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The role of the biofilm matrix in structural development
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Although the initiation, development and control of biofilms has been an area of
experimental investigation for more than three decades, the role of extra-cellular polymeric
substance (EPS) has not been well studied.

We present a mathematical description of the EPS matrix to study the development of
heterogeneous biofilm morphology. In developing the model, we assume that the biofilm is
abiological gel composed of EPS and water. The bacteria are enmeshed in the network and
are the producers of the polymer. In response to external conditions, gels absorb or expel
solvent causing swelling or contraction due to osmotic pressure gradients. The physical
morphology of the biofilm depends on the temperature, solvent composition, pH and ionic
concentrations through osmotic pressure. This gives a physically based mechanism for the
redistribution of biomass within the biofilm.

Analysis of a reduced model indicates that biomass redistribution, through the
mechanism of swelling, may induce the formation of isolated towers or mushroom clusters
by spatial variation in EPS production which leads to gradients in osmotic pressure.
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1. Introduction

Biofilms are communities of micro-organisms anchored to a surface (substratum) and each
other by EPS. Biofilms have a major impact on industrial, medical and environmental
processes. These impacts include higher costs for production and distribution of products,
causes of infections, and corrosion of equipment. Although the presence of biofilms is
often detrimental, they have been used as biobarriers to both contain and reduce waste
contaminations (Chenet al., 1994).

The varied settings for biofilm formation, as well as several properties of biofilms, such
as resistance to anti-microbial agents, have made biofilm research an active area in the past
three decades. As more research is done, and more properties of biofilms are discovered,
the research has become more fundamental. Mathematical models have become an
important tool for evaluating hypotheses as well as suggesting new experimental inquiries.
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The purpose of this paper is to propose a mathematical model that incorporates some of
the physical processes that underlie the formation of biofilm structure.

There are several questions that are relevant to modelling the development of
biofilms. For example, it is important to understand the mechanisms of EPS production,
redistribution and degradation, the role of quorum sensing, and the production and
redistribution of biomass. It is also important to ascertain which models are most relevant
and how the biofilm rheology should be treated (i.e. as a viscous fluid, viscoelastic material,
two-phase material, etc.).

The focus of this paper is on the mechanism of biomass redistribution. The production
and redistribution of biomass has been modelled in several investigations in the literature
(Dockery & Klapper, 2002; Eberlet al., 2001; Kreft et al., 2001; Kreft & Wimpenny,
2001; Picioreanuet al., 1998a,b, 2001; Wanner & Gujer, 1986; Wanner & Reichert,
1996; Wimpenny & Colasanti, 1997). Briefly, we describe several different approaches
to biomass redistribution.

Wimpenny and Colasanti developed a cellular automaton (CA) model which employs
rules to determine when and if an individual bacterium divides (Wimpenny & Colasanti,
1997). In this model, a bacterium divides only if there is an empty neighbouring location
and a sufficient amount of substrate in the empty location. Thus, the bacteria do not exert a
force on their neighbours. Instead, once a bacterium is surrounded, it ceases to reproduce.

Picioreanuet al. (1998a,b), derived a hybrid discrete-continuum model in which the
spreading of the biomass is determined by cellular automata rules. In Picioreanuet al.
(1998b), bacterial growth is modelled by Monod kinetics with decay. Once the density of
biomass within a grid location reaches a maximal value, the biomass divides into two parts.
One part stays in place, and the other part is placed into a randomly chosen adjacent empty
grid location if one exists. If all the neighbouring cells are occupied, one of the nearest
neighbours is displaced and must search for a new empty cell. This process continues until
an empty cell is found. Thus, when a cell which is embedded deep within the biomass
divides, it effectively ‘pushes’ its neighbours, extending the biofilm region.

Kreft et al. (2001), modelled the bacteria within the biofilm as spherical cells in
continuous space. Biomass was redistributed by ‘shoving’ of cells to minimize the overlap
of the cells. Simulations were able to produce morphologies which concur generally with
those found in the CA-type models discussed above.

Recent models introduced by Eberlet al. (2000, 2001) separate the bulk fluid region
from the biofilm region. Within the biofilm region, the dynamics of the biomass density
are governed by a reaction–diffusion equation. The investigators assume that the diffusion
coefficient for the biomass density is density dependent. The structure of the diffusion
coefficient causes the biomass to diffuse only when the biomass reaches a sufficient density.

Finally, a model due to Dockery & Klapper (2002) described the formation of physical
heterogeneity based on the assumption that the biofilm is a viscous fluid immersed in a
fluid of much less viscosity. In their model, biomass is redistributed by an internal pressure
due to bacterial growth. This pressure forces the free-interface between the biofilm and the
bulk fluid to move so that a uniform density of bacteria is maintained.

While each model assumes a different mechanism for biomass redistribution, each of
these models predict that substrate limitation can induce physically heterogeneous biofilm
structure. In the absence of empirical investigation, it is not clear how to judge the validity
of the redistribution mechanisms in the models except from the structures that are formed.
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One goal of the model described in this paper is to describe the mechanism of redistribution
from more fundamental assumptions.

To develop a model which includes both the chemical structure and the physics of
the EPS more realistically, we assume that the biofilm is a biological gel consisting of
networked polymer (EPS) and fluid solvent (water). We assume that the primary forces
which induce gel motion are applied to the fluid solvent and the EPS. This provides a
mechanism of biomass redistribution through the swelling of the EPS and the viscoelastic
constitutive relationships.

The network can be composed of several different polymers which may be hydrophilic
or hydrophobic (Flemming & Wingender, 2001b). The polymer network can be formed
by bonds or physical entanglement. In response to external conditions gel networks absorb
or expel solvent causing swelling or contraction respectively. Thus the structure of the
gel depends on the temperature, solvent composition, pH and ionic concentrations. The
chemical potential that is responsible for the swelling properties of the gel is referred to as
osmotic or swelling pressure.

A change in the external environment, for example the addition of sodium ions, can
cause the gel to absorb more solvent and swell. However, if a cross-linking agent, such
as calcium ions, is added to the solvent, polymers may be pulled together at cross-linking
sites causing the gel to contract. In this way swelling decreases the volume fraction of
the network and increases the volume occupied by the gel, and contraction increases the
network volume fraction, decreasing the volume occupied by the gel. Thus the structure
of the polymers and the ionic environment must be accounted for to predict the dynamic
behaviour of a gel.

Swelling and deswelling is a basic property of gels (Osada & Kajiwara, 2001) and has
been demonstrated in biofilm experiments (Flemming & Wingender, 2001a,b; Korstgens
et al., 2001). The model presented below includes a redistribution mechanism that is based
on the chemical structure of the EPS network and allows for swelling and deswelling of the
biofilm gel. In particular, we model the biofilm as a hydrogel incorporating production of
the polymer matrix. The model is analysed on the time scale of growth which is longer than
the relaxation time scale, hence we include only Newtonian, viscous forces in the linear
and nonlinear analysis.

2. Model description

In this section we derive a model of biofilm growth and development which includes the
main biological processes of bacterial growth and EPS production. The model assumes
that biofilms consist of two immiscible materials: polymer network and fluid solvent. The
model consists of equations of motion for the polymer and solvent material as well as the
volume fraction of the polymer network, concentration of bacteria and the concentration
of substrate.

The model has similarities with several models in the literature (He & Dembo, 1997;
Tanaka, 1997; Lubkin & Jackson, 2002; Wolgemuthet al., 2002) in which the dynamics
of sea urchin eggs, hydrogels, tumours and hydrogels extruded byMyxobacteria are
described. The treatment of the osmotic pressure and the network stresses are different in
the present study. In particular, the osmotic pressure is taken from Flory–Huggins theory
rather than qualitatively modelled as in He & Dembo (1997), Tanaka (1997) and Lubkin
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& Jackson (2002). Also, the physical forces due to deformation of the matrix are separated
from the chemical forces due to osmotic pressure.

We consider a region of space that contains networked polymer, solvent, substrate and
bacteria. The network is assumed to act as a constant density, viscoelastic material and
the solvent acts as a Newtonian fluid of much less viscosity than the networked material.
The substrate and the bacteria are assumed to be of negligible volume so that the volume
fraction of network,θn , and the volume fraction of solvent,θs , sum to one. This assumption
is not universally valid. The volume occupied by the bacteria in biofilms formed by mucoid
strains ofPseudomonas aeruginosa can be as little as 1%, while the volume occupied by
other strains of bacteria can be as high as 50%. Thus, our model is not valid if the bacteria
comprise a substantial volume fraction.

Weassume that there are four forces that act on the network. The first are surface forces
that are described mathematically as∇ · (θnσn), whereσn is the network stress tensor. We
assume that there are two kinds of stress within the gel, a Newtonian stress that is related to
the strain rate and a non-Newtonian stress that includes elastic stress. Hence we separate the
stress asσn = σv+σe, whereσv is the viscous stress andσe is the elastic stress. Constitutive
relations must be specified to completely determine these. Typically, the viscous stress is

assumed to be proportional to the velocity gradient asσv = 1
2(∇ �Un + ∇ �Un

T
). Another

approach is to describe the total stress in terms of the deformation gradient and the velocity
gradient: see Birdet al. (1987) and Larson (1999) for a review of several constitutive
relations used to specify the elastic stress.

The second force we include is frictional drag generated by network material
interacting with fluid material. This term vanishes if the network and fluid velocities are
equal or if either of the volume fractions of network and fluid are zero. We model the
frictional force byh f θnθs( �Un − �Us), where �Us , �Un , h f denote the solvent velocity, network
and the constant coefficient of friction, respectively.

The third force is induced by the colligative properties of the gel. To model this force,
we assume that there exists an osmotic pressure,Ψ(θn), gradients of which create force
on the polymers due to chemical environment. Inclusion of this component is based on
the observations discussed above. This pressure has also been theoretically derived for
two-phase fluid models as the ‘inter-phase pressure’ (Drew, 1983).

To model this term, we use Flory–Huggins theory (Kumar & Gupta, 1998; Osada &
Kajiwara, 2001), in which the osmotic pressure is given by

Ψ = −kB T

v1

(
ln(1 − θn) +

(
1 − 1

m

)
θn + χ1θ

2
n

)
, (1)

wherem is the ratio of solvent volume to polymer volume,χ1 is the Flory interaction
parameter which measures the strength of attraction between the polymer chains,kB is
Boltzmann’s constant, andT is the temperature. The parameterv1 is the volume occupied
by one monomer of the network constituent. Becausem is large, we approximate this with

Ψ = −kB T

v1
(ln(1 − θn) + θn + χ1θ

2
n ). (2)

This term is often rewritten by expanding ln(1 − θn) in a Taylor’s series aboutθn = 0.
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FIG. 1. Graph of the swelling pressure from (3) for parameterskB T
v1

= 40 pN nm−2, v1 = 0·1 nm3, χ1 = 0·7.

Retaining the terms up toθ3
n , we find

Ψ = kB T

v1

((
1

2
− χ1

)
θ2

n + θ3
n

3

)

= kB T

3v1
θ2

n

(
θn − 3

(
χ1 − 1

2

))
. (3)

Although this expansion is only valid forθn near zero, it is often used for 0< θn < 1
(Osada & Kajiwara, 2001). A plot ofΨ from (3) is given in Fig. 1.

Because there are little experimental data concerning osmotic pressure in biofilms,
it is difficult to find several specific parameters such asv1 and χ1; therefore we take
the qualitative, cubic form as our simplified model of osmotic pressure. Specifically, the
osmotic pressure, equation (3), is written asΨ(θn) = ξosθ

2
n (θn − θre f ), whereθre f is a

reference volume fraction. Therefore the swelling pressure is zero ifθn = 0 or θn = θre f .
This treats all the water in the biofilm as solvent, neglecting the water contained in
the bacteria. Numerical experiments done with other reference volume fractions do not
differ qualitatively. All effects from the ionic environment, polymer structure, and solvent
concentration are lumped into the parameterξos .

The final force that is included is hydrostatic pressure. We defineP to be the total
hydrostatic pressure that acts on the entire volume. Therefore the amount of force due to
pressure that acts on network isθn∇ P.

Combining these terms and ignoring inertial effects, we obtain the momentum balance
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equation,

ηn∇ · (θn(σv + σe)) − h f θnθs( �Un − �Us)
(4)

−∇Ψ(θn) − θn∇ P = 0.

The equation that governs the solvent momentum is derived in a similar manner. The
first force is the stress on the solvent which is given mathematically as∇ · (θsσs) for the
solvent stress tensorσs . Since the solvent is assumed to be a Newtonian fluid,σs contains

only viscous stresses, and is therefore given byσs = 1
2

(
∇ �Us + ∇ �Us

T
)
. The second force

is the force due to interaction between the network and fluid which is the same term as
appears in the network equation (4), with the opposite sign. The final force is the fluid
pressure applied to the solvent fluid.

Combining these terms and assuming that the solvent is in force balance, we obtain the
momentum balance equation

ηs∇ ·
(

θs

2

(
∇ �Us + ∇ �Us

T
))

+ h f θnθs( �Un − �Us) − θs∇ P = 0. (5)

The equation describing the network redistribution is derived by applying the principle
of conservation of mass. Since the network moves with a velocity�Un , the flux into an
infinitesimal volume is given by∇ · (θn �Un). The production of the network is denotedgn

and depends on bacterial concentration, substrate concentration and the volume fraction of
network. Putting these terms together we have that the redistribution of network material
is governed by

∂

∂t
θn + ∇ · (θn �Un) = gn . (6)

A similar equation describes the conservation of solvent, namely

∂

∂t
θs + ∇ · (θs �Us) = 0. (7)

Assuming thatθn + θs = 1, we combine (7) and (6) to conclude that the divergence of
the average flow,θn �Un + θs �Us , is constrained to balance the production of network

∇ · (θn �Un + θs �Us) = gn . (8)

We now consider the principle of conservation of mass applied to the bacterial
concentration,B. The bacteria are advected by the network, since they are assumed to
be physically entangled within the network. The bacteria also reproduce with growthgb

which depends on substrate concentration and bacterial concentration. Combining these
terms, the concentration of bacteria is governed by

∂

∂t
B + ∇ · (B �Un) = gb. (9)

The concentration of substrate,c, is changed by the amount of material moving in
and out of a control volume. Since the substrate is dissolved in the solvent there is flux
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due to solvent motion as well as molecular diffusion. The flux due to solvent motion is
proportional to the velocity of the solvent, the concentration of substrate and the volume
fraction of solvent. If the volume fraction or velocity of solvent become zero there is no
transport. The flux of substrate concentration due to diffusion is assumed to be proportional
to the gradient of the substrate concentration, with constant of proportionalityD. The
diffusive flux is assumed to be scaled by the volume fraction of solvent, therefore the
change in concentration due to molecular motion is given byD∇ · (θs∇c). The final
component of the equation,−gc, describes the utilization of the substrate by bacteria where
the minus sign indicates that substrate is consumed rather than produced. We then have the
equation

∂

∂t
(θsc) + ∇ · (c �Usθs − Dθs∇c) = −gc, (10)

that governs the concentration of substrate at each point in time and space.
Equations (4)–(6), (9) and (10) give the governing equations for a growing bio-gel.
To describe the production and redistribution of EPS, a form for the growth function,

gn , must be specified. In general, the production of EPS is complicated and depends on the
bacterial concentration, substrate concentration and network volume fraction. To simplify
the analysis that follows, we assume that the network density is proportional to the bacterial
concentration. The production of EPS is often modelled using a term that is proportional
to the bacterial growth and a term that is independent of the growth (the Luedeking–Piret
equation, see Kommedalet al., 2001).

When the bacteria are undergoing exponential growth (i.e. when the growth rate
is proportional to concentration of bacteria), assuming that the network density is
proportional to the bacterial concentration allows us to eliminate the equation determining
the bacterial concentration, as long as the growth independent rate is negligible. This is
a naive assumption. However, in this study, the focus is on the qualitative effect of EPS
production, rather than on quantitative study of various production models. We argue
that assuming that the bacteria are uniformly distributed throughout the EPS matrix and
that production of EPS is proportional to the bacterial growth rate leads to qualitatively
similar phenomena: namely, EPS production is high in the presence of abundant substrate.
Although there are several experimental observations that cannot be addressed by the
reduced model, such as clonal growth, the model is sufficiently complicated as to warrant
this reduction. We assume that the kinetics of network production is modelled by Monod
kinetics, i.e.gn = εµθn

c
Kc+c , where Kc is the half-saturation constant andµ is the

maximum production rate. Hence the growth rate of network is a saturating function of
the substrate concentration.

The production is scaled byε to reflect the fact that production is slow on the time
scale of network motion. When the concentration of substrate in the bulk fluid is small, the
biofilm is in a substrate limited environment. In this regime,gn may be approximated by
gn = ε Aθnc, whereA = µ

Kc
.

Because diffusion of substrate is on the order of seconds and the time scale of network
motion is on the order of hours, the substrate is assumed to be in quasi-steady-state. The
consumption of substrate is related to the growth rate of network,gc = θn Ac. The substrate
equation becomes

D∇ · ((1 − θn)∇c) = Aθnc. (11)
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Ω Bulk Fluid Region

Biofilm RegionΩ

FIG. 2. Schematic illustration of the computational region. The domain is separated into two subdomains:Ω
(biofilm region) andΩ̄ (bulk fluid region).

3. Simplifications and analysis

We suppose that a region of space is separated into two sub-regions: one region,Ω , is
occupied by growing biofilm while the second region,Ω̄ , contains only water (see Fig. 2).
The substrate diffuses passively inΩ̄ and is introduced into the system far fromΩ .

If the interface betweenΩ andΩ̄ is flat and the bacterial concentration depends only on
the depth, then the problem reduces to a one-dimensional spatial problem and production of
polymer withinΩ causes the region to grow uniformly. If the interface is not uniform, the
growth is not uniform, since substrate diffusion into the biofilm allows the bacteria in the
peaks of the perturbed region easier access to substrate than those in the troughs. Hence,
higher growth rates obtain within the peaks, which creates larger osmotic forces there.
This, in turn, causes the network to have larger velocity at the peaks than in the troughs,
reinforcing the perturbation, in the absence of surface effects such as surface tension or
diffusion of the polymer.

Because the full system of equations is complicated, we search for reasonable
simplifying assumptions about the physical parameters of the system. The biofilm network
and bulk fluid velocities are coupled only through the frictional terms and since the
polymers that comprise most of the biofilm are of relatively low volume fraction (Allison &
Goldsbrough, 1994; Korstgenset al., 2001) and the solvent flow within the network is slow,
it seems reasonable that the force due to friction is small; therefore we takeh f = 0. Since
the bulk fluid and network momentum equations are uncoupled in the absence of friction,
the fluid velocity is taken to be zero without affecting the network motion. Equation (5)
implies that∇ P = 0 under the assumption�Us = 0. The reduced network momentum
equation becomes

ηn∇ · (θn(σv + σe)) − ∇Ψ(θn) = 0. (12)

The most significant timescale is determined by the growth of the biofilm region
(hours–days) which is long compared to the time scale of polymer relaxation (seconds).
Therefore, we assume that the network has sufficient time to relax and that the stress is
dominated by the viscous component. Under this assumption the stress is related to the

velocity gradient asσn = 1
2

(
∇ �Un + ∇ �Un

T
)
.
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The interface betweenΩ andΩ̄ is denoted�Γ (�x, t) and constitutes one of the boundaries
of the biofilm region. As the network is produced and moves in time and space, this
boundary changes. That is, this is a free boundary. For consistency, the normal component
of the interface velocity must match the normal component of the network velocity. The
consistency condition is described mathematically by

∂ �Γ
∂t

· �n = �U · �n, (13)

where�n is the unit vector normal to the interface.
There is no normal stress on the network at the interface, i.e.(

ηn
θn

2
(∇ �Un + ∇ �U T

n ) − Ψ(θn)I + κ∇ · �nI

)
· �n = 0 (14)

on �Γ . The term∇ · �nI represents the stress due to surface tension and is assumed to be
proportional to the curvature of the interface with constant of proportionalityκ (N m−1).

Equations (6), (11)–(13) and the stress-free condition (14) determine the network
velocity, volume fraction of network, substrate concentration and boundary motion for
the reduced system.

We use two methods to analyse the growth of the biofilm domain. We first study the
linear stability of the flat interface. Then, to determine the nonlinear behaviour, we simulate
the full set of equations numerically.

Because this is a free-boundary problem, linear stability analysis is not trivial. We
restrict ourselves to two spatial dimensions and assume that the interface is given by�Γ =
(x, γ (x, t)), where the interface is located far from the substratum. The assumption that
γ is a function ofx precludes the formation of ‘mushrooms’ in the linear analysis. The
initial, unperturbed boundary lies on thex-axis, and the unperturbed domain is the lower
half-plane and the domain moves as a result of production of network. The variablesθn , �U
andc are assumed to be periodic inx , with periodL. Both the substrate concentration and
the velocity decay asy → −∞. We assume that the bulk liquid is well mixed so that, at
the interface, the substrate concentration iscmax .

The biofilm region is determined by the network volume fraction,θn , and therefore
changes as the network is produced and is redistributed. We make a time-dependent change
of coordinates which fixes the domain on the lower half-plane in the new coordinates. This
maps the physical domain into a fixed coordinate system,s ∈ (0, 1), h ∈ (−∞, 0].

The new coordinate system is given bys = x , h = y − γ (s, τ ), and τ = t . The
differential operators inh,s coordinates are related to those inx ,y coordinates by

∂

∂x
= ∂

∂s
− ∂γ

∂s

∂

∂h
,

∂

∂y
= ∂

∂h
,

∂

∂t
= ∂

∂τ
− ∂γ

∂τ

∂

∂h
·

In the new coordinate system, we are able to study the stability of the steady-state,
s-independent solution. The presence of the small parameterε is exploited, by solving
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the s and τ independent problem in an asymptotic sense. That is, we assume a power
series representation of the solutions and find the leading order approximations to network
volume fraction and network horizontal and vertical velocities, denotedθ0, v0 and w0,
respectively. The biofilm is growing and we expect the interface to move at a constant rate
to balance the growth, thus we seek solutions for whichθn is constant in space and time to
leading order. Since the growth isO(ε), we expect the interface motion to be of the same
order, that is∂γ

∂τ
= εk.

The solutions to the leading order equations are

w0 = 0,

θ0 = θ̂ ,

c0 = cmax e

√
θ̂

D(1−θ̂ )
h
,

whereθ̂ is a constant such thatΨ(θ̂) = 0.
The leading order corrections can be found by considering theO(ε) equations. We find

that the leading order correction to the vertical component of the network velocity is

w1 = cmax√
θ̂

D(1−θ̂ )

e

√
θ̂

D(1−θ̂ )
h + K ,

and sincew1 must vanish ath = −∞, K = 0. The orderε consistency condition reduces

to k0 = w1|h=0 = cmax

√
D(1−θ̂ )

θ̂
. Therefore the boundary motion is proportional to the

substrate load, as one might expect.
We linearize (12), (6) and (11) about the steady-state solution by assuming that the

interface is perturbed by a small amplitude periodic function. The consistency condition,
(13), relates the motion of the interface to the frequency of the perturbation. This
relationship is referred to as the dispersion curve (Batchelor, 1967). Surface tension has the
effect of penalizing the oscillatory interfaces, assuring that the higher mode perturbations
are damped out.

The nonlinear (numerical) analysis is also complicated by the free boundary. To make
the problem easier to simulate numerically, we assume that the network diffuses due
to molecular motion, with diffusion coefficientδ. This smooths out the sharp boundary
and allows us to extend the computational domain to includeΩ̄ . The location of the
biofilm/bulk-water interface is indicated by a rapid transition in network volume fraction.
This assumption is probably more realistic than the sharp interface assumption, since in
experimental biofilms there is a ‘mushy’ zone where it is difficult to distinguish between
the biofilm and the bulk fluid. Under these assumptions, the network equation used in the
simulations becomes

∂

∂t
θn + ∇ · (θn �Un) = ε Aθnc + δ∆θn . (15)
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FIG. 3. The dispersion curve for varying surface tensions,κ. For all curves there is an unstable mode which
grows the fastest. Forκ = 0 all modes are unstable. Asκ increases from zero there is a maximum mode that is
unstable and this mode decreases for increasing surface tension.

TABLE 1 Parameter values used in the simulations

Symbol Parameter Value Units Source

D Substrate diffusion coefficient 2·3 × 10−9 m2 s−1 Picioreanuet al. (2000)
µ Max. production rate (low) 2·3 × 10−4 kg m−3s−1 Picioreanuet al. (2000)

(high) 1·4 × 10−3 kg m−3s−1 Picioreanuet al. (2000)
Kc Half saturation constant 1× 10−4 kg m−3 Picioreanuet al. (2000)
δ Network diffusion coefficient 3× 10−8 m2 s−1 Assumed
cmax Substrate source coefficient 1× 10−3 kg m−3 Picioreanuet al. (2000)
ηn Dynamic viscosity 4·3 × 102 N s m−2 Klapperet al. (2002)
ξos Osmotic pressure coefficient 4·3 × 103 N m−2 Estimated

4. Results

The dispersion curve, which relates the growth rates,λ, to the perturbation frequency,α,
is derived from the linear analysis. The effect of the surface tension is shown for varying
proportionality constantsκ in Fig. 3. As expected, surface tension is a stabilizing force.
We see that there is a mode which is maximally unstable, as well as a frequency above
which the perturbations decay. This result is in qualitative agreement with the result from
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FIG. 4. (a) Contour plot of theθn profile and (b) contours of differential growth rate after one time step. In regions
of high growth rate, the local volume fraction of network increases, increasing the osmotic pressure locally. The
initial interface is highlighted and the parameters are given in Table 1 withµ = 2·3 × 10−4 kg m−2 s−1.

Dockery & Klapper (2002), although there is no additional surface tension needed in their
model.

We use numerical simulations to explore the behaviour beyond the linear regime.
A description of the numerical scheme is given in the Appendix. Table 1 lists typical
parameter values used for each of the simulations. These parameters are typical for a
biofilm containing one species of bacteria and oxygen as the limiting substrate (Picioreanu
et al., 2000). The domain size is 1 mm× 1mm, with a grid of 100× 100, thus the grid
spacing is approximately 10µm. The coefficient of the osmotic pressure,ξos , is estimated
by requiring that the velocity of the biofilm due to growth and redistribution is comparable
to that of experimental biofilms.

In the first simulation the interface is perturbed by a single, low frequency perturbation
which is enhanced by production and redistribution. The growth rate is shown in Fig. 4,
which indicates that the growth is concentrated at the peak of the perturbation. After
approximately 3·6 days, the interaction between the production of biomass and induced
variation in the osmotic pressure has caused the initial domain to grow and the original
perturbation has been amplified as shown in Fig. 5.

The interface in the next simulation is also perturbed by a single mode. The perturbation
is chosen so that the peak is far from the boundary so that we see the ‘mushrooming’
behaviour in Fig. 6.

In regions of high production, the volume fraction of EPS exceeds the reference
valueθre f . Therefore the osmotic pressure is higher, which leads to more displacement
of biomass. Hence we expect that for higher production rate the formation of ‘mushrooms’
should be faster. To test this, the same initial condition as that in Fig. 6 is used but
a higher growth rate is assumed (see Table 1). The scale of the domain has also been
increased to 2 mm× 2mm. We see a secondary instability as shown in Fig. 7. The linear
analysis shows that flat interfaces are unstable and the differential growth can reinforce
perturbations. Therefore, if the ‘mushroom’ is sufficiently large there is a possibility of a
second instability causing so-called tip-splitting (Saffman & Taylor, 1958).
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FIG. 5. Contours of volume fraction of network showing the biofilm region after 3·6 days. The growth rate is
higher in the peak of interface (see Fig. 4). The initial interface and parameters are the same as in Fig. 4.
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FIG. 6. Contours of network volume fraction, showing the development of a mushroom-shaped tower after 3·6
days. The initial interface is localized in the center of the domain. The growth rate isµ = 2·3×10−4 kg m−2 s−1.
and all other parameters are given in Table 1.

Simulations with a higher frequency initial interface perturbation yield more
‘mushroom-like’ towers as shown in Fig. 8.

The flat interface is stable to perturbations of high spatial frequency. The perturbations
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FIG. 7. Contours of network volume fraction, showing the onset of a secondary instability after 3·6 days with a
higher growth rate (i.e.µ = 1·4 × 10−3 kg m−2 s−1. The domain size has been increased to 2 mm× 2 mm and
the initial interface has also been scaled by a factor of two. All other parameters are listed in Table 1.
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FIG. 8. Contours of network volume fraction, showing the interaction between several towers after 3·6 days.

are overwhelmed by diffusion until there is a spatially uniform band of growth along the
interface. Results for this simulation are shown in Fig. 9.

One of the hypotheses concerning biofilm heterogeneity is that for low substrate load,
there is a rougher biofilm since there is more competition for resource (Dockery & Klapper,
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FIG. 9. Contours of network volume fraction, showing the smoothing of the interface with a high mode
perturbation after 3·6 days.
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FIG. 10. A comparison between the domain with (a) linear kinetics and (b) saturated kinetics. (a) The biofilm
domain after 50 hours of growth with linear kinetics. (b) The continuation of the simulation with saturated
kinetics. The towers formed in the first 50 hours are smoothed out and the amplitude of the interface is decreasing.

2002; Eberlet al., 2001; Picioreanuet al., 1998a). To test this hypothesis with our model
we simulated a growing biofilm cluster for 50 hours using linear growth and consumption
kinetics (first order kinetics). We then change from linear to saturated kinetics by assuming
that gn = εµθn in (6) (zero order kinetics). In Fig. 10, we see the irregular interface
is smoothed out, since there is no longer differential growth. A comparison of the two
regions, linear kinetics after 50 hours and saturated kinetics for the next 50 hours is shown
in Fig. 10. This agrees with conclusions from Dockery & Klapper (2002) and Picioreanu
et al. (1998a).
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5. Conclusions

We have presented a model of biofilm growth that is based on the structure of the EPS.
It is important to include EPS since the majority of the biomass of the biofilm consists
of EPS and the polymer network endows biofilms with material properties that regulate
its movement. In this model, as polymer is produced by bacteria the osmotic pressure
increases, causing the gel to swell and leading to the expansion of the biofilm region.
Results from preliminary analysis of the simplified model indicates that the formation of
towers and mushrooms may be due to the interaction between differential production and
chemical properties of the EPS through the osmotic pressure. We have shown evidence
from simulations that the formation of these heterogeneous structures depends on the
substrate loading which is in agreement with several other models (Dockery & Klapper,
2002; Eberlet al., 2001; Picioreanuet al., 1998a).

Numerical evidence of secondary instabilities was given. It has not been determined
whether these instabilities are present in the full model. Although the mechanism which
causes the development of heterogeneity seems quite robust to changes in parameters and
initial interfaces, including the elastic stress in the network may alter this behaviour.
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Appendix. Numerical techniques

We describe the discretization of the two-dimensional equations which describe the
substrate distribution, momentum and redistribution of a growing gel. These equations
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are defined on the interior of a two-dimensional domain which is periodic in the horizontal
direction and is bounded below by the substratum and above by a free-boundary defined
by the interface between the biofilm and the bulk fluid. The equations have been simplified
by assuming no frictional interaction between the network and the solvent, thus allowing
us to set the solvent velocity to zero. The network is also assumed to be in force balance,
eliminating the inertial terms that appear on the left-hand-side of (4). The motion of the
free boundary is determined by a consistency condition which requires the motion of the
interface to be consistent with the motion of the network. The reduced equations are

ηn∇ ·
(

θn

2

(
∇ �Un + ∇ �Un

T
))

− ∇Ψ(θn) = 0, (A1)

∂

∂t
θn + ∇ · (θn �Un) = gn, (A2)

∇ · (D(1 − θn)∇c) = gc, (A3)

∂ �Γ
∂t

· �n = �U · �n. (A4)

To solve these equations, we include a small amount of diffusion to the network
redistribution equation (A2), and extend the domains of these equations to the entire region
Ω . This technique smooths out the interface, hence the interface equation (A4) is not used.
Instead, the motion of the boundary is implicit in the solution of the network conservation
equation (A2), where the sharp boundary is characterized by a rapid change in the network
volume fraction. Mathematically we replace (A2) with

∂

∂t
θn + ∇ · (θn �Un) = gn + δ∆θn . (A5)

Because the network volume fractionθn is close to zero in the bulk fluid region, the
operator defined by the first term in (A1) is singular. To numerically approximate the
solutions, we include a small amount of network in the bulk region when solving this
equation. That is, (A1) is approximated by

ηn∇ ·
(

θδn

2
(∇ �Un + ∇ �Un

T
)

)
− ∇Ψ(θδn) = 0, (A6)

where

θδn =
{

θn(x, y, t) if (x, y) ∈ Ω
θn(x, y, t) + r if (x, y) ∈ Ω̄

We also separate the horizontal and vertical components of the first term of (A6),∇ ·
( θn

2 (∇ �U +∇ �U T )), into two pieces so that one part is the more typical operator∇ · (θn∇V )

and the remaining part is moved to the right-hand side and used as data for the time iteration
of the system. This ensures that the matrix equation obtained by discretizing the problem
is symmetric and that the left-hand sides of the component equations determine either the
vertical or horizontal components of the velocity field.

The horizontal component of the velocity equation becomes

∂

∂x

(
θδn

∂V

∂x

)
+ ∂

∂y

(
θδn

2

(
∂W

∂x
+ ∂V

∂y

)
= ∂Ψ(θδn)

∂x
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or

∂

∂x

(
θδn

∂V

∂x

)
+ ∂

∂y

(
θδn

∂V

∂y

)
= ∂

∂y

(
θδn

2

∂V

∂y

)
− ∂

∂y

(
θδn

2

∂W

∂x

)

+∂Ψ(θδn)

∂x
, (A7)

and the vertical component of the velocity is governed by

∂

∂x

(
θδn

2

(
∂W

∂x
+ ∂V

∂y

)
+ ∂

∂y

(
θδn

∂W

∂y

)
= ∂Ψ(θδn)

∂y

or

∂

∂x

(
θδn

∂W

∂x

)
+ ∂

∂y

(
θδn

∂W

∂y

)
= ∂

∂x

(
θδn

2

∂W

∂x

)
− ∂

∂x

(
θδn

2

∂V

∂y

)

+∂Ψ(θδn)

∂y
. (A8)

We now have four coupled equations to solve numerically: (A5, (A7), (A8) and (A3).
The boundary conditions for all variables are assumed to be periodic inx . The network
volume fraction,θδn , satisfies Neumann boundary conditions on the bottom boundary,Σ1,
and the top boundary,Σ2. The substrate satisfies a Neumann boundary condition onΣ1
and Dirichlet boundary conditions at the top withc = cmax onΣ2. The components of the
network velocity are assumed to be zero onΣ1 andΣ2.

Webegin by initializing the biofilm region by setting

θδn =
{

θre f if (x, y) ∈ Ω
0 if (x, y) ∈ Ω̄

for a given interfaceΓ . The substrate and network velocities are initially zero.
To define the discretized equations we define the domain to be a rectangleL1 × L2

with an associatedN × M mesh with spacing dx = L1
N and dy = L2

M . Thus the continuous

variables �U = (V (x, y, t), W (x, y, t)), θ(x, y, t) andc(x, y, t) are approximated by the
discrete variablesVk

i,k = V (xi , y j , tk), Wk
i,k = W (xi , y j , tk), θδn

k
i, j = θδn(xi , y j , tk),

ck
i, j = c(xi , y j , tk), wherexi = i dx , y j = j dy, tk = k dt for i = 0 . . . N , j = 0 . . . M ,

andk = 0 . . . Tmax . Wealso define the centred difference operators

δxφ(x, y, t) = φ(x + dx, y, t) − φ(x − dx, y, t),

δyφ(x, y, t) = φ(x, y + dy, t) − φ(x, y − dy, t).

With this notation in hand, we now define the discrete approximation to the continuous
equations (A5), (A7), (A8) and (A3). The discretized version of network conservation is

θδn
k+1
i, j − θδn

k
i, j

dt
−

(
δ2

xθδn
k+1
i, j

dx2
+ δ2

yθδn
k+1
i, j

dy2

)
= gn(θδn

k
i, j , ck

i, j )

−δx (θδn
k
i, j V

k
i, j ) − δy(θδn

k
i, j W

k
i, j ).
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The horizontal component of the network momentum equation, (A7), is discretized as

δx

(
θδn

k+1
i, j δx Vk+1

i, j

)
dx2

+
δy

(
θδn

k+1
i, j, δyVk+1

i, j,

)
dy2

=
δy

(
θδn

k+1
i, j
2 δyVk

i, j

)
dy2

−
δy

(
θδn

k+1
i, j
2 δx Wk

i, j

)
dx dy

+
δxΨ

(
θδn

k+1
i, j

)
dx

. (A9)

The equation governing the vertical component of the network velocity has a similar
discretization:

δx

(
θδn

k+1
i, j δx Wk+1

i, j

)
dx2

+
δy

(
θδn

k+1
i, j, δyWk+1

i, j,

)
dy2

=
δx

(
θδn

k+1
i, j
2 δx Wk

i, j

)
dx2

−
δx

(
θδn

k+1
i, j
2 δyVk

i, j

)
dx dy

+
δyΨ

(
θδn

k+1
i, j

)
dy

. (A10)

Finally, the equation governing the substrate distribution, (A3), is discretized as

D

(
δx ((1 − θδn

k+1
i, j )δx ck+1

i, j )

dx2
+ δy((1 − θδn

k+1
i, j )δyck+1

i, j )

dy2

)
= gc(θδn

k+1
i, j , ck

i, j ). (A11)

The discrete variables also satisfy boundary conditions which are related to those
which the continuous variables satisfy. Since all variables are periodic with periodL1,
the discretized variables satisfy

θδn(0, y j , tk) = θδn(xN , y j , tk) W(0, y j , tk) = W(xN , y j , tk)

V(0, y j , tk) = V(xN , y j , tk) c(0, y j , tk) = c(xN , y j , tk).

On Σ1 and Σ2 the network satisfies Neumann boundary conditionsδyθδn
k
i,0 = 0

which implies thatθδn
k
i,−1 = θδn

k
i,1, where θδn

k
i,−1 refers to a ghost point below the

numerical domain. Similarly,δyθδn
k
i,M = 0, which implies thatθδn

k
i,M+1 = θδn

k
i,M−1,

whereθδn
k
i,M+1 refers to a ghost point above the numerical domain. The components of

the network velocity are zero onΣ1 andΣ2, which implies thatVk
i,0 = Vk

i,M = 0 and

Wk
i,0 = Wk

i,M = 0. The discretized substrate satisfies Neumann boundary conditions on

Σ1, henceck
i,−1 = ck

i,1. The substrate value is fixed atcmax onΣ2, that isck
i,M = cmax .

Then the points on the grid are ordered in (column) lexicographic ordering, which
yields matrix equations which are block-tridiagonal. The network equation, (A9), can be
written as an(N M × N M) matrix equation, while the flow equations, (A9) and (A10),
yield two (N (M − 2) × N (M − 2)) matrix equations since the values of the velocities are
known onΣ1 andΣ2. Likewise, since the substrate value is known onΣ2, the discretized
equations can be written as an(N (M −1)× N (M −1)) matrix equation. These four matrix
equations are inverted using MATLAB ’s conjugate-gradient solver.


