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A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white
noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the
need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical
perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently,
we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by
switching processes in molecular biology, we considered a Brownian particle that randomly switches between two
distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion
(additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend
on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of
the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the
effective multiplicative noise process obtained by taking both the white-noise limit (κ → 0) and fast switching
limit (ε → 0) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain
Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective
diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent
transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we
show that yet another form of multiplicative noise is obtained in the simultaneous limit ε,κ → 0 with ε/κ2

fixed.

DOI: 10.1103/PhysRevE.96.012129

I. INTRODUCTION

Fundamental issues in nonequilibrium statistical physics
are the interpretation of multiplicative white noise and the
associated distinction between Itô and Stratonovich versions
of stochastic differential equations (SDEs) [1–3]. Additional
physical constraints are usually required to identify the correct
interpretation. For example, taking the white-noise limit of
a particle driven by colored multiplicative noise generates the
Stratonovich version [4]. On the other hand, consistency of the
stochastic dynamics with equilibrium statistical physics yields
the so-called kinetic interpretation [5–7]. The latter appears
to hold in experiments observing the motion of a colloidal
particle near a wall, where hydrodynamic interactions lead to
spatial variations in the diffusion coefficient D of a Brownian
particle (heterogeneous diffusion) [8–10].

There has also been a recent resurgence of interest
in heterogeneous diffusion within biological cells, driven
by advances in single-particle tracking (SPT) experiments
[11–14]. These experiments track the trajectories of individual
macromolecules and lipids within the plasma membrane by
attaching an observable tag such as a quantum dot, gold
nanoparticle, or fluorophore. They have established that, rather
than moving freely, molecules tend to exhibit heterogenous
dynamics, including confined and anomalous diffusion. A
variety of mechanisms have been proposed to explain such
behavior, including lipid microdomains [15], compartmental-
ization by the cytoskeleton (the so-called picket-fence model
[13]), and protein-protein interactions [16–18]. The simplest
technique for analyzing SPT data is to detect deviations
from free diffusion based on the mean squared displacement
(MSD). It is well known that unconfined Brownian motion
has a cumulative MSD that is a linear function of time,
whereas a sublinear temporal variation of MSD is indicative

of movement in a confined environment and a supralinear
variation suggests directed motion. One can then compare
various physical models by fitting theoretical MSD curves
with the data. One limitation of MSD as a measure of
heterogeneous diffusion is that it is based on the statistics
of multiple trajectories. However, it is also possible to detect
heterogeneity within single trajectories by utilizing statistics to
detect deviations from generic properties of Brownian motion,
including first passage times and occupation times [19–22].
Yet a more effective statistical method is to use parametric
models of heterogeneous diffusion, based on the hidden
Markov model (HMM) framework [23–25]. These latter
studies suggest that particles within the plasma membrane
can switch between different discrete conformational states
with different diffusivities. Such switching could be due to
interactions between proteins and the actin cytoskeleton [23]
or due to protein-lipid interactions [26].

Motivated by the above experimental studies, we have
recently analyzed a model of a Brownian particle that randomly
switches between two distinct conformational states with
different diffusivities [27]. In each state, the particle undergoes
normal diffusion (additive noise) so there is no ambiguity
in the interpretation of the noise. However, if the switching
rates depend on position, then in the fast switching limit
ε → 0, where ε is some dimensionless scale factor, one
obtains Brownian motion with a space-dependent diffusivity
of the Itô form. (The case of space-independent switching
between two diffusive states has recently been analyzed in
Ref. [28].) In this paper, we extend our theory to include
colored additive noise with correlation time κ . We show
that the nature of the effective multiplicative noise process
obtained by taking both the white-noise limit (κ → 0) and
fast switching limit (ε → 0) depends on the order the two
limits are taken. If the white-noise limit κ → 0 is taken
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first, then we obtain an Itô SDE, whereas a Stratonovich
SDE is obtained when the fast switching limit ε → 0 is
taken first. Moreover, the form of the effective diffusion
coefficient differs in the two cases. The latter result holds
even in the case of space-independent transition rates, where
one obtains additive noise processes with different diffusion
coefficients.

The structure of the paper is as follows. In Sec. II we
formulate our model and sketch the main results of the paper.
We then carry out a more detailed derivation of our results
in Sec. III, where we analyze the adiabatic and white-noise
limits using projection methods. We present an alternative
approach in Sec. IV based on regular perturbation theory. This
allows us to derive yet another form of multiplicative noise in
the simultaneous limit ε,κ → 0 with ε/κ2 fixed. Finally, we
present some numerical results in Sec. V and conclude with a
brief discussion.

II. A HYBRID COLORED NOISE PROCESS

Let X(t) ∈ R denote the position of a particle at time t ,
which is taken to evolve according to the stochastic differential
equation (SDE)

dX(t) = 1

κ
f (X(t))Y (t)dt, (2.1a)

where Y (t) is a stochastic external input evolving according to
the Ornstein-Uhlenbeck process

dY (t) = − γ

κ2
Y (t)dt + 1

κ
W (t),

〈dW (t)〉 = 0, 〈dW (t)dW (t ′)〉 = δ(t − t ′)dtdt ′, (2.1b)

where δ is the Dirac δ function. We take κ to be dimensionless
so that γ is a scaled decay rate. For simplicity, we fix the
units of time by setting γ = 1. Heuristically speaking, in the
white-noise limit κ → 0 we can set Y (t)dt = κdW (t) such
that we obtain a scalar SDE of the Stratonovich form:

dX(t) = f (X(t)) ◦ dW (t). (2.2)

One way to establish the correct interpretation of the mul-
tiplicative noise is to start with the full two-dimensional
(2D) Itô Fokker-Planck (FP) equation for the probability
density function of sample paths and to reduce it to a scalar
Stratonovich FP equation in the limit κ → 0 using an adiabatic
reduction and projection methods [4].

Now consider a hybrid version of the above SDE, in which
the nonlinear function f (X) is replaced by a piecewise constant
function

√
2DN(t), with N (t) ∈ {0,1} evolving according to a

two-state Markov chain

0
β/ε−−⇀↽−−
α/ε

1, (2.3)

with ε > 0, a dimensionless parameter. That is,

dX(t) = 1

κ

√
2DN(t)Y (t)dt, (2.4a)

dY (t) = − 1

κ2
Y (t)dt + 1

κ
dW (t). (2.4b)

for N (t) ∈ {0,1} and D0,D1 constants. We can view this
as a three-component stochastic hybrid system, (X,Y,N ) ∈
R × R × {0,1}. Following Ref. [27], we will assume that the
switching rates α,β depend on the current position of the
particle, α = α(X(t)), β = β(X(t)).

Suppose that it is still possible to take the white-noise limit
for the nonautonomous SDE (2.4). For fixed ε > 0, we would
then obtain the following piecewise SDE for the position X(t):

dX(t) = √
2DN(t) dW (t). (2.5)

As it stands, the resulting additive SDE represents a Brownian
particle with a switching diffusion coefficient and space-
dependent switching rates. This stochastic hybrid system was
analyzed in Ref. [27], where we showed that taking ε → 0
yields an Itô equation for X(t),

dX(t) =
√

2D(X(t)) dW (t), (2.6)

where

D(x) =
∑
n=0,1

ρn(x)Dn (2.7)

and

ρ0(x) = α(x)

α(x) + β(x)
, ρ1(x) = 1 − ρ0(x). (2.8)

For fixed x, ρn(x), n = 0,1 corresponds to the unique station-
ary distribution of the two-state Markov chain with generator
ε−1A(x), where

A(x) =
(−β(x) α(x)

β(x) −α(x)

)
. (2.9)

In particular,
∑

m=0,1 Anm(x)ρm(x) = 0 for n = 0,1. The basic
intuition behind Eq. (2.6) is that in the fast switching limit
ε → 0, the Markov chain undergoes many jumps over a small
time interval �t during which �X ≈ 0, and thus the relative
frequency of the two discrete states n is approximately ρn(x).

An alternative limit is obtained if we fix κ > 0 and
perform the adiabatic limit ε → 0. Using similar arguments
to Ref. [27], we expect that the system reduces to an effective
SDE for [X(t),Y (t)] of the form

dX(t) = 1

κ

√
2D̂[X(t)]Y (t) dt, (2.10a)

dY (t) = − 1

κ2
Y (t)dt + 1

κ
dW (t), (2.10b)

where

D̂(X) =
[ ∑

n=0,1

√
Dnρn(x)

]2

. (2.11)

This would then yield an equation of the form (2.1), so taking
κ → 0 would lead to the following Stratonovich equation
for X:

dX(t) =
√

2D̂[X(t)] ◦ dW (t). (2.12)

The above analysis suggests that the order in which the
adiabatic and white-noise limits are taken has a nontrivial
effect on the nature of the resulting scalar SDE for the position
X(t). Taking the white-noise limit first generates the Itô SDE
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(2.6) with the effective diffusion coefficient D(x), whereas
taking the adiabatic limit first produces a Stratonovich SDE
with the effective diffusion coefficient D̂(x). Interestingly,
we find a difference even when the transition rates are x

independent, in which case Eqs. (2.6) and (2.12) reduce to
additive noise processes with different diffusion coefficients,
namely, D = ∑

n Dnρn and D̂n = (
∑

n

√
Dnρn)2. In Sec. III

we establish these results more systematically using projection
and perturbation methods, and then explore a case where ε and
κ are related in Sec. IV.

III. ANALYSIS OF ADIABATIC AND WHITE-NOISE
LIMITS USING PROJECTION METHODS

The first step is to write down the full Chapman-
Kolmorogov (CK) equation for the stochastic hybrid system
[X(t),Y (t),N (t)]. Let

pn(x,y,t) = P[x < X(t) < x + dx, y < Y (t) < y + dy,

N (t) = n|X0,Y0,n0],

for fixed initial conditions. Then

∂pn(x,y,t)

∂t
= 1

κ2

(
∂

∂y
y + 1

2

∂2

∂y2

)
pn(x,y,t)

−
√

2Dny

κ

[
∂

∂x

]
pn(x,y,t)

+ 1

ε

∑
m=0,1

Anm(x)pm(x,y,t). (3.1)

It is useful to rewrite Eq. (3.1) in the more compact form

∂p(x,y,t)

∂t
=

([
1

κ2
L1I + 1

κ
L2J

]
+ 1

ε
A(x)

)
p(x,y,t).

(3.2)

where p = (p0,p1)
, I is the 2 × 2 unit matrix, J =
diag(

√
2D0,

√
2D1), and

L1 = ∂

∂y
y + 1

2

∂2

∂y2
, L2 = −y

∂

∂x
. (3.3)

Introduce the projection operator P acting on a scalar
function p(x,y) according to [4,29]

(Pp)(x,y) = ps(y)
∫ ∞

−∞
p(x,y ′)dy ′, (3.4)

where ps(y) is the stationary probability density of the
stochastic process Y (t): L1ps(y) = 0, that is,

ps(y) =
√

1

π
e−y2

. (3.5)

We will assume that P acts on vector fields component-wise.
The projection operator satisfies the following identities [4]:
(i) P2 = P; (ii) PL1 = L1P = 0; (iii) AP = PA; (iv)
PL2P = 0; and (v) P = limt→∞ etL1 . The first three proper-
ties are trivial to show, and property (v) is simply a statement
that eL1tp(x,y) is a (non-normalized) solution to the FP
equation ∂tp = L1p, which approaches the stationary density
in the large-t limit. Finally, property (iv) is a consequence of

the fact that

(PL2P)p(x,y) = ps(y)
∫ ∞

−∞

[
−y ′ ∂

∂x
ps(y

′)dy ′
]

×
∫ ∞

−∞
p(x,y ′′)dy ′′

∼ ps(y)〈y ′〉s ∂

∂x

∫ ∞

−∞
p(x,y ′′)dy ′′ = 0,

since 〈y ′〉s = 0.
The next step is to Laplace transform the CK equation with

respect to time t :

sp̃(s) − p(0) =
([

1

κ2
L1I + 1

κ
L2J

]
+ 1

ε
A

)
p̃(s), (3.6)

where we have dropped the explicit dependence on x,y. We
will assume the initial condition

pn(x,y,0) = ρn(x)ps(y)δ(x − x0).

Applying the projection operator P to Eq. (3.6) and using
properties (ii) and (iii) yields

sV(s) = 1

κ
PL2JW(s) + Pp(0) + 1

ε
AV(s), (3.7)

where

V(s) = Pp̃(s), W(s) = (1 − P )̃p(s).

Similarly, applying the projection operator 1 − P yields

sW(s) =
(

1

κ2
L1I + 1

κ
(1 − P)L2J

)
W(s) + 1

κ
L2JV(s)

+ (1 − P)p(0) + 1

ε
AW(s). (3.8)

Note that Pp(0) = p(0) so that (1 − P)p(0) = 0.
Equations (3.1), (3.7), and (3.8) are the starting point

for analyzing the double limit ε,κ → 0. We proceed by
carrying out a double perturbation expansion in ε,κ , under
the simplifying assumptions that either ε/κ2  1 (white-noise
limit followed by adiabatic limit) or ε/κ2 � 1 (adiabatic limit
followed by white-noise limit). In the former case, we invert
Eq. (3.8) by carrying out a perturbation expansion in κ for
fixed ε, substitute the resulting expression of W(s) in terms of
V(s) into Eq. (3.7), and then take the limit κ → 0. We then
solve for V(s) by carrying out a perturbation expansion in ε. In
the latter case, the roles of ε and κ are reversed. An alternative
approach based on the backward CK equation is presented in
Sec. IV, which considers a single perturbation expansion in
κ with η = ε/κ2 fixed. The results of this section are then
recovered by taking either η → ∞ or η → 0. Note, however,
that the forward method presented here provides a basis for a
more general double perturbation expansion.

A. Taking the white-noise limit (κ → 0) first

First suppose we fix ε > 0 and take the limit κ → 0. We
can formally invert Eq. (3.8) to obtain

W(s) = − 1

κ
�(s)L2JV(s), (3.9)
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with

�(s) =
(

−s + 1

κ2
L1I + 1

κ
(1 − P)L2J + 1

ε
A

)−1

. (3.10)

Substituting into Eq. (3.7) thus gives

sV(s) − p(0) = − 1

κ2
PL2J�(s)L2JV(s) + 1

ε
AV(s). (3.11)

In the limit κ → 0, we have �(s) → κ2L−1
1 I, so that Eq. (3.11)

becomes

sV(s) − p(0) = −PL2L
−1
1 L2J2V(s) + 1

ε
AV(s). (3.12)

Now performing the inverse transform and setting

lim
κ→0

Vn(x,y,t) = ps(y)pn(x,t), (3.13)

we have

ps(y)
∂pn

∂t
= −2Dn

(
PL2L

−1
1 L2

)
ps(y)pn(x,t)

+ ps(y)

ε

∑
m=0,1

Anm(x)pm(x,t). (3.14)

It remains to calculate the second operator term on the right-
hand side. From the definition of L2 we have

PL2L
−1
1 L2ps(y)pn(x,t)

= ps(y)
∫ ∞

−∞

(
− ∂

∂x
y ′

)
L−1

1

(
− ∂

∂x
y ′

)
ps(y

′)pn(x,t)dy ′

= −Dps(y)
∂2

∂x2
pn(x,t), (3.15)

with

D = −
∫ ∞

−∞
yL−1

1 yps(y)dy. (3.16)

Formally speaking, we have∫ ∞

0
eL1t dt = L−1

1 ( lim
t→∞eL1t − 1) = −L−1

1 (1 − P),

from property (v) of the projection operator. Since

Pyps(y) = ps(y)〈y〉s = 0,

we see that

D =
∫ ∞

0
dt

∫ ∞

−∞
dy y[eL1t yps(y)].

Using the fact that eL1t is the evolution operator of the FP
equation for y, we have

D =
∫ ∞

0
dt

∫ ∞

−∞
dy

∫ ∞

−∞
dy ′ yy ′p(y ′,t |y,0)ps(y)

=
∫ ∞

0
〈Y (t)Y (0)〉sdt = 1

2
.

Finally, setting D = 1/2 in Eq. (3.14), and canceling a
common factor of ps(y), we arrive at the following CK
equation for the probability density pn(x,t):

∂pn(x,t)

∂t
= Dn

∂2pn(x,t)

∂x2
+ 1

ε

∑
m=0,1

Anm(x)pm(x,t), (3.17)

This is precisely the CK equation that would be written down
for the joint Markov process [N (t),X(t)] evolving according
to the piecewise SDE (2.5).

We can now derive the Itô SDE (2.6) by carrying out a
quasisteady state (QSS) or adiabatic reduction of the CK
equation (3.17). This reduces the CK equation (3.17) to a
corresponding FP equation for the total probability density
p(x,t) = ∑

n=0,1 pn(x,t) [4,30,31]. That is, we decompose the
probability density pn as

pn(x,t) = p(x,t)ρn(x) + εwn(x,t),

where
∑

n wn(x,t) = 0. Substituting this decomposition into
Eq. (3.17), summing both sides with respect to n, and using∑

n Anm(x) = 0 yields to leading order the Itô FP equation

∂p

∂t
= ∂2D(x)p

∂x2
. (3.18)

The higher-order corrections are calculated in Ref. [27].

B. Taking the adiabatic limit (ε → 0) first

Next we fix κ > 0 and take the limit ε → 0. In this case,
we cannot simply invert Eq. (3.8), since �(s) → εA−1 as
ε → 0, and A−1 does not exist. Instead, we introduce the
decomposition

pn(x,y,t) = ρn(x)p(x,y,t) + εwn(x,y,t ; ε), (3.19)

with ρn(x) given by Eq. (2.8), p(x,y,t) = ∑
n=0,1 pn(x,y,t),

and
∑

n=0,1 wn = 0. Substituting into Eq. (3.1), summing both
sides with respect to n, and using

∑
n Anm(x) = 0 yields the

following equation for p in the limit ε → 0:

∂p(x,y,t)

∂t
= 1

κ2

(
∂

∂y
y + 1

2

∂2

∂y2

)
p(x,y,t)

− y

κ

[
∂

∂x

]√
2D̂(x)p(x,y,t). (3.20)

This is precisely the two-variable FP equation for the SDE
(2.10). One could now apply the projection method of
Sec. III A to derive equations for V (x,y,s) = Pp̃(x,y,s) and
W (x,y,s) = (1 − P)p̃(x,y,s). However, a more direct method
is to introduce the decompositions

Vn(x,y,s) = ρn(x)V (x,y,s) + ενn(x,y,s; ε), (3.21a)

Wn(x,y,s) = ρn(x)W (x,y,s) + εωn(x,y,s; ε), (3.21b)

with
∑

n ωn = 0 = ∑
n νn. Substituting into Eqs. (3.7) and

(3.8), summing both sides with respect to the vector com-
ponents n = 0,1, and using

∑
n Anm(x) = 0 then yields the

following equations for V,W in the limit ε → 0:

sV (x,y,s) = 1

κ
PL2

√
2D̂(x)W (x,y,s) + p(x,y,0)

and

sW (x,y,s) =
[

1

κ2
L1 + 1

κ
(1 − P)L2

√
2D̂(x)

]
W (x,y,s)

+ 1

κ
L2

√
2D̂(x)V (x,y,s). (3.22)
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Inverting Eq. (3.22) and substituting into Eq. (3.22) gives

sV (x,y,s) − p(x,y,0) = − 1

κ
�(s)L2

√
2D̂(x)V (x,y,s),

where

�(s) =
[
−s + 1

κ2
L1 + 1

κ
(1 − P)L2

√
2D̂(x)

]−1

.

Taking the limit κ → 0 proceeds along similar lines to the
analysis of Eq. (3.11). That is, taking �(s) → κ2L−1

1 and
performing the inverse Laplace transform with

lim
κ→0

V (x,y,t) = ps(y)p(x,t) (3.23)

gives

ps(y)
∂p

∂t
= −[

PL2

√
2D̂(x)L−1

1 L2

√
2D̂(x)

]
ps(y)p(x,t).

Evaluating the right-hand side along identical lines to the
previous case and canceling a common factor of ps(y) yields
the Stratonovich FP equation

∂p

∂t
= ∂

∂x

√
D̂(x)

∂

∂x

√
D̂(x)p(x,t). (3.24)

This corresponds to the Stratonovich SDE (2.12).

IV. ANALYSIS OF ADIABATIC AND WHITE-NOISE
LIMITS USING THE BACKWARD EQUATION

So far we have used projection and perturbation methods
to investigate how the effective forward FP equation depends
on the order in which we take the adiabatic and white noise
limits. To gain further insights into this issue, we develop
an alternative approach in which we set ε = κ2/η for some
η > 0 and carry out a regular single perturbation expansion
in κ . Cases A and B are then recovered in the limits η → 0
(κ approaches zero faster than ε) and η → ∞ (ε approaches
zero faster than κ). However, for finite η we obtain yet another
limit, ε,κ → 0 with ε/κ2 fixed. (One could also obtain this
limit using the forward method, but the analysis is more
complicated.)

Adapting methods in Ref. [32], our starting point is the
Kolmogorov backward equation for the three-component
process [X(t),Y (t),N (t)] defined in (2.3) and (2.4), which is

∂

∂t
q =

(
1

κ2
L∗

1 + 1

κ
L∗

2J + 1

ε
A∗

)
q, (4.1)

where L∗
1 and L∗

2 are the adjoints of (3.3),

L∗
1 = −y

∂

∂y
+ 1

2

∂2

∂y2
, L∗

2 = y
∂

∂x
,

A∗ is the adjoint (transpose) of (2.9), and

q =
(

q0(x,y,t)
q1(x,y,t)

)
.

Setting ε = κ2/η for some η > 0 and plugging the follow-
ing power series expansion,

q = q(0) + κq(1) + κ2q(2) + · · ·

into (4.1) yields the following hierarchy of equations:

−(L∗
1 + ηA∗)q(0) = 0, (4.2)

−(L∗
1 + ηA∗)q(1) = L∗

2Jq(0), (4.3)

−(L∗
1 + ηA∗)q(2) = L∗

2Jq(1) − ∂

∂t
q(0) ≡ h(2). (4.4)

Ergodicity of Y (t) and N (t) implies that the null space of
L∗

1 + ηA∗ (vectors q(0)(x,y) for which (L∗
1 + ηA∗)q(0) = 0)

consists of functions of the form(
q

(0)
0 (x,y,t)

q
(0)
1 (x,y,t)

)
=

(
q(x,t)
q(x,t)

)
for some function q(x,t). Hence, Eq. (4.3) becomes

−(L∗
1 + ηA∗)q(1) = y

∂

∂x
q(x,t)

(√
2D0√
2D1

)
≡ h(1). (4.5)

Now observe that the null space of L1 + ηA (vectors e(x,y)
for which (L1 + ηA)e = 0) is spanned by

e(x,y) = ps(y)

(
ρ0(x)
ρ1(x)

)
,

where ps(y) is the stationary probability density of Y (t) given
in (3.5). Therefore, the right-hand side of (4.5) is orthogonal
to the null space of L1 + ηA since

〈h(1),e〉 ≡
∫ ∞

−∞

∫ ∞

−∞

∑
n=0,1

h(1)
n (x,y)en(x,y)dx dy

=
√

2D̂(x)
∂

∂x
q(x,t)

∫ ∞

−∞
yps(y) dy = 0.

Hence, the Fredholm alternative [33] ensures that (4.5) is
solvable. Indeed, it is straightforward to check that(

q
(1)
0 (x,y,t)

q
(1)
1 (x,y,t)

)
:=

√
2

(
b0(x)

b1(x)

)
y

∂

∂x
q(x,t) (4.6)

solves Eq. (4.5), where

bn(x) := νη(x)
√

D̂(x) + [1 − νη(x)]
√

Dn (4.7)

and

νη(x) := η[α(x) + β(x)]

1 + η[α(x) + β(x)]
. (4.8)

Again appealing to the Fredholm alternative, in order for
Eq. (4.4) to be solvable, we need L∗

2Jq(1) − ∂
∂t

q(0) to be
orthogonal to the null space of L1 + ηA. That is, we need

ρ0(x)
∫ ∞

−∞
ps(y)

{
L∗

2

√
2D0q

(1)
0 − ∂q

∂t

}
dy

+ ρ1(x)
∫ ∞

−∞
ps(y)

{
L∗

2

√
2D1q

(1)
1 − ∂q

∂t

}
dy = 0.

Now, it is immediate that

ρ0(x)
∫ ∞

−∞
ps(y)

∂q

∂t
dy + ρ1(x)

∫ ∞

−∞
ps(y)

∂q

∂t
dy = ∂q

∂t
,
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since ρ0(x) + ρ1(x) = ∫ ∞
−∞ ps(y) dy = 1 and q is independent

of y. Furthermore, using (4.6) we have that

ρn(x)
∫ ∞

−∞
ps(y)L∗

2

√
2Dnq

(1)
n dy

= 2
√

Dnρn(x)

[ ∫ ∞

−∞
y2ps(y) dy

] ∂

∂x

[
bn(x)

∂

∂x
q(x,t)

]
=

√
Dnρn(x)

∂

∂x

[
bn(x)

∂

∂x
q(x,t)

]
,

for n ∈ {0,1} since
∫ ∞
−∞ y2ps(y) dy = 1/2.

Putting this together yields the limiting backward
Kolmogorov equation,

∂q

∂t
=

∑
n=0,1

√
Dnρn(x)

∂

∂x

[
bn(x)

∂

∂x
q(x,t)

]
.

Using (4.7), this becomes

∂q

∂t
=

√
νη(x)D̂(x)

∂

∂x

√
νη(x)D̂(x)

∂q

∂x

+ [1 − νη(x)]D(x)
∂2q

∂x2
+ Vη(x)

∂q

∂x
,

where

Vη(x) := ν ′
η(x)

[
1
2 D̂(x) − D(x)

]
.

Therefore, the limiting SDE is

dX(t)

= {
Vη[X(t)] + 1

2νη[X(t)]D̂′[X(t)]
}
dt

×
√

2νη[X(t)]D̂[X(t)]+2{1−νη[X(t)]}D[X(t)] dW (t),
(4.9)

and the corresponding limiting FP equation is

∂p

∂t
= ∂

∂x

√
νη(x)D̂(x)

∂

∂x

√
νη(x)D̂(x)p

+ ∂2

∂x2
{[1 − νη(x)]D(x)p} − ∂

∂x
[Vη(x)p]. (4.10)

There are several things to note about (4.10). First, if
κ2/ε = η → ∞, then νη(x) → 1 and ν ′

η(x) → 0, and we
obtain the Stratonovich FP equation (3.24) corresponding
to the Stratonovich SDE (2.12) with diffusion coefficient
D̂. In the opposite limit, if κ2/ε = η → 0, then νη(x) → 0
and ν ′

η(x) → 0 and we obtain the Itô FP equation (3.18)
corresponding to the Itô SDE (2.6) with diffusion coefficient
D. Finally, if η is finite and nonzero, then (4.10) is a mixture
of Stratonovich and Itô terms plus a drift depending on the
difference between D̂ and D.

V. NUMERICAL RESULTS

In this section, we use numerical simulation to demonstrate
the convergence of (2.4) to either (2.6), (2.12), or (4.9),
depending on how we take the double limit ε,κ → 0. We
present the numerical results first and then describe our
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x

p
(x

,t
)

D

̂D

ν ̂D + (1 − ν)D

FIG. 1. Convergence of hybrid colored noise process to various
SDEs depending on ratio of correlation time to mean switching time
for spatially constant switching rates. The red, blue, and black curves
are the respective distributions of (2.6), (2.12), and (4.9), which are
Gaussians with zero mean and variance 2tD, 2tD̂, and 2t[νηD̂ + (1 −
νη)D]. The squares, circles, and plusses are the empirical distribution
of the hybrid colored noise process (2.4) with mean switching time
ε = 10−4 and respective correlation times κ = ε2 (η = 10−12), κ =
ε1/4 (η = 102), or κ = ε1/2 (η = 1) for 106 trials. Simulations of
the hybrid colored noise process were performed according to the
statistically exact algorithm described in Sec. V. The distributions
are at time t = 1 with D0 = 10−2, D1 = 1, α = 1 − β = 0.9091,
and thus D = .1, D̂ = 0.3306D, and ν = 1/2.

algorithm for generating statistically exact simulations of the
hybrid colored noise process (2.4).

In Fig. 1, we consider spatially constant switching rates. In
this case, the probability distribution of the limiting process,
(2.6), (2.12), or (4.9), at time t > 0 is Gaussian with zero mean
and respective variance

2tD, 2tD̂, or 2t[νηD̂ + (1 − νη)D].

In addition to verifying that the numerics agree with the
theory, Fig. 1 shows that the distributions of the three limiting
processes, (2.6), (2.12), and (4.9), can be quite different, even
for spatially constant switching rates. Indeed, comparing the
formulas for D and D̂ in Eqs. (2.7) and (2.11) shows that the
ratio D̂/D can be as small as

D̂/D = 4
√

D0/D1

(
√

D0/D1 + 1)2
< 4

√
D0/D1, (5.1)

for α,β chosen appropriately. Equation (5.1) shows that
the possible discrepancy between the effective diffusion
coefficients, D and D̂, is related to the discrepancy between
the two diffusivities, D0 and D1. We therefore note that
single-particle tracking experiments have found that antigens
diffusing on the surface of T cells can switch between two
diffusivities D0 and D1 with D0/D1 ≈ 5 × 10−2 (see Table 1
in Ref. [23]). In the case of Fig. 1, we take D0 = 10−2 <

D1 = 1 and α = 1 − β = 0.9091 so the ratio is D̂/D =
0.3306.
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FIG. 2. Effective diffusivity of hybrid colored noise process as
a function of ratio of correlation time to mean switching time, η =
κ2/ε, for spatially constant switching rates. The red dashed line is D

in Eq. (2.7), the blue dotted line is D̂ in Eq. (2.11), and the black solid
line is the effective diffusivity, νηD̂ + (1 − νη)D, with νη in Eq. (4.8).
The black diamonds are one half of the empirical variance of 106

simulations of the hybrid colored noise process until time t = 1. The
parameters, ε,α,β,D0,D1, are given in the caption of Fig. 1.

Figure 2 plots the effective diffusivity of the hybrid
colored noise process for a range of ratios of correlation
time to mean switching time, η = κ2/ε, for spatially con-
stant switching rates. In addition to verifying the theory of
Secs. III–IV, this figure illustrates that as η varies, there is a
sharp transition between the regime in which the effective
diffusivity is approximately D and the regime in which
the effective diffusivity is approximately D̂. Indeed, for the
parameters in Fig. 2, the transition essentially occurs between
η = 0.1 and η = 10.

Moving to space-dependent switching rates, Fig. 3 demon-
strates the convergence of (2.4) to either (2.6), (2.12), or (4.9)
for

α(x) = β(−x) = tanh(10x) + 1.

This choice of switching rates makes X(t) more likely to have
diffusivity D0 (respectively, D1) when X(t) > 0 (respectively,
X(t) < 0); see the top panel of Fig. 4. This models the generic
situation in which the diffusing particle is more likely to be in
one conformational state when it is one spatial region, perhaps
due to spatial heterogeneity of a substrate that binds to the
particle and affects its diffusivity. Figure 3 shows that the
distributions of the three limiting processes, (2.6), (2.12), and
(4.9), are quite different. This discrepancy stems from the
different interpretations of the multiplicative noise (Itô versus
Stratonovich), in addition to the difference between D(x) and
D̂(x), which are actually relatively close in this case; see the
bottom panel of Fig. 4.

A. Exact stochastic simulation algorithm

We now describe our stochastic simulation algorithm for
drawing statistically exact samples of the three-component
hybrid colored noise process (X(t),Y (t),N (t)) defined in (2.3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

x

p
(x

)

Ito, D

Stratonovich, ̂D

Mix, ν ̂D + (1 − ν)D

FIG. 3. Convergence of hybrid colored noise process to var-
ious SDEs depending on the ratio of correlation time to mean
switching time for space-dependent switching rates, α(x) = β(−x) =
tanh(10x) + 1. The red, blue, and black curves are the respective
empirical distributions of (2.6), (2.12), and (4.9), for 106 trials. The
squares, circles, and plusses are the empirical distribution of the
hybrid colored noise process (2.4) with mean switching time ε =
10−3 and respective correlation times κ = ε2 (η = 10−9), κ = ε1/3

(η = 10), or κ = ε1/2 (η = 1) for 106 trials. Simulations of (2.12),
(2.6), and (4.9) were performed using the Euler-Maruyama method
with a discrete time step of size 10−3. Simulations of the hybrid
colored noise process were performed according to the statistically
exact algorithm described in Sec. V. The distributions are at time
t = 1 with D0 = 10−1 and D1 = 1.

and (2.4). Our algorithm relies on two main ideas. First, we can
draw statistically exact samples of X(t),Y (t) away from jump
times of N (t) since the FP equation for Ornstein-Uhlenbeck
processes can be solved analytically [34]. Second, since the
jump rates of N (t) depend on X(t), we draw statistically
exact samples of the jump times of N (t) by adapting the
classical Poisson thinning method [35,36] for simulating
inhomogeneous Poisson processes.

For a given value [X(s),Y (s),N (s)], suppose we want to
generate a realization of [X(s + T ),Y (s + T ),N (s + T )] for
some time T > 0. The first step is to generate the first possible
jump time of N (t) for t > s. For simplicity, we assume
α(x),β(x) are bounded, though one could easily extend to
the case where α(x),β(x) are only continuous. Let λ > 0 be
such that

sup
x

{α(x),β(x)} < λ.

We then generate τ1 according to an exponential distribution
with rate λ. If τ1 < T , then we generate X(s + τ1) and Y (s +
τ1) according to Ref [34]:

Y (s + τ1) =μ(τ1)Y (s) + σ (τ1)ξ1,

X(s + τ1) =X(s) + 1

κ

√
2DN(s){[1 − μ(τ1)]κ2Y (s)

+
√

θ2(τ1) − [ζ (τ1)/σ (τ1)]2ξ2

+ [ζ (τ1)/σ (τ1)]ξ1}, (5.2)
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FIG. 4. Top: Space-dependent switching rates, α(x) = β(−x) =
tanh(x) + 1. Bottom: Effective diffusivity D(x) in Eq. (2.7) and
effective diffusivity D̂(x) in Eq. (2.11) for D0 = 10−1, D1 = 1, and
α(x) = β(−x) = tanh(x) + 1.

where ξ1,ξ2 are independent standard normal random variables
and

μ(t) := e−t/κ2
,

σ (t) :=
√

1 − μ(t)2

2
,

θ (t) := κ2
√

t/κ2 − 2[1 − μ(t)] + [1 − μ(t)2]/2,

ζ (t) := κ2[1 − μ(t)]2/2.

We then set N (s + τ1) = 1 − N (s) with probability

N (s)α[X(s + τ1)] + [1 − N (s)]β[X(s + τ1)]

λ
,

and N (s + τ1) = N (s) otherwise. With this value of [X(s +
τ1),Y (s + τ1),N (s + τ1)], we then generate the next possible

jump time, τ2, of N (t) for t > s + τ1 according to an
exponential distribution with rate λ and repeat this procedure
until we reach a point when

∑K
k τk > T . At this point, we

generate X(s + T ),Y (s + T ) according to Eq. (5.2) with the
s in Eq. (5.2) replaced by

∑K−1
k τk and the τ1 in Eq. (5.2)

replaced by T − ∑K−1
k τk .

VI. DISCUSSION

We have considered a hybrid colored additive noise
process in which a particle randomly switches between two
diffusivities with mean switching time characterized by a
dimensionless parameter ε > 0, and whose correlation time
is characterized by a dimensionless parameter κ > 0. In the
parameter regime that ε and κ are both small, we have found
that the effective diffusion process depends on the ratio κ2/ε.
In the case that the switching rates depend on the position
of the particle, then the effective diffusion is of Itô form if
κ2/ε � 1, Stratonovich form if κ2/ε  1, and a mixture of the
two if κ2/ε = O(1). Furthermore, even in the case of spatially
constant switching rates, the effective diffusion coefficient can
vary dramatically depending on κ2/ε.

For simplicity, we have focused on one-dimensional (1D)
models with pure diffusion and only two diffusing states.
However, it would be possible to extend our analysis to
diffusion in two or more space dimensions and any finite
number of diffusing states. In particular, in the case of particles
switching between N conformational states with distinct
diffusivities Dn, n = 0,1, . . . ,N − 1, the expressions (2.7) and
(2.11) for the effective diffusion coefficients D(x) and D̂(x)
still hold, with the sums now taken over n = 0,1, . . . ,N − 1.
One could also include n-dependent external forcing or drift
terms by taking

dX(t) = FN(t )[X(t)] + 1

κ

√
2DN(t)Y (t)dt, (6.1a)

dY (t) = − 1

κ2
Y (t)dt + 1

κ
dW (t). (6.1b)

In this case, one finds that the effective drift term in the
double limit ε,κ → 0 is

F (X) =
∑

n

Fn(X)ρn

irrespective of the order of the limits, provided that the correct
form of the diffusion term is taken.
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