Math 6310, Assignment 2

Due in class: Friday, September 25

- 1. Let $x, y \neq e$ be elements of a group such that $xyx^{-1} = y^5$, the element *x* has order 3, and *y* has odd order. Find the order of *y*.
- 2. Let V be the set of $r \times s$ matrices over \mathbb{R} . Consider the group $G = GL_r(\mathbb{R}) \times GL_s(\mathbb{R})$ acting on V, where

 $(A,B): M \longmapsto AMB^{-1}$ for $M \in V$ and $(A,B) \in G$.

How many orbits are there? Describe them.

- 3. Let G be a group, and Z its center.
 - (a) If G/Z is cyclic, prove that G is abelian.
 - (b) If Aut(G) is cyclic, prove that G is abelian.
 - (c) If $|G| = p^3$ for p a prime, show that either G is abelian or |Z| = p.
- 4. Let G be a p-group. If H is a normal subgroup of order p, prove that H is contained in the center of G.
- 5. Let G be a finite group with an automorphism φ that fixes only the group identity.
 - (a) Show that each element of *G* can be written as $x^{-1}\varphi(x)$.
 - (b) If φ^2 is the identity, prove that $\varphi(x) = x^{-1}$ for each *x*, and conclude that *G* is abelian.
- 6. Let G be a finite group such that Aut(G) acts transitively on the set $G \setminus \{e\}$. Show that G is a p-group, and that G is abelian.
- 7. Let G be an infinite group, and H a subgroup of finite index. Show that G has a normal subgroup K of finite index, with K < H.
- 8. Let G be an infinite group with an element $x \neq e$ that has only finitely many conjugates. Prove that G is not simple, i.e., that it has a proper normal subgroup.
- 9. Let *H* and *K* be subgroups of a group *G*. For $x \in G$, the set $HxK = \{hxk \mid h \in H, k \in K\}$ is a *double coset*.
 - (a) Prove that *G* is a disjoint union of double cosets HxK, and that $|HxK| = \frac{|H||K|}{|H \cap xKx^{-1}|}$.
 - (b) Prove that $|HK| = \frac{|H||K|}{|H \cap K|}$.
 - (c) If all double cosets HxH for $x \in G$ have the same number of elements, show that $H \triangleleft G$.
- 10. Let *G* be a group of odd order acting transitively on a set *S*. Fix $s \in S$. Show that the orbits of the action of G_s on $S \setminus \{s\}$ have lengths that are equal in pairs.