Solve the following problems.

1. Let X be a random variable with density function

 \[
 f_X(x) = \begin{cases}
 \lambda e^{-\lambda x} & x \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 Compute $E[X]$ and $E[X^2]$.

2. Let X be a random variable with density function $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. Show that

 \[
 E[X^n] = \begin{cases}
 0 & \text{if } n \text{ is odd} \\
 (n-1)(n-3)\ldots 3 \cdot 1 & \text{if } n \text{ is even}
 \end{cases}
 \]

3. We assume that the length of a telephone call is given by a random variable X with probability density function

 \[
 f_X(x) = \begin{cases}
 xe^{-x} & x \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 The cost of a call is given as a function of the length by

 \[
 c(x) = \begin{cases}
 2 & 0 < x \leq 3 \\
 2 + 6(x - 3) & x > 3
 \end{cases}
 \]

 Find the average cost of a call.