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Temporal disorder as a mechanism for spatially heterogeneous diffusion
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A fundamental issue in analyzing diffusion in heterogeneous media is interpreting the space dependence of the
associated diffusion coefficient. This reflects the well-known Ito-Stratonovich dilemma for continuous stochastic
processes with multiplicative noise. In order to resolve this dilemma it is necessary to introduce additional
constraints regarding the underlying physical system. Here we introduce a mechanism for generating nonlinear
Brownian motion based on a form of temporal disorder. Motivated by switching processes in molecular biology,
we consider a Brownian particle that randomly switches between two distinct conformational states with different
diffusivities. In each state the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the
interpretation of the noise. However, if the switching rates depend on position, then in the fast-switching limit
one obtains Brownian motion with a space-dependent diffusivity. We show that the resulting multiplicative noise
process is of the Ito form. In particular, we solve a first-passage time problem for finite switching rates and show
that the mean first-passage time reduces to the Ito version in the fast-switching limit.

DOI: 10.1103/PhysRevE.95.060101

Introduction. A fundamental issue in the theory of contin-
uous stochastic process is how to interpret a stochastic dif-
ferential equation (SDE) with multiplicative noise, for which
the noise term explicitly depends on the state of the system
[1,2]. This could arise, for example, in the case of nonlinear
Brownian motion where the diffusivity depends on position.
The interpretation of multiplicative noise is ambiguous due
to the subtleties of stochastic integration, and the associated
distinction between Ito and Stratonovich versions of stochastic
calculus [3–5]. The different interpretations of multiplicative
noise result in different versions of the corresponding Fokker-
Planck (FP) equation, which describes the evolution of the
distribution of sample paths. In order to select the appropriate
version, additional physical constraints are required. For
example, consistency of nonlinear Brownian motion with
equilibrium statistical physics yields the so-called kinetic
interpretation [6–8], whereas taking the white noise limit of
a particle driven by colored noise generates the Stratonovich
version [1]. Although this long-standing controversy appeared
to be settled, there has been a recent revival of interest due
to major advances in single-particle tracking experiments.
One set of experiments involves the motion of a colloidal
particle near a wall, where hydrodynamic interactions lead to
spatial variations in the diffusion coefficient D [9–11]. The
other class of experiments occurs in biophysics, where spatial
variations may arise from the surrounding cellular medium or
from conformational changes in the diffusing species [12–16].

In this Rapid Communication, we introduce an alternative
mechanism for generating nonlinear Brownian motion based
on temporal rather than spatial disorder. The basic idea is to
consider a Brownian particle that randomly switches between
two distinct conformational states with different diffusivities.
(This type of switching is prevalent in cell biology [16,17].)
In each state the particle undergoes normal diffusion (additive
noise) so there is no ambiguity in the interpretation of the
noise. However, if the switching rates depend on position,
then in the fast-switching limit one obtains Brownian motion
with a space-dependent diffusivity of the Ito form. We first
show this by carrying out an adiabatic reduction of the
underlying Chapman-Kolomogorov (CK) equation to obtain

an Ito version of the FP equation. We then check numerically
that the stationary density of the full model reduces to the
stationary density of the FP equation in the fast-switching
limit. One potential limitation of the adiabatic reduction is
that it generates a singular partial differential equation in the
fast-switching limit. Moreover, it does not give any indication
of how statistical quantities of interest such as mean first-
passage times (MFPTs) behave for large but finite switching
rates. Therefore, we solve a first-passage time problem for
the full model and determine how the MFPT converges to the
Ito version in the fast-switching limit, with the latter recently
calculated elsewhere [18].

Brownian motion with spatial disorder. Consider a
Brownian particle diffusing in a one-dimensional (1D) domain
of length L. The position of the particle X(t) satisfies the SDE

dX(t) =
√

2D(x)dW (t), (1)

where D(x) is a position-dependent diffusivity and W (t) is
a Wiener process with 〈dW (t)〉 = 0 and 〈dW (t)dW (t ′)〉 =
δ(t − t ′)dt dt ′. The particular example of a piecewise constant
diffusivity is shown in Fig. 1(a), with D(x) = DI for x ∈ [0,l]
and D(x) = DII for x ∈ (l,L]. Ambiguity in the interpretation
of the SDE is reflected by the form of the corresponding FP
equation for the probability density p(x,t) = p(x,t |x0,0) with
x0 fixed:

∂p(x,t)

∂t
=−∂J (x,t)

∂x
= ∂

∂x

[
D(x)μ

∂D(x)1−μp(x,t)

∂x

]
(2)

for 0 � μ � 1. The particular choices μ = 0,1/2,1 corre-
spond, respectively, to the Ito, Stratonovich, and kinetic
interpretations [3–5,18]. In the case of the piecewise constant
diffusivity shown in Fig. 1(a), the associated probability flux
J (x,t) is continuous across the interior junction x = l, for all
values of μ. On the other hand, p(x,t) is only continuous when
μ = 1, while D(x)p(x,t) and

√
D(x)p(x,t) are continuous

when μ = 0 and μ = 1/2, respectively. Suppose that Eq. (2)
is supplemented by an absorbing boundary condition at x =
0 and a reflecting boundary condition at x = L: p(0,t) =
0, J (L,t) = 0. Following the recent analysis of first-passage
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FIG. 1. Brownian motion that is heterogeneous with respect to the
x coordinate, 0 � x � L. (a) Example of spatially inhomogeneous
diffusion, in which the domain is partitioned into two subdomains
with different diffusivities DI,DII. (b) Example of temporal disorder
where a Brownian particle randomly switches between two confor-
mational states n = 0,1 with different diffusivities Dn. The switching
rates differ in the two domains.

times in d-dimensional heterogeneous media [18], the choice
of μ has a significant effect on the MFPT to be absorbed at
x = 0.

Let τ (x0) denote the MFPT to reach the absorbing boundary
at x = 0, given that X(0) = x0. One way to calculate the MFPT
is to Laplace transform the FP equation (2) and determine
the moments of the resulting flux through x = 0. Here we
briefly describe an alternative approach based on the analysis
of residence times [18,19]. Introduce the mean residence time
τk(x0),k = I,II according to

τk(x0) =
∫

�k

dx

∫ ∞

0
dt p(x,t |x0,0), (3)

with �I = [0,l] and �II = (l,L]. The MFPT can then be
expressed as the sum over the mean residence times in the
different subintervals,

τ (x0) =
∑
k=I,II

τk(x0). (4)

Integrating Eq. (2) and using the reflecting boundary condition
at x = L shows that

J (x,t) =
∫ L

x

dx ′ ∂p(x ′,t)
∂t

.

Substituting the explicit expression for J and integrating with
respect to x gives

p(x,t) = − 1

D(x)1−μ

∫ L

0

dy

D(y)μ

∫ L

y

dx ′ ∂p(x ′,t)
∂t

.

Inserting this into Eq. (3) with the initial condition p(x,0) =
δ(x − x0) finally gives

τk(x0) =
∫

�k

dz

D(z)1−μ

∫ z

0

dy

D(y)μ
�(x0 − y). (5)

The integrals can be evaluated explicitly: we find that

τI(x0) =
{[

2lx0 − x2
0

]
/2DI, if x0 ∈ [0,l),

l2/2DI, if x0 ∈ (l,L],
(6a)

and

τII(x0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x0(L − l)

D
μ

I D
1−μ

II

, if x0 ∈ [0,l)

(L − l)l

D
μ

I D
1−μ

II

+ (2L − x0 − l)(x0 − l)

2DII
,

if x0 ∈ (l,L].

(6b)

As found in more general cases [18], only the residence
time further away from the absorbing boundary depends on
the parameter μ.

Brownian motion with temporal disorder. We now turn to
an alternative formulation of heterogeneous Brownian motion
based on temporal disorder [see Fig. 1(b)]. We assume that the
Brownian particle switches between two conformational states
labeled n = 0,1 according to a two-state jump Markov process

N (t) ∈ {0,1}, with 0
β
�
α

1. The diffusion coefficient is taken to

depend on the conformational state, that is, D = Dn when
N (t) = n. Thus, we are replacing the spatial heterogeneity in
the diffusion coefficient considered in Fig. 1(a) by a temporal
heterogeneity. Since the stochastic process is now additive, we
no longer have to worry about the particular interpretation of
the corresponding hybrid SDE,

dX(t) =
√

2DndW (t) for N (t) = n. (7)

Given the joint Markov process [N (t),X(t)] and the initial
conditions X(0) = X0, N (0) = n0, introduce the probability
density pn(x,t |x0,n0,0) that the particle is at X(t) = x and
in conformational state N (t) = n at time t . The probability
density p evolves according to the forward differential CK
equation [1,17]

∂pn(x,t)

∂t
= Dn

∂2pn(x,t)

∂x2
+

∑
m=0,1

Anm(x)pm(x,t), (8)

(after dropping the explicit dependence on initial conditions).
Here A(x) is the matrix generator

A(x) =
(−β(x) α(x)

β(x) −α(x)

)
,

and we have allowed for the possibility that the transition rates
α,β are position dependent. Note, however, that this spatial
heterogeneity does not result in multiplicative noise, at least in
the case of finite switching rates. If x were fixed at some value
x∗, then the resulting discrete Markov process for pn(t) =
pn(x∗,t) would have a unique stationary distribution ρn(x∗)
with pn(t) → ρn(x∗) in the limit t → ∞ and

ρ0(x) = α(x)

α(x) + β(x)
, ρ1(x) = 1 − ρ0(x). (9)
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Consider the averaged diffusion coefficient

D(x) =
∑
n=0,1

ρn(x)Dn. (10)

Intuitively speaking, one would expect the hybrid SDE (7) to
reduce to the SDE

dX(t) =
√

2D(x)dW (t) (11)

in the fast-switching limit α(x),β(x) → ∞. For the Markov
chain then undergoes many jumps over a small time interval 
t

during which 
x ≈ 0, and thus the relative frequency of the
two discrete states n is approximately ρn(x). This suggests
that temporal disorder can lead to spatially heterogeneous
diffusion. In order to determine the correct interpretation of
the resulting multiplicative noise process, we carry out a quasi-
steady state or adiabatic reduction of the CK equation (8). The
first step is to fix the time scale by setting τ ≡ minn{L2/Dn} =
1. The fast-switching limit can be implemented by rescaling
the transition rates according to α,β → α/ε,β/ε, with α,β =
O(1), and taking ε → 0.

For small but nonzero ε, one can use an adiabatic ap-
proximation to reduce the CK equation (8) to a correspond-
ing FP equation for the total probability density p(x,t) =∑

n=0,1 pn(x,t) [1,20,21]. The basic steps are as follows. First,
decompose the probability density pn as

pn(x,t) = p(x,t)ρn(x) + εwn(x,t),

where
∑

n wn(x,t) = 0. Substituting this decomposition into
Eq. (8), summing both sides with respect to n, and using∑

n Anm(x) = 0 yields an equation for p,

∂p

∂t
= ∂2D(x)p

∂x
+ ε

∑
n=0,1

Dn

∂2wn

∂x2
. (12)

Next we use Eq. (12) to eliminate ∂p/∂t in the expanded
version of Eq. (8). Introducing the asymptotic expansion
wn ∼ w(0)

n + εw(1)
n + O(ε2) and collecting the O(1) terms

then yields an equation for w(0)
n , which has a unique solution

on imposing the condition
∑

n w(0)
n (x,t) = 0. Finally, setting

wn = w(0)
n in Eq. (12) shows that to O(ε), p evolves according

to the fourth-order equation

∂p

∂t
= ∂2

∂x2
[D(x)p] + ε

∂2

∂x2

(∑
m

Bm(x)
∂2ρm(x)p

∂x2

)

+ ε
∂2

∂x2

(
C(x)

∂2D(x)p

∂x2

)
(13)

with Bm(x) = ∑
n=0,1 DnA

†
nm(x)Dm and C(x) =∑

n,m=0,1 DnA
†
nm(x)ρm(x). Here A† is the pseudoinverse

of A. It follows that in the fast-switching limit ε → 0, the
CK equation (8) reduces to an FP equation of the Ito form
with effective space-dependent diffusivity D(x). We illustrate
convergence to the Ito form in Fig. 2 by plotting the stationary
density for different choices of α(x) and β(x).

It is clear from the above analysis that the fast-switching
limit is singular due to the presence of the fourth-order
terms in Eq. (13). Therefore, we further investigate this limit
by calculating the MFPT to be absorbed at x = 0 in the
special case of finite, piecewise constant transition rates:
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FIG. 2. Equilibrium probability density for heterogeneous Brow-
nian motion in the unit interval. The temporal disorder density
converges in the fast-switching limit to the spatial disorder density
with an Ito interpretation rather than Stratonovich or kinetic. The red
curves were found by numerically solving Eq. (8) at steady state,
with thicker curves for smaller values of ε. The black markers were
found by numerically solving Eq. (2) at steady state for μ = 0, 1/2,
or 1. (a) D0 = 1 and D1 = 2 and the switching rates for the red
curves are α(x) = 1/215 and β(x) = x15 so that ρ0,ρ1 in Eq. (9)
are Hill functions. The diffusion coefficient for the black markers
is the corresponding D(x) in Eq. (10). (b) D0 = 1 and D1 = 2 and
the switching rates for the red curves are α(x) = cos(x/0.05) + 1
and β(x) = sin(x/0.125) + 1. The diffusion coefficient for the black
markers is the corresponding D(x) in Eq. (10).

α(x),β(x) = αI,βI for x ∈ [0,l] and α(x),β(x) = αII,βII for
x ∈ (l,L]. It follows from Eq. (10) that D(x) reduces to the
piecewise diffusion coefficient of Fig. 1(a), with

DI = αID0 + βID1

αI + βI
, DII = αIID0 + βIID1

αII + βII
. (14)

We wish to determine how it converges to the MFPT τ (x0) =
τI(x0) + τII(x0), with the residence times given by Eqs. (6a)
and (6b) in the limit ε → 0, and if it is consistent with the Ito
form (μ = 0).

Calculation of MFPT for temporal disorder. Introduce the
survival probability

Sm(x0,t) =
∑
n=0,1

∫ L

0
p(x,n,t |x0,m,0)dx.

Introducing the corresponding FPT density fm(x0,t) =
−dSm(x0,t)/dt , we can define the conditional MFPT τm(x0) as
τm(x0) = ∫ ∞

0 tfm(x0,t)dt = ∫ ∞
0 Sm(x0,t)dt . Using the back-

ward CK equation for qm(x0,t) = p(n,x,t |x0,m,t) one finds
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that

Dm

d2τm(x0)

dx2
+ 1

ε

∑
n=0,1

Anm(x0)τn(x0) = −1. (15)

The boundary conditions are τm(0) = 0 and τ ′
m(L) = 0. We

wish to solve Eq. (15) for the piecewise constant transition rates
illustrated in Fig. 1(b), for which Eq. (15) takes the explicit
form

D0τ
′′
0 (x0) + βk

ε
[τ1(x0) − τ0(x0)] = −1 (16a)

D1τ
′′
1 (x0) + αk

ε
[τ0(x0) − τ1(x0)] = −1, x0 ∈ �k

(16b)

for k = I,II. It is convenient to rewrite these equations in terms
of the sums and differences 
 = τ0 − τ1 and S = τ0 + τ1:


′′(x0) − �+
k

ε

(x0) = −γ−, (17a)

S ′′(x0) − �−
k

ε

(x0) = −γ+, x ∈ �k, (17b)

where

�±
k = D1βk ± D0αk

D0D1
, γ± = D1 ± D0

D0D1
.

We can now proceed by first solving for 
(x0) and then S(x0).
In the interval x0 ∈ [0,l) we find that


I(x0) =
[(

A − εγ−
�+

I

)
eλIx0 − Ae−λIx0

]
+ εγ−

�+
I

, (18a)

SI(x0) = �−
I

�+
I

[(
A − εγ−

�+
I

)
eλIx0 − Ae−λIx0

]
− x2

0

2DI
+ Bx0 − εγ−

�+
I

�−
I

�+
I

, (18b)

where λk ≡
√

�+
k /ε and �−

k γ−/�+
k − γ+ = −D−1

k for k =
I,II, and we have imposed the boundary conditions τm(0) = 0.
Similarly, in the interval x0 ∈ (l,L),


II(x0) = Â[eλIIx0 + e−λIIx0 ]. (18c)

SII(x0) = �−
II

�+
II

Â[eλIIx0 + e−λIIx0 ] − [L − x0]2

2DII
+ B̂, (18d)

where we have imposed the boundary conditions τ ′
m(L) = 0.

There are four unknown constants A,Â,B,B̂, which are deter-
mined by imposing continuity and flux conservation at x0 =
l: 
I(l) = 
II(l), SI(l) = SII(l), and 
′

I(l) = 
′
II(l), S

′
I(l) =

S ′
II(l).

We are particularly interested in the fast-switching limit
ε → 0. In this case, A → εγ−/�+

I → 0 and Â → 0 so, to
leading order in ε, 
k(x0) ∼ 0 for k = I,II, and

SI(x0) ∼ − x2
0

2DI
+ Bx0, (19a)

SII(x0) ∼ − [L − x0]2

2DII
+ B̂. (19b)
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FIG. 3. Mean first-passage time for heterogeneous Brownian
motion in (a) 1D and (b) 3D. The temporal disorder MFPT converges
in the fast-switching limit to the spatial disorder MFPT with an Ito
interpretation rather than Stratonovich or kinetic. (a) The red curves
correspond to the analytical solution to Eq. (16), with thicker curves
for smaller values of ε. The black markers correspond to Eqs. (6a)
and (6b) (with μ = 0, 1/2, or 1). We take D0 = 1, D1 = 10, L = 1,
l = 1/2, αI = 10, βI = 1, αII = 1, and βII = 10, and DI and DII

according to Eq. (10). (b) The plots give the MFPT to reach a ball of
radius 0.2 in 3D. The red curves correspond to the analytical solution
to the 3D analog of Eq. (16), with thicker curves for smaller values
of ε. The black markers correspond to the 3D analog of Eqs. (6a) and
(6b) (see [18]). The parameters are the same as the top panel.

If we now impose the boundary conditions at x0 = l, we
recover the MFPT of the spatially heterogeneous medium
given by Eqs. (6a) and (6b) for μ = 0. We show this
convergence in the top panel of Fig. 3.

We can extend this analysis to higher dimensions and
calculate the MFPT to reach a ball of radius δ > 0 in the
center of the d-dimensional sphere with a reflecting condition
at radius L > δ. The only change is the differential operators
in Eq. (16) are modified according to d2

dx2 → d2

dx2 + d−1
x

d
dx

,
and the absorbing boundary condition is imposed at δ,
τm(δ) = 0. Carrying out this calculation shows that this higher-
dimensional MFPT with temporal disorder converges in the
fast-switching limit to the MFPT with spatial disorder with an
Ito interpretation (see [18] for the higher-dimensional MFPTs
with spatial disorder). We show this convergence in Fig. 3 for
dimension three.

Discussion. We have shown that the natural interpretation
of nonlinear Brownian motion in a spatially heterogeneous
medium is given by Ito when the underlying heterogeneity
arises from a particle rapidly switching between different
conformational states with distinct diffusivities. There are a
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number of examples in molecular biology where switching
between different diffusive states can occur. For example,
protein receptors undergoing lateral diffusion in the plasma
membrane are continually interacting with scaffolding proteins
that can significantly alter their mobility [22]. Another example
is the intermittent nature of intracellular transport, whereby
vesicles switch between ballistic transport mediated by molec-
ular motors moving along cytoskeletal tracks and diffusion in

the cytoplasm [23,24]. Our mechanism for spatially heteroge-
neous diffusion would apply to these cases if the switching
rates are relatively fast and are space dependent. Finally,
although for simplicity we focused on 1D models and pure
diffusion, it would be possible to consider higher-dimensional
diffusion and to include drift terms. The reduction of the
corresponding d-dimensional CK equation could lead to an
FP equation with anisotropic diffusion [25].
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