown in Figure 5.1. Specifically, if (α,γ0)
lie to the left of the green curve in Figure 5.1, then C0(t) and C1(t) grow exponentially
in time.

5.4. Stochastic simulations. In Figure 4.4, we plot realizations of the em-
pirical mean (4.26) of (5.4) as a function of parameters α and γ0 for K= 104, N = 10
γ1 = 10, and T = 102. From this plot, we see that the behavior of the empirical mean
agrees with our predictions, except in a portion of the region of parameter space in
which the variance grows, but the mean decays (to the left of the green curve but to
the right of the red and blue curves). In this region, the actual mean decays exponen-
tially in time, but the computed empirical means can be large. As in Section 4.3, this
discrepancy is to be expected and is due to the number of trials K= 104 being too small.

6. Discussion
In addition to being used in diverse applications [6, 12, 20, 31, 47, 52, 57], recent

work has shown that switching systems offer mathematicians novel dynamical behavior
and fresh analytical challenges [48]. The present work bolsters this thesis. Using a
variety of mathematical methods, we have analyzed a PDE with randomly switching
boundary conditions. Our analysis has revealed surprising properties, including that
one can choose parameters so that both individual PDE systems are stable, but the
switched system is unstable (and vice versa). Our work is related to [8], wherein the
authors established qualitatively similar results for randomly switching planar ODEs
(see also [10,40,44,49]).

In the context of dynamic networks, a related work is [35], wherein the authors
show that synchronous solutions can be stable in certain switching networks for fast
switching, even when synchronization is unstable for the individual networks. Further,
they show that synchronization can be stable for intermediate switching rates, even with
it is unstable for fast switching (see [44] for work on intermediate switching for linear
ODEs). We also highlight reference [5], in which the authors bound the probability that
a switching system deviates from an average system.

Finally, we emphasize that previous work on switching systems has tended to fo-
cus on switching ODEs, in contrast to the switching PDEs studied here. PDEs with
randomly switching boundary conditions were first considered in [45]. In that work,
the authors assumed a certain contractivity of their systems to prove existence and
uniqueness of an invariant measure and to study that measure. The PDE systems in
our present work do not fit into this framework, and hence we have devised alternative
methods of analysis. We hope that some of the techniques presented here will both
inform and be used in future studies of switching PDEs.
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sations with Michael J. Ward. The author was supported by NSF grant DMS-RTG
1148230.



S.D. LAWLEY 1153

REFERENCES

[1] M.J. Ablowitz and A.S. Fokas, Complex Variables: Introduction and Applications, Cambridge
University Press, 2003.

[2] Y. Bakhtin and T. Hurth, Invariant densities for dynamical systems with random switching,
Nonlinearity, 25:2937–2952, 2012.

[3] Y. Bakhtin, T. Hurth, S.D. Lawley, and J.C. Mattingly, Smooth invariant densities for random
switching on the torus, Nonlinearity, 31(4):1331–1350, 2018.

[4] Y. Bakhtin, T. Hurth, and J.C. Mattingly, Regularity of invariant densities for 1d systems with
random switching, Nonlinearity, 28:3755–3787, 2015.

[5] I. Belykh, V. Belykh, R. Jeter, and M. Hasler, Multistable randomly switching oscillators: The
odds of meeting a ghost, The European Physical Journal Special Topics, 222:2497–2507, 2013.

[6] I. Bena, Dichotomous Markov noise: Exact results for out-of-equilibrium systems, Int. J. Mod.
Phys. B, 20:2825–2888, 2006.
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[10] M. Benäım and C. Lobry, Lotka–volterra with randomly fluctuating environments or ‘how switch-
ing between beneficial environments can make survival harder’, Ann. Appl. Probab., 26:3754–
3785, 2016.

[11] P.C. Bressloff, Stochastic Processes in Cell Biology, Springer, 41, 2014.
[12] P.C. Bressloff, Stochastic switching in biology: from genotype to phenotype, J. Phys. A,

50(13):133001, 2017.
[13] P.C. Bressloff and S.D. Lawley, Moment equations for a piecewise deterministic PDE, J. Phys.

A, 48(10):105001, 2015.
[14] P.C. Bressloff and S.D. Lawley, Stochastically gated diffusion-limited reactions for a small target

in a bounded domain, Phys. Rev. E., 92:062117, 2015.
[15] P.C. Bressloff and S.D. Lawley, Diffusion on a tree with stochastically gated nodes, J. Phys. A,

49(24):245601, 2016.
[16] P.C. Bressloff and S.D. Lawley, Dynamically active compartments coupled by a stochastically

gated gap junction, J. Nonlinear Sci., 27(5):1487?C1512, 2017.
[17] W.L. Briggs, V.E. Henson, and S.F. McCormick, A multigrid tutorial, SIAM, 2000.
[18] J. Buceta, K. Lindenberg, and J.M.R. Parrondo, Spatial patterns induced by random switching,

Fluct. Noise Lett., 2:L21–L29, 2002.
[19] F. Cianciaruso, G. Infante, and P. Pietramala, Solutions of perturbed Hammerstein integral equa-

tions with applications, Nonlinear Anal. Real World Appl., 33:317–347, 2017.
[20] B. Cloez, R. Dessalles, A. Genadot, F. Malrieu, A. Marguet, and R. Yvinec, Probabilistic and

piecewise deterministic models in biology, arXiv preprint arXiv:1706.09163, 2017.
[21] B. Cloez and M. Hairer, Exponential ergodicity for Markov processes with random switching,

Bernoulli, 21(1):505–536, 2015.
[22] A. Faggionato, D. Gabrielli, and M.R. Crivellari, Non-equilibrium thermodynamics of piecewise

deterministic Markov processes, J. Stat. Phys., 137(2):259?C-304, 2009.
[23] D. Franco, G. Infante, and J. Perán, A new criterion for the existence of multiple solutions in

cones, Proc. Roy. Soc. Edinburgh Sect. A, 142(5):1043–1050, 2012.
[24] C. Gardiner, Stochastic Methods, Springer, 2010.
[25] R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai, and R. Sanfelice, Hybrid systems: generalized

solutions and robust stability, IFAC Symposium on Nonliear Control Systems, 2004.
[26] J. Gou, W. Chiang, P. Lai, M.J. Ward, and Y. Li, A theory of synchrony by coupling through a

diffusive chemical signal, Phys. D, 339:1–17, 2017.
[27] P. Guidotti and S. Merino, Hopf bifurcation in a scalar reaction diffusion equation, J. Diff. Eqs.,

140:209–222, 1997.
[28] P. Guidotti and S. Merino, Gradual loss of positivity and hidden invariant cones in a scalar heat

equation, Differential Integral Equations, 13:1551–1568, 2000.
[29] M. Hasler, V. Belykh, and I. Belykh, Dynamics of stochastically blinking systems. Part I: Finite

time properties, SIAM J. Appl. Dyn. Syst., 12(2):1007–1030, 2013.
[30] M. Hasler, V. Belykh, and I. Belykh, Dynamics of stochastically blinking systems. Part II: Asymp-

totic properties, SIAM J. Appl. Dyn. Syst., 12(2):1031–1084, 2013.
[31] J.P. Hespanha, Modeling and analysis of networked control systems using stochastic hybrid sys-

tems, IFAC Annual Reviews in Control, 38(2):155–170, 2014.

http://www.cambridge.org/cn/academic/subjects/mathematics/abstract-analysis/complex-variables-introduction-and-applications-2nd-edition?format=PB&isbn=9780521534291
http://mathscinet.ams.org/mathscinet-getitem?mr=2979976
http://iopscience.iop.org/article/10.1088/1361-6544/aaa04f/meta
https://doi.org/10.1088/0951-7715/28/11/3755
https://link.springer.com/article/10.1140%2Fepjst%2Fe2013-02032-9
https://doi.org/10.1142/S0217979206034881
https://projecteuclid.org/euclid.ecp/1465263189
http://mathscinet.ams.org/mathscinet-getitem?mr=3161648
https://projecteuclid.org/euclid.aihp/1435759239
https://projecteuclid.org/euclid.aoap/1481792599
https://projecteuclid.org/euclid.aoap/1481792599
https://link.springer.com/book/10.1007%2F978-3-319-08488-6
http://iopscience.iop.org/article/10.1088/1751-8121/aa5db4/meta
http://iopscience.iop.org/article/10.1088/1751-8113/48/10/105001/meta
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.062117
http://iopscience.iop.org/article/10.1088/1751-8113/49/24/245601
https://link.springer.com/article/10.1007%2Fs00332-017-9374-5
http://bookstore.siam.org/OT72
https://doi.org/10.1142/S0219477502000543
https://doi.org/10.1016/j.nonrwa.2016.07.004
https://www.mendeley.com/research-papers/exponential-ergodicity-markov-processes-random-switching/
http://mathscinet.ams.org/mathscinet-getitem?mr=2559431
https://doi.org/10.1017/S0308210511001016
https://www.springer.com/us/book/9783540707127
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.9035
https://doi.org/10.1016/j.physd.2016.08.004
https://doi.org/10.1006/jdeq.1997.3307
http://mathscinet.ams.org/mathscinet-getitem?mr=1787081
https://doi.org/10.1137/120893409
https://doi.org/10.1137/120893410
https://doi.org/10.1016/j.arcontrol.2014.09.001


1154 BLOWUP OF A RANDOMLY SWITCHED PDE

[32] G. Infante, Nonlocal boundary value problems with two nonlinear boundary conditions, Commun.
Appl. Anal., 12:279–288, 2008.

[33] G. Infante and J.R.L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA
Nonlinear Diff. Eqs. Appl., 13(2):249–261, 2006.

[34] G. Infante and J.R.L. Webb, Nonlinear non-local boundary-value problems and perturbed Ham-
merstein integral equations, Proc. Edinburgh Math. Soc., 49(2):637–656, 2006.

[35] R. Jeter and I. Belykh, Synchronization in on-off stochastic networks: windows of opportunity,
IEEE Transactions on Circuits and Systems I: Regular Papers, 62:1260–1269, 2015.

[36] G. Kalna and S. McKee, The thermostat problem, TEMA Tend. Mat. Apl. Comput., 3(1):15?C-29,
2002.

[37] G. Kalna and S. McKee, The thermostat problem with a nonlocal nonlinear boundary condition,
IMA J. Appl. Math., 69(5):437–462, 2004.

[38] I. Karatsompanis and P. K. Palamides, Polynomial approximation to a non-local boundary value
problem, Comput. Math. Appl., 60(12):3058–3071, 2010.

[39] T. Kurtz, A random Trotter product formula, Proc. Amer. Math. Soc., 35:147?C-154, 1972.
[40] G. Lagasquie, A note on simple randomly switched linear systems, arXiv preprint,

arXiv:1612.01861, 2016.
[41] S.D. Lawley, Boundary value problems for statistics of diffusion in a randomly switching envi-

ronment: PDE and SDE perspectives, SIAM J. Appl. Dyn. Syst., 15:1410–1433, 2016.
[42] S.D. Lawley, A probabilistic analysis of volume transmission in the brain, SIAM J. Appl. Math.,

78(2):942?C-962, 2018.
[43] S.D. Lawley, J. Best, and M.C. Reed, Neurotransmitter concentrations in the presence of neural

switching in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 21(7):2255–2273, 2016.
[44] S.D. Lawley, J.C. Mattingly, and M.C. Reed, Sensitivity to switching rates in stochastically

switched ODEs, Commun. Math. Sci., 12(7):1343–1352, 2014.
[45] S.D. Lawley, J.C. Mattingly, and M.C. Reed, Stochastic switching in infinite dimensions with

applications to random parabolic PDE, SIAM J. Math. Anal., 47(4):3035–3063, 2015.
[46] R.J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-

state and time-dependent problems, SIAM, 2007.
[47] Y.T. Lin and C.R. Doering, Gene expression dynamics with stochastic bursts: construction and

exact results for a coarse-grained model, Phys. Rev. E, 93:022409, 2016.
[48] F. Malrieu, Some simple but challenging Markov processes, arXiv preprint, arXiv:1412.7516, 2014.
[49] F. Malrieu and P.A. Zitt, On the persistence regime for lotka-Volterra in randomly fluctuating

environments, arXiv preprint arXiv:1601.08151, 2016.
[50] J.J. Nieto and J. Pimentel, Positive solutions of a fractional thermostat model, Bound. Value

Probl., 5, 2013.
[51] P.K. Palamides, G. Infante, and P. Pietramala, Nontrivial solutions of a nonlinear heat flow

problem via sperner’s lemma, Appl. Math. Lett., 22(9):1444–1450, 2009.
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