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Abstract. Following a suggestion of Peter Scholze, we construct an action

of Ĝm on the Katz moduli problem over the ordinary locus of the modu-
lar curve at full prime-to-p level. This action is a local, p-adic analog of a

global, archimedean action of S1 on the unstable locus for modular curves

over C. We explain how the Ĝm-action interacts with classical notions in

the study of p-adic modular forms and modular curves, and use it to give

a new representation-theoretic interpretation of Hida’s ordinary p-adic mod-
ular forms analogous to the classical automorphic study of Eisenstein series

through the constant term. Along the way, we also prove a natural generaliza-

tion of Dwork’s equation τ = log q for extensions of Qp/Zp by Ĝm valid over
a non-Artinian base.
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1. Introduction

In this work, following a suggestion of Peter Scholze, we descend the unipotent
quasi-isogeny action on a component of the ordinary (big) Igusa formal scheme of
Caraiani-Scholze [1, Section 4] to construct an action of the formal p-adic torus

Ĝm on the Katz moduli problem over the ordinary locus. Suitably interpreted,
this action is a local, p-adic analog of the global, archimedean phenomena whereby
the horizontal translation action of R on the complex upper half plane H descends
to an action of S1 on the image of {Imz > 1} ⊂ H in the complex modular curve.
The ring of functions on the Katz moduli problem is the space of p-adic modular

forms, thus we may think of our Ĝm-action as a unipotent circle action on p-adic
modular forms. The analogy is stronger than one might first guess, and leads, e.g.,
to interesting representation-theoretic consequences.
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2 SEAN HOWE

After constructing the Ĝm-action, we study its properties and interaction with
other classical notions in the p-adic theory of modular curves and modular forms
such as the unit root splitting, the differential operator θ, Gouvea’s [4] twisting
measure, Dwork’s equation τ = log q, Katz’s Eisenstein measures, and ordinary
p-adic modular forms à la Hida.

1.1. An archimedean circle action. Before stating our results, we explain the
analogous archimedean circle action more carefully; this will help to motivate and
clarify the p-adic constructions that follow. Consider the complex manifold

(1.1.0.1) Y∞−ord :=

(
1 Z
0 1

)
\{Imτ > 1}.

Two important observations about Y∞−ord follow immediately from (1.1.0.1):

(1) Modular forms of level Γ1(N) (for any N) restrict to

(
1 Z
0 1

)
-invariant

functions {Imz > 1}, and thus induce holomorphic functions on Yord.
(2) The action of R by horizontal translation on H descends to a (real analytic)

action of the circle group S1 on Yord. This action integrates the vector field
dual to dτ .

We can decompose any holomorphic function f on Y∞−ord according to this S1

action uniquely as a Fourier series

f(q) =
∑
n∈Z

anq
n, q = e2πiz.

In other words, the space of functions on Y∞−ord is a Frechet completion of the
direct sum of the character spaces for the S1-action, with each character appearing
exactly once.

1.1.1. Fourier coefficients and representation theory. The Fourier coefficients an of
classical modular forms play an important role in the global automorphic represen-
tation theory for GL2: for example, for a Hecke eigenform, the constant coefficient
a0 is non-vanishing if and only if the corresponding global automorphic represen-
tation is global principal series (i.e. the modular form is Eisenstein). Suitably
interpreted, the constant term a0 is a functional that realizes the induction. The
non-constant coefficients, on the other hand, are Whittaker functionals.

1.1.2. The slope formalism on metrized tori. While the construction of Y∞−ord

above may at first seem ad hoc, it has a natural moduli interpretation, which we
explain now. The key point is to use the slope formalism for metrized tori, or,
equivalently, lattices, as studied, e.g., in Casselman’s survey [2].

A metrized torus is a finite dimensional torus (compact real abelian Lie group)
T together with a translation invariant metric, or, equivalently, a positive definite
inner product on LieT ∼= H1(T,R). There is a natural slope formalism on metrized
tori: the rank function is dimension, and the degree function is given by

deg T := logVol(T ).

If a two-dimensional metrized torus T is unstable (i.e., not semi-stable), then it
contains a unique circle of shortest length.

If E/C is an elliptic curve, the underlying real manifold of E(C) is a two-
dimensional metrized torus when equipped with the metric coming from the canon-
ical principal polarization.
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Example 1.1.3. Consider τ in the usual fundamental domain for the SL2(Z)-action
on H (i.e., −1/2 ≤ Reτ ≤ 1/2, |τ | ≥ 1), and let

Eτ = C/〈1, τ〉.

We compute the values of τ for which Eτ is semistable: for τ ∈ H, the metric
induced by the principal polarization is identified with 1/Imτ times the metric
induced by the identity

R1 + Rτ = C
and the standard metric on C. Semistability is preserved by scaling the metric, so
we may eliminate the scaling and consider just the metric induced by the standard
metric on C. The length of a shortest circle in Eτ (C) is equal to the length of a
shortest vector in H1(Eτ ,Z), which is 1. The area of the entire torus Eτ (C), on the
other hand, is Imτ . Thus, the slope of the full torus is 1

2 log Imτ , while the smallest
slope of a circle inside is 0. We conclude that Eτ is semi-stable when Imτ ≤ 1
(recalling that τ was assumed to be in the fundamental domain), and otherwise is
unstable with shortest circle given by

S1 = R/Z ↪→ C/〈1, τ〉.

In particular, we may consider the moduli space of unstable elliptic curves E/C
equipped with a trivialization of the shortest circle, S1 ↪→ E(C). From Example
1.1.3, we find that this space is naturally identified with Y∞−ord. In this moduli
interpretation, the space Imτ > 1 is the cover where the trivialization of the shortest
circle is extended to an oriented trivialization S1 × S1 ∼−→ E(C). From the moduli
perspective, the fact that we can evaluate modular forms to obtain functions on
Y∞−ord comes from two facts:

(1) Given a point of Y∞−ord, there is a unique holomorphic differential ωcan

whose pullback to S1 along the trivialization of the shortest circle integrates
to 1. Thus, the modular sheaf ω is canonically trivialized over Y∞−ord, and
modular forms can be evaluated along this trivialization,.

(2) Using the polarization, the trivialization of the shortest circle also gives rise
to a trivialization of the quotient torus E(C)/S1, so that E(C) is equipped
with the structure of an extension of real tori

(1.1.3.1) 1→ S1 → E(C)→ S1 → 1

The basis 1/N for the torsion on S1 = R/Z then gives rise to a canonical
Γ1(N)-level structure on E for any level N .

1.1.4. de Rham cohomology. Consider the extension structure 1.1.3.1 on the uni-
versal elliptic curve over Y∞−ord. The global section dx of the de Rham co-
homology of S1 is flat, so we obtain via pullback of dx a canonical flat sec-
tion ucan ∈ H1

dR(E(C),R) over Y∞−ord. Moreover, because the image of ωcan in
H1

dR(S1,C) under pullback is (by definition) dx, which is flat, we find that ∇(ωcan)

is in the span of ucan. Thus, we obtain a holomorphic differential form ∇ωcan

u on
Y∞−ord.

For the elliptic curve Eτ , if we denote by e1 and eτ the natural basis elements
for H1(E(C),Z) and by e∗1 and e∗τ the dual basis, we find that ωcan = e∗1 + τe∗τ , and
ucan = e∗τ , so that

∇ωcan

u
= dτ = d log q.
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In particular, the S1 action integrates the vector field dual to ∇ωcan

u .

1.2. Statement of results. In this section we state our main results.

1.2.1. Dictionary. As we introduce the objects appearing in the local, p-adic the-
ory, it may be helpful to keep in mind the following dictionary for our analogy with
the global, archimedean story:

Global, archimedean Local, p-adic
E(C) as a metrized torus The p-divisible group E[p∞]
Unstable two-dimensional
metrized torus

Ordinary height two p-divisible group

The shortest circle in E(C) The formal group Ê
Trivialization of the shortest circle
S1 ↪→ E(C)

Trivialization of the formal group

Ê
∼−→ Ĝm

1→ S1 → E(C)→ S1 → 1 1→ Ĝm → E[p∞]→ Qp/Zp → 1.
dτ , ωcan, ucan dτ , ωcan, ucan

Canonical Γ1(N) level structure Canonical arithmetic Γ1(pn)
level structure

Y∞−ord The Katz moduli problem MKatz

Imz ≥ 1 Connected component of Mbig Igusa

Action of S1 on Y∞−ord Action of Ĝm on MKatz

Action of R on Imz ≥ 1 Action of the universal cover on a con-
nected component of Mbig Igusa

Fourier series Sheaf over Zp
Constant term Fiber at 0
Eisenstein series Ordinary p-adic modular form

1.2.2. The Katz moduli problem and p-adic modular forms. Let R be a p-adically
complete ring, and let NilpR be the category of R-algebras in which p is nilpotent.
We consider the moduli problem MKatz,R on Nilpop

R classifying triples

(E, ϕ̂, α)

where E/SpecR is an elliptic curve up to prime-to-p isogeny, ϕ̂ is a trivialization of
the formal group of E,

ϕ̂ : Ê
∼−→ Ĝm,

and α is a trivialization of the adelic prime-to-p Tate module.
By work of Katz [7], the moduli problem MKatz,R is represented by a p-adically

complete ring VKatz,R, flat over R, and

VKatz,R = VKatz⊗̂Zp
R

where we denote VKatz := VKatz,Zp .

The moduli problem MKatz admits a natural action of Z×p × GL2(A(p)
f ), where

Z×p = Aut(Ĝm) acts by composition with ϕ̂, and GL2(A(p)
f ) acts by composition

with α. For a continuous character κ of Z×p with values in R, the eigenspace
VKatz,R[κ] is a natural space of p-adic modular forms of weight κ; in particu-
lar, classical modular forms of integral weight and prime-to-p level are embedded

GL2(A(p)
f )-equivariantly (up to a twist) in this space for the character z 7→ zk. The
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embedding is given by evaluation on the trivialization of the modular sheaf ω given
by the canonical differential ωcan = ϕ̂∗ dtt .

1.2.3. de Rham cohomology. OverMKatz, we have the relative de Rham cohomology
of the universal elliptic curve up-to-prime-to-p-isogeny

π : Euniv →MKatz,

i.e. the vector bundle

H1
dR(Euniv) := R1π∗Ω

•
Euniv/MKatz

equipped with its Hodge filtration

0→ ωE → H1
dR → LieE∨ → 0

and Gauss-Manin connection ∇.
Note that the moduli problem MKatz is equivalent to the moduli problem clas-

sifying triples (E, ϕ̂, α) where E and ϕ̂ are before, and α is a trivialization of the
prime-to-p Tate module

α : (Ẑ(p))2 ∼−→ TẐ(p)E = lim
(n,p)=1

E[n],

all considered up to isomorphism of E. Using this equivalence, we obtain a well-
defined Weil pairing on E[p∞], and combining this with the trivialization ϕ̂, we
obtain the structure of an extension

(1.2.3.1) 1→ Ĝm → E[p∞]→ Qp/Zp → 1.

This is analogous to the archimedean extension (1.1.3.1); in particular, pulling back
via the map E[p∞]→ Qp/Zp and using the the crystalline-de Rham comparison, we
obtain a canonical flat section ucan inH1

dR(Euniv) (spanning the unit-root filtration).
Together ωcan and ucan are a basis for H1

dR(Euniv), and in this basis ∇ is lower
nilpotent and thus is determined by a single differential form

dτ :=
∇(ωcan)

ucan
.

By the theory of Kodaira-Spencer, the differential form dτ is non-vanishing, and
thus admits a dual vector field d

dτ such that 〈dτ, ddτ 〉 = 1.

1.2.4. The Ĝm action. Our main result, Theorem A below, shows that the vector

field d
dτ can be integrated to an action of Ĝm on MKatz, and explains how this

action interacts with the action of Z×p × GL2(A(p)
f ). To state it, we will need the

unramified determinant character detur : GL2(A(p)
f )→ Z(p) defined by

detur((gl)l 6=p) =
∏
l 6=p

|detgl|l.

Theorem A. There is an action of Ĝm on MKatz whose derivative, a vector field
tu on MKatz, satisfies

(1.2.4.1) dτ(tu) = 1.

Moreover, this combines with the action of Z×p ×GL2(A(p)
f ) to give an action of

Ĝm o (Z×p ×GL2(A(p)
f ))
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where the semi-direct product is formed with the respect to the conjugation action

(z, g) · ζ · (z, g)−1 = ζz
2detur(g).

The Ĝm-action is uniquely determined by (1.2.4.1), which is another incarnation
of the famous equation of Dwork, τ = log q. Moreover, (1.2.4.1) can be reformulated

by saying that the Ĝm-action integrates the derivation −θ which acts as −q ddq on

cuspidal q-expansions.

The key observation in the construction of this Ĝm-action action and subsequent
computations is that we may work on a very ramified cover, a component of the
(big) Igusa variety of Caraiani-Scholze [1, Section 4], where the extension structure
(1.2.3.1) extends to a trivialization of the p-divisible group

ϕ : E[p∞]
∼−→ Ĝm ×Qp/Zp.

At the price of the ramification, life is simplified on this cover: for example, com-
putations with the crystalline connection are reduced to computing the crystalline

realization of maps Qp/Zp → Ĝm. Most importantly, the obvious action of auto-

morphisms of Ĝm × Qp/Zp on this cover extends to an action of the much larger
group of quasi-isogenies of

Ĝm ×Qp/Zp.
This quasi-isogeny group contains a very large unipotent subgroup, the quasi-

isogenies from Qp/Zp to Ĝm, or, the universal cover Ĝm
∼

in the language of Scholze-
Weinstein [12]. This unipotent quasi-isogeny action is the ultimate source of the

Ĝm-action on MKatz.

Remark 1.2.5. The action of a larger group of quasi-isogenies on this cover is a
natural characteristic p analog of the prime-to-characteristic phenomenon where,
when full level is added at l 6= p, there is an isogeny moduli interpretation that gives
an action of GL2(Ql) extending the action of GL2(Zl) in the isomorphism moduli
interpretation. Rigidifying in characteristic p using isomorphisms to an ordinary
p-divisible group provides both more and less structure than when l 6= p: on the
one hand, the isogeny group is solvable, and thus appears more like the subgroup
of upper triangular matrices, but on the other hand the unipotent subgroup has
a much richer structure than any groups that appear when l 6= p. If we instead
rigidified using a height two formal group, we would obtain a super-singular Igusa
variety, which has more in common with the l 6= p case (the isogeny action is by
the invertible elements of the non-split quaternion algebra over Qp); in [5] we use
this structure to compare p-adic modular forms and continuous p-adic automorphic
forms on the quaternion algebra ramified at p and ∞.

Remark 1.2.6. In this remark we explain a connection to perfectoid modular
curves: The generic fiber of the big Igusa formal scheme is a twist of a component
of the perfectoid ordinary locus over OCp

. This component admits a natural action
of the group of upper triangular matrices(

1 Qp
0 1

)
which is identified over OCp

with an action of Qp(1) on the generic fiber of the big
Igusa formal scheme.
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Using this, the action of the p-power roots of unity Qp(1)/Zp(1), an infinite

discrete set inside of the open ball Ĝm(OCp), on functions on the generic fiber of
MKatz,OCp

can be identified with the action of the natural Hecke operators Qp/Zp
on the invariants under (

1 Zp
0 1

)
in functions on this component of the perfectoid ordinary locus. Thus, the Ĝm
action extends the obvious action of Qp/Zp to an action of a much larger group.
We will not make any use of this connection to perfectoid modular curves in the
present work.

1.2.7. Local expansions. An important aspect of our proof of Theorem A is that
we make no appeal to local expansions at cusps or ordinary points, so that our ap-
proach is well-suited for generalization to other PEL Igusa varieties. After proving
Theorem A, however, we also give a direction computation of the action on local
expansions: we find that at ordinary points the action is given by multiplication of
a Serre-Tate coordinate, and at the cusps it is given by multiplication of the inverse
of the standard cuspidal coordinate q.

1.2.8. Dwork’s equation. While developing some of the machinery used to compute
the local expansions of the big Hecke action, and using the same philosophy of
base change to a very ramified cover, we also give a new proof of Dwork’s equation

τ = log q on the formal deformation space of Ĝm×Qp/Zp over Fp which is valid for
a larger family of Kummer p-divisible groups (which include not only the deforma-

tions of Ĝm×Qp/Zp over Artinian Fp-algebras, but also, e.g., the p-divisible group
of the Tate curve, and other interesting groups when the base is not Artinian).
These results can be found in Section 3.

1.2.9. Other constructions. After preparing an earlier version of this article, we
learned that Gouvea had already some time ago [4, III.6.2] constructed a twisting

measure equivalent to our Ĝm-action (interpreted as an algebra action via p-adic
Fourier theory as described in 1.2.10 below). In 5.6 we recall Gouvea’s construction

and explain how it can be rephrased as an alternate construction of the Ĝm-action
via the exotic isomorphisms of Katz [8, 5.6]. This construction is conceptually more
opaque, but has the advantage of using only classical ideas.

There is a third, even simpler and even more opaque approach in which one

builds the Ĝm-action algebraically starting with the differential operator θ and the
q-expansion principle; we explain this in Remark 1.2.11 below.

1.2.10. The algebra action. Via p-adic Fourier theory, the action of Ĝm described
in Theorem A is equivalent to an action of Cont(Zp,Zp) on VKatz. This action
admits a particularly simple description on q-expansions: f ∈ Cont(Zp,Zp) acts as
multiplication by f(n) on the coefficient of qn. As remarked above, the existence
of this algebra action was first established by Gouvea [4, Corollary III.6.8], who
interpreted it as a twisting measure.

From this perspective, the action of the monomial function zk is by the derivation

θk, and thus we may view our Ĝm-action as interpolating the differential operators
θk into an algebra action. In Section 6 we adopt this perspective to reinterpret
some of the results of Katz [8] on two-variable Eisenstein measures.
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Remark 1.2.11. In fact, we can construct the Ĝm-action by applying the q-
expansion principle [8, 5.2] to complete the action of polynomials in θ on VKatz

to an action of Cont(Zp,Zp). Note that polynomials are not dense Cont(Zp,Zp),
so the q-expansion principle needed here says not just that the q-expansion map is
injective, but also that the cokernel is flat over Zp.

In order to use this method, one must first obtain θ without deducing its existence
from the big Hecke action. One way to construct it is as the differential operator
dual to the image of ω2

can under the Kodaira-Spencer isomorphism, which can be
verified by a computation over C, as explained by Katz [8, 5.8].

1.2.12. Ordinary p-adic modular forms. The action of Cont(Zp,Zp) interacts natu-
rally with the Z×p action on VKatz, and thus we may view VKatz as a Z×p -equivariant
quasi-coherent sheaf on the profinite set Zp (viewed as a formal scheme whose ring

of functions is Cont(Zp,Zp)). As Zp is the space of characters of Ĝm, this viewpoint
is analogous to thinking of functions on Y∞−ord in the global, archimedean setting
as Fourier series.

In Section 7, we show that restriction induces an isomorphism between the fiber
at 0 ∈ Zp of the subsheaf VKatz,hol of p-adic modular forms with holomorphic q-
expansion and the space of ordinary p-adic modular forms à la Hida. Note that

the fiber at zero is the maximal trivial quotient for the Ĝm-action, and ordinary
modular forms are those such that the corresponding p-adic Banach representation
of GL2(Qp) admits a map to a unitary principal series. Thus, our statement is a
local, p-adic analog of the global, archimedean statement that the global automor-
phic representation representation attached to a classical modular form is globally
induced if and only if its Fourier expansion has a non-zero constant term.

This interpretation of the space of ordinary modular forms is part of a larger
connection between the space of functions on the big Igusa variety and (φ,Γ)-
modules, which we will explore further in upcoming work.

1.2.13. Generalizations. There is a natural analogy in which functions on Igusa
varieties are p-adic analogs of classical automorphic forms, and Theorem A provides
a new tool for understanding and controlling these spaces using representation
theory. We hope that the techniques introduced in this work will be useful in a more
general setting, e.g., for studying differential operators on p-adic automorphic forms
such as the µ-ordinary differential operators introduced by Eischen-Mantovan [3],
or for studying functoriality in the p-adic Langlands program.

1.3. Outline. In Section 2 we collect some results on p-divisible groups that we

will need in the rest of the paper. In Section 3 we study extensions of Qp/Zp by Ĝm;
in particular, we introduce Kummer p-divisible groups and prove our generalization
of Dwork’s formula τ = log q.

In Section 4 we curate a zoo of moduli problems lying over the ordinary locus,
and explain the relations between them. We apply these developments in Section 5

to construct the action of Ĝm, prove Theorem A, and compute the action on local
expansions.

Finally, in Section 6 we give an application to Eisenstein measures, and in Section
7 we give the application to ordinary p-adic modular forms.
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2. p-divisible groups

In this section we collect some results on p-divisible groups that will be useful in
our construction. Our principal references are [11] and [12]; we also provide some
complements.

For the proof Theorem A, the most important result in this section is Lemma
2.5.1, which, for I a nilpotent divided powers ideal in a ring R where p is nilpotent,
computes the action of

Hom(Qp/Zp|R/I , ĜmR/I)
on the Messing crystals evaluated on R.

2.1. p-divisible groups. Let R be a ring. A p-divisible group G over R is a
sequence G1, G2, . . . of finite flat commutative group schemes Gi over R equipped
with closed immersions ιi : Gi → Gi+1 such that

(1) Gi is pi-torsion
(2) ιi identifies Gi with Gi+1[pn]
(3) Multiplication by p is an fppf surjection Gi+1 → Gi+1[pi] = Gi.

Each of the Gi defines a presheaf in abelian groups on Algop
R , and we will also

denote by G the presheaf colimGi so that

(2.1.0.1) G(S) = colimGi(S)

for S anR-algebra. With this notation, we have a canonical identificationGi = G[pi].

Remark 2.1.1. Note that the maps are injective as maps of presheaves, so that in
any faithful topology where the objects of Algop

R are all quasi-compact (e.g. fppf),
(2.1.0.1) is also the colimit as sheaves by [13, Lemma 7.17.5]. In particular, one
could instead define a p-divisible group as, e.g., an fppf sheaf satisfying certain
properties, as is often done in the literature. We prefer the given definition because
we will have occasion later on to consider finer topologies.

Remark 2.1.2. We will usually consider p-divisible groups over a ring R where p
is nilpotent, or over an affine formal scheme SpfR where p is topologically nilpotent
in R. In the latter case, there are two natural ways one might try to define G(S) for
S a topological R-algebra: one could first algebraize to obtain a p-divisible group
over SpecR, then apply the definition above, or one could take the limit of G(S/I)
where I runs over the ideals defining the topology on R. The latter is the correct

definition. For example, if R = OCp with the p-adic topology and G = Ĝm, then,

the second, correct, definition gives Ĝm(R) = 1 + m where m is the maximal ideal
in OCp

while the first, incorrect, definition gives only the p-power roots of unity.

2.2. Formal neighborhoods and Lie algebras. For G a presheaf in abelian

groups on Algop
R , we define the formal neighborhood of the identity Ĝ by

Ĝ(S) = kerG(S)→ G(Sred)

and the Lie algebra LieG by

LieG(S) = kerG(S[ε]/ε2)→ G(S).
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Note that, by definition LieG(S) = LieĜ(S). We have the following important
structural result:

Theorem 2.2.1. [11, Theorems 3.3.13 and 3.3.18] If G is a p-divisible group over a

ring R where p is nilpotent, then Ĝ is a formal Lie group and G is formally smooth.

2.3. Universal covers. For any presheaf in abelian groups G, we define

G
∼

:= limG
p←− G p←− . . .

and its sub-functor

TpG := lim 1
p←− G[p]

p←− G[p2] . . . .

For A ∈ Nilpop
R we will write an element of G

∼
(A) as a sequence (g0, g1, . . .) such

that p(gi+1) = gi for all i ≥ 0; the elements of TpG are those such that g0 = 1. In
particular, we have an exact sequence of presheaves

1→ TpG→ G
∼→ G

where the map G
∼→ G is (g0, g1, . . .) 7→ g0.

When G is a p-divisible group, we call G
∼

the universal cover, following [12]. In
this case, we have

Lemma 2.3.1. If G is a p-divisible group,

(2.3.1.1) 1→ TpG→ G
∼→ G→ 1

is an exact sequence of sheaves in the fpqc topology.

Proof. We must verify that G
∼ → G is surjective as a map of fpqc sheaves. Note

that if Gi = SpecRi, then G
∼×G G[pn] is represented by Spec colimi≥nRi, and the

inclusion Rn → colimRi is an fpqc cover. Given an S-point f : SpecS → G
∼

, which

factors through G[pn] for some n, we find S
∼

= f∗G
∼

is an fpqc cover of SpecS such

that f is in the image of G
∼

(S
∼

). �

Remark 2.3.2. Exactness at the right in 2.3.1.1 typically fails in the fppf topol-

ogy. For example, if G = Ĝm and R is finitely generated of characteristic p, then

Ĝm
∼

(R) = 1. Any fppf cover of such an R is by finitely generated rings of character-

istic p, thus Ĝm
∼

is the trivial sheaf on the small fppf site of SpecR. On the other

hand, if R contains any nilpotents (e.g. R = k[ε]/ε2), then Ĝm(R) 6= 1, and thus

the map Ĝm
∼
→ Ĝm is not surjective in the fppf topology.

2.3.3. Crystalline nature of the universal cover. Suppose G0 is a p-divisible group
over a ring R in which p is nilpotent, R′ → R is a nilpotent thickening, and G is a
lift of G0 to R. Then, the reduction map

G
∼

(R′)→ G0
∼

(R)

is an isomorphism: the inverse sends (g0, g1, . . .) to (g′0, g
′
1, . . .) where g′i is defined

to be pn(g̃i+n) for n sufficiently large and any lift g̃i+n ∈ G(S) of gi+n. Note that
these lifts exist by the formal smoothness of Theorem 2.2.1 and the pnth multiple is
independent of lift for n sufficiently large by a lemma of Drinfeld [6, Lemma 1.1.2].
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2.4. The universal vector extension. For R in which p is nilpotent, and G/R
a p-divisible group, we denote by EG the universal vector extension of G, which is
an extension

1→ ωG∨ → EG→ G→ 1.

There is a natural map sG : G
∼ → EG sending (g0, g1, . . .) ∈ G

∼
(S) to png′n for n

sufficiently large and g′n any lift of gn to EG(S); this is well-defined since ωG∨ is
annihilated by the same power of p that annihilates R.

Remark 2.4.1. From the construction of the universal vector extension in [11], we
find that EG is the push-out of the extension 2.3.1.1 by the natural map TpG→ ωG∨

sending x to x∗ dtt where we think of x as a map from G∨ to Ĝm. Note that the map
TpG→ ωG∨ factors through G[pn] for n sufficiently large (such that pn annihilates
R and thus ωG∨), so that EG can be constructed as an fppf pushout (avoiding
issues with fpqc sheafification in showing the pushout exists). These considerations
lead to the following question: is there a natural topology suitable for constructions

such as in the previous remark involving TpG and G
∼

, but avoiding the set theoretic
issues of the fpqc topology?

2.4.2. Crystalline nature. If R → R′ is a nilpotent divided powers thickening, G0

and H0 are p-divisible groups over R, and G and H are lifts of G0 and H0, re-
spectively, to R′, and ϕ : G0 → H0 is a morphism, then we obtain a morphism
Eϕ(R) : EG0 → EH0 by the universality of EG0 (using that ϕ∗EH0 is a vector
extension of H0). Messing [11, Theorem IV.2.2] shows that there is a functorial lift

EG
Eϕ(R′)−−−−−→ EH.

By [12, Lemma 3.2.2], the following diagram commutes:

(2.4.2.1) G̃(R′)

sG

��

∼ // G̃0(R)

sG0

��

ϕ̃ // H̃0(R)

sH0

��

∼ // H̃(R′)

sH

��

EG0(R)
Eϕ(R)// EH0(R)

EG(R′)

99

Eϕ(R′) // EH(R′).

ee

In particular, if G0/R is a p-divisible group, then, passing to Lie algebras, we
obtain a (nilpotent) crystal in locally free Ocrys-modules DG0 whose value on a
nilpotent divided powers thickening R → R′ is LieEG∨ where G is any lift of G0

to R′. Given such an R′ and G, we obtain a filtered vector bundle on SpecR′

0→ ωG → LieEG∨ → LieG∨ → 0

with an integrable connection ∇crys.
The assignment G0 → DG0 is a contravariant functor: given ϕ : G0 → H0 we

obtain a map DH0 → DG0 from the construction Eϕ∨.

2.5. An important example. We now explain how to compute the maps in dia-

gram 2.4.2.1 when G0 = Qp/Zp and H0 = Ĝm.
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For G = Qp/Zp
∼

, G
∼

= Qp. Then, EG = Qp×Ga/Zp, where we have identified G∨

with Gm and ωG∨ with Ga using the basis dt
t , and Zp is included anti-diagonally,

i.e. by z 7→ (z,−z). Here sG is the map a 7→ (a, 0).

For H = Gm, EH = H, and sH is the map Ĝm
∼
→ Ĝm sending (g0, g1, . . .) to g0.

A map from Qp/Zp to Ĝm over R is an element (g0, g1, . . .) ∈ TpĜm(R). Because

TpĜm(R) ⊂ Ĝm
∼

(R) ∼= Ĝm
∼

(R′) and the latter is a Qp-vector space, we obtain a

unique map from Qp to Ĝm
∼

. If we write (g′0, g
′
1, . . .) for the element of Ĝm

∼
(R′)

lifting (g0, g1, . . .) (i.e. the image of 1 ∈ Qp), then the map

EQp/Zp(R′)
Eϕ(R′)−−−−−→ EĜm(R′)

is induced by the map

Qp ×Ga(R′)→ Ĝm, (z, x) 7→ ϕ̃(z)0 · exp(x log(g′0)).

Here we have written ϕ̃ for the composition of the arrows at the top of the diagram
(2.4.2.1) and the subscript 0 to denote its zeroth component, and the exponential
and logarithm make sense because g′0 is congruent to 1 mod the kernel I of R′ → R,
which is a nilpotent divided powers ideal. Because exp(z log(g′0)) = (g′0)z for z ∈ Zp,
we find that the map is zero on the anti-diagonally embedded Zp. In particular, we
deduce the following lemma, which we will use in our verification of Theorem A.

Lemma 2.5.1. Suppose (g0, g1, . . .) is an element of Ĝm
∼

(R) congruent to an ele-
ment of TpGm(R/I) for a nilpotent divided powers ideal I ⊂ R. Then, the induced
map

LieEQp/Zp = Ga ·
dt

t
→ Ga · t∂t = LieEGm

is multiplication by log g0.

2.6. Comparing the Gauss-Manin and crystalline connections. Let S be a
scheme where p is locally nilpotent, let π : A → S be an an abelian scheme, and
write A∨ for the dual abelian scheme. We have the relative de Rham cohomology

VdR := R1π∗Ω
•
A/R

with Hodge filtration

0→ ωA → VdR → LieA∨ → 0.

We also have the universal extension of EA[p∞]∨ = EA∨[p∞]

ωA → EA[p∞]∨ → A[p∞]∨

and the induced Hodge filtration on LieEA[p∞]∨

0→ ωA → LieEA[p∞]∨ → LieA∨ → 0

(note we have identified ωA with ωA[p∞] and LieA∨ with LieA∨[p∞] = LieA[p∞]∨

via the natural maps).
Now, VdR is equipped with the Gauss-Manin connection ∇GM, and LieA∨[p∞] is

equipped with a connection ∇crys via the crystalline nature of the universal vector
extension. The work of Mazur-Messing [10] shows
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Theorem 2.6.1. There is a functorial isomorphism of filtered vector bundles with
connection

(LieEA[p∞]∨,∇crys) ∼= (VdR,∇GM).

inducing the identity on the associated graded bundles for the Hodge filtrations.

Proof. The identity between LieEA[p∞]∨ with its Hodge filtration as constructed
above and LieExtrig(A,Gm) follows from the discussion of [10, I.2.6]. The stated
isomorphism then follows from the results of [10, II.1]; in particular, the functori-
ality follows from [10, II.1.6]. �

2.6.2. Connections and vector fields. In preparation for our application of Theorem
2.6.1, we now recall the relation between some different perspectives on connections.
We write D = SpecZ[ε]/ε2, the dual numbers.

Given a vector bundle with connection (V,∇) over S, and a vector field t, viewed
as a map

t : D × S → S,

we obtain an isomorphism of vector bundles on D × S
∇t : t∗VdR → 0∗VdR

where 0 is the zero vector field. It will be useful to make this isomorphism explicit
when S = SpecR and M is the R-module of sections of V over SpecR. Then the
map t is given by

αt : R → R[ε]

r 7→ r + dr(t)ε

and the zero section is given by

α0 : R→ R[ε]

r 7→ r

The isomorphism ∇t is then given in coordinates by

∇t : R[ε]⊗αt M → R[ε]⊗α0 M(2.6.2.1)

1⊗m 7→ 1⊗m+ ε⊗∇t(m).(2.6.2.2)

where by abuse of notation we have also written ∇t for the derivation M → M
associated to t by ∇.

2.7. Serre-Tate lifting theory. For R a ring in which p is nilpotent, and R0 =
R/I for I a nilpotent ideal, let

Def(R,R0)

be the category of triples
(E0, G, ε)

where E0/R0 is an elliptic curve, G is a p-divisible group, and ε : G|R0

∼−→ E0[p∞]
is an isomorphism.

We denote by Ell(R) the category of elliptic curves over R. There is a natural
functor from Ell(R) to Def(R,R0)

(2.7.0.1) E 7→ (ER0 , E[p∞], εE)

where εE is the canonical isomorphism

E[p∞]R0

∼−→ ER0
[p∞].
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The following result is due to Serre-Tate, cf. [6, Theorem 1.2.1]:

Theorem 2.7.1. The functor 2.7.0.1 is an equivalence of categories.

3. Extensions of Qp/Zp by Ĝm

In this section we study extension of Qp/Zp by Ĝm. In particular, we intro-
duce Kummer p-divisible groups, and prove our generalization of Dwork’s equation
τ = log q (Theorem 3.3.1 below).

3.1. The canonical trivialization. Suppose given an extension of p-divisible
groups

E : Ĝm → G→ Qp/Zp
over S with p locally nilpotent. The inclusion Ĝm → G induces an isomorphism
ωG = ωĜm

, and we denote by ωcan the image of dt
t in ωG. The map G → Qp/Zp

induces an injection

LieE(Qp/Zp)∨ = LieEĜm = LieĜm → LieEG∨.

The image is the unit root filtration, which splits the Hodge filtration; we write

ucan for the image of t∂t ∈ LieĜm in LieEG∨.
We thus obtain a trivialization

(3.1.0.1) LieEG∨ = Ga · ωcan ×Ga · ucan

where the first term spans the Hodge filtration and the second the unit root filtra-
tion. The elements t∂t and dt

t are flat for the connections on LieE(Qp/Zp)∨ and

LieE(Ĝm)∨, respectively, and thus we find that in the basis (3.1.0.1), ∇crys is lower
nilpotent, i.e.

∇crys(ωcan) ∈ ucan · ΩS , ∇crys(t∂t) = 0.

In particular, the extension determines a differential form

dτE :=
∇crys(

dt
t )

t∂t
∈ ΩS .

The notation is a slight abuse, as in general there is no function τE in O(S) whose
differential is equal to dτE ; nevertheless, as we will see below, it is natural to think
of this as the differential of Dwork’s divided powers coordinate τ .

3.2. Kummer p-divisible groups. For R a ring and q ∈ R×, we will construct
an extension of p-divisible groups over SpecR,

Eq : µp∞ → Gq → Qp/Zp.

We call the extensions Eq arising from this construction Kummer p-divisible groups.
We first consider the fppf sheaf in groups

Rootsq ⊂ Gm × Z[1/p]

consisting of pairs (x,m) such that for k sufficiently large, xp
k

= qp
km.

Projection to the second component gives a natural map Rootsq → Z[1/p]. The
kernel is identified with µp∞ , and the projection admits a canonical section over Z
by 1 7→ (q, 1). We consider the quotient by the image of this section

Gq := Rootsq/Z.
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Lemma 3.2.1. Gq is a p-divisible group, and the maps

µp∞ → Rootsq and Rootsq → Z[1/p]

induce the structure of an extension

Eq : µp∞ → Gq[p
∞]→ Qp/Zp.

Proof. If we let Roots′q be the subsheaf of Rootsq of elements (x,m) with m ∈
Z[1/p], 0 ≤ m < 1, then the group law induces an isomorphism

Roots′q × Z→ Rootsq.

Thus, Roots′q as a sheaf of sets is isomorphic to Rootsq/Z, and for A an R-algebra
with SpecA connected,

Gq(A) = Rootsq(A)/(q, 1)Z

and any element ofGq(A) has a unique representative of the form (x,m) ∈ Rootsq(A)
with 0 ≤ m < 1. Such an element is pk-torsion if and only if m ∈ 1/pkZ and

xp
k

= qp
km. In particular, we find that Gq = colimGq[p

k]. Moreover, multiplica-
tion by p is an epimorphism because taking a pth root of x gives an fppf cover.
Thus, to see that Gq is a p-divisible group, it remains only to see that Gq[p] is a
finite flat group scheme. In fact, for any k, our description of elements shows that
Gq[p

k] is represented by

t0≤a≤pk−1SpecR[x]/(xp
k

− qa),

with multiplication given by “carrying,” i.e. for x1 a root of qa1 and x2 a root of
qa2 , in the group structure

x1 · x2 =

{
x1x2 as a root of qa1+a2 if a1 + a2 < pk

x1x2/q as a root of qa1+a2−pk if a1 + a2 ≥ pk.

This is a finite flat group scheme.
Finally, the extension structure is clear from definition. �

Remark 3.2.2. Let Rootsq,k ⊂ Rootsq be the elements (x,m) such that pkm ∈ Z
and xp

k

= qp
km, so that Rootsq,k/Z = Gq[p

k]. We have a natural pairing

Rootsq,k × Rootsq−1,k → µpk

given by 〈(g, a), (h, b)〉 = gp
kbhp

ka, which induces a perfect pairing

Gq[p
k]×Gq−1 [pk]→ µpk .

It realizes an isomorphism of extensions

E∨q
∼−→ Eq−1

Note that at the level of groups Gq ∼= Gq−1 ; the extension structures Eq and Eq−1

differ by composition with an inverse on either Qp/Zp or Ĝm.

Example 3.2.3. The following three examples will be useful later on:

(1) For the Tate curve Tate(q) over Z((q)), Tate(q)[p∞] = Gq[p
∞]. Indeed, our

construction is modeled off of the p-divisible group of the Tate curve as
realized via its rigid-analytic uniformization.
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(2) For A an Artin local ring with perfect residue field k of characteristic p, any

lift of the trivial extension Ĝm×Qp/Zp over k to A is uniquely isomorphic

to Eq for a unique q ∈ Ĝm(A), and q−1 is the Serre-Tate coordinate of the
lift (cf. Remark 3.2.6 below).

(3) The formation of Eq commutes with base change. In particular, there is a
universal Kummer p-divisible group,

Equniv
/Gm,Z = SpecZ[q±1

univ],

so that for any q ∈ R×, Eq/SpecR is given via pullback of Equniv through
the map SpecR→ Gm given by q ∈ R× = Gm(R).

Remark 3.2.4. Over a general R, not every extension of Qp/Zp by Ĝm is a Kum-
mer p-divisible group, and for those which are, there may not be a canonical choice
of q as in the Artin local case. In particular, the extension given by the p-divisible
group of the universal trivialized elliptic curve over VKatz,Fp

is not a Kummer p-
divisible group (cf. Remark 5.4.5 below).

Remark 3.2.5. For any k ≥ 0, consider the Kummer sequence

µpk → Gm
x 7→xpk

−−−−→ Gm.

We may take the pull-back by

Z 7→ Gm, 1 7→ q

to obtain an extension

µpk → pk − Rootsq → Z.
Equivalently, this extension is the image of q under the coboundary map

Gm(R)→ H1
fppf(SpecR,µpk) = Ext1(Z, µpk).

There is a natural map

pk − Rootsq → Rootsq.

Indeed, an element of pk − Rootsq is a pair (x, a) ∈ Gm × Z such that xp
k

= qa,
and this is mapped to the pair

(x, a/pk) ∈ Gm × Z[1/p]

which lies in Rootsq. This is an isomorphism of pk − Rootsq onto its image, which

consists of all (x,m) such that m ∈ 1
pk
Z and xp

k

= qp
km – this is what we denoted

by Rootsq,k in Remark 3.2.2. In particular, the map Rootsq → Gq induces an
isomorphism

pk − Rootsq/(q, p
k)Z

∼−→ Gq[p
k].

It is for this reason that we refer to Eq as a Kummer p-divisible group.
Note that there are also natural maps between the Kummer sequences as k varies

inducing the obvious inclusions as sub-functors of Rootsq, and we find

Rootsq = colimkp
k − Rootsq.

To construct Gq we can also take the colimit already at the level of the Kummer
sequences. If we do so, we obtain the (exact) exponential sequence

Eexp : µp∞ → Gm → colim
(
Gm

x 7→xp

−−−−→ Gm
x 7→xp

−−−−→ . . .
)
.



A UNIPOTENT CIRCLE ACTION ON p-ADIC MODULAR FORMS 17

There is a map

α : Z→ Gm
sending 1 to q which extends uniquely to a map

α1/p : Z[1/p]→ colim
(
Gm

x 7→xp

−−−−→ Gm
x 7→xp

−−−−→ . . .
)
.

Then, essentially by definition, α∗1/pEexp is the extension

µp∞ → Rootsq → Z[1/p].

The map α× Id : Z→ Gm × Z[1/p] factors through α∗1/pEexp and we find

Eq = α∗1/pEexp/α× Id(Z).

Remark 3.2.6. In this remark we explain a third construction of Gq and the
connection to Serre-Tate coordinates: Consider the extension

(3.2.6.1) Z→ Z[1/p]→ Qp/Zp.

We obtain an extension of Qp/Zp by Gm, Aq, as the push-out of (3.2.6.1) by

(3.2.6.2) Z→ Gm, 1 7→ q−1.

We claim there is a natural isomorphism Gq ∼= Aq[p
∞] respecting the extension

structure. To see this, note that the push-out Aq is constructed as the quotient of
Gm × Z[1/p] by the subgroup generated by (q, 1). Then, the p∞-torsion is just the
image of Rootsq in Aq, as desired.

We note that if q ∈ Ĝm(R), then taking the push-out and passing to p∞ torsion

is equivalent to just taking the pushout under 3.2.6.2 viewed as a map to Ĝm.

Thus, when restricted to q ∈ Ĝm(R) for Artin local R with perfect residue field,
our construction gives the extension of Qp/Zp by µp∞ with Serre-Tate coordinate
q−1 (cf. [11, Appendix 2.4-2.5]).

We will need the following structural result on maps between Kummer p-divisible
groups:

Lemma 3.2.7. Isomorphisms Eq
∼−→ Eq′ are identified with the fiber above q′/q for

the map

Gm
∼→ Gm

sending (x0, x1, . . .) to x0.

Proof. Let t = q′/q. Suppose given a compatible system of roots t1/p
n

of t. We
obtain an isomorphism between Gq[p

n] and G′q[p
n] respecting the extension struc-

ture by sending an element (a, k/pn) to (atk/p
n

, k/pn), and these are compatible
for varying n.

Conversely, given an isomorphism ψ : Gq[p
∞] → Gq′ [p

∞] compatible with the
extension structures, if we restrict to ψn : Gq[p

n]→ Gq′ [p
n], then for any (a, 1/pn) ∈

Gq[p
n], ψ(a, 1/pn) = (a′, 1/pn) for a′ such that a′p

n

= q′, and a′/a is pnth root of
t that is independent of a because two choices of a differ by an element of µpn ; it
thus comes from an element of R×, and the isomorphism at level pn is as above;
the roots of t chosen by varying the level then must also be compatible, giving an
element of G̃m mapping to t. �
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3.3. Dwork’s equation τ = log q. The universal deformation of Ĝm×Qp/Zp over

Fp, Guniv/SpfW (Fp)[[t]], is canonically an extension

E : Ĝm → Guniv → Qp/Zp.

Because W (Fp)[[t]] is pro-Artin local,

E = Eq
for a unique q ≡ 1 mod (t, p), and q−1 is the Serre-Tate coordinate (cf. Example
3.2.3-(2) and Remark 3.2.6). The W (Fp) point xcan with q = 1 parameterizes the

unique split lift to W (Fp), the canonical lifting, and we can extend the canonical
basis ωcan|xcan

, ucan|xcan
of EG|xcan

at this point to a flat basis over the divided
powers envelope of xcan (the extension of ucan|xcan

is just ucan itself, but ωcan is
not flat so the flat extension of ωcan|xcan

is not equal to ωcan). The position of the
Hodge filtration with respect to this basis then defines a divided powers function
τ , and a conjecture of Dwork proven by Katz [6] states

τ = log q−1.

As observed by Katz [7], this is equivalent to computing, in the language of 3.1,

dτEq = d log q−1.

We now give a simple proof of this result by using a very ramified base-change to
split Eq. The result is valid for any Kummer p-divisible group:

Theorem 3.3.1. For S a scheme on which p is locally nilpotent and q ∈ Gm(S) = O(S)×,

dτEq = −d log q = d log q−1 = −dq
q

Proof. By reduction to the universal case, it suffices to prove this for Eq over

S = Gm,Z/pnZ = SpecZ/pnZ[q±1].

In this case, ΩS is free with basis d log q = dq
q , thus it suffices to show that

∇crys,q∂q (dτEq ) = −1.

The vector field q∂q, thought of as a map

t : D × S → S

is given by the map of rings

R→ R[ε]/ε2, q 7→ (1 + ε)q,

and we can compute the isomorphism

t∗LieEG∨q → 0∗LieEG∨q

induced by ∇crys as follows:
First, we observe that t∗Eq = E(1+ε)q and 0∗Eq = Eq, where q is thought of an

element of R[ε], and under these identifications the isomorphism

0∗Eq mod ε
∼−→ t∗Eq mod ε

is identified with the canonical isomorphism

(3.3.1.1) Eq mod ε = E(1+ε)q mod ε

given by (1 + ε)q = q mod ε.
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Thus, using the description of 2.6.2, it suffices to show that the induced map

(3.3.1.2) ∇crys,q∂q : LieEG∨(1+ε)q → LieEG∨q

is given in the canonical bases by

(3.3.1.3)

(
1 0

1− ε 1

)
.

It suffices to verify this after flat base change, so we may adjoin roots q1/p∞ and
(1 + ε)1/p∞ to obtain a ring R∞/(R[ε]/ε2).

Over R∞, the maps 1/pn → q1/pn and 1/pn → (1 + ε)1/pnq1/pn split Eq and
E(1+ε)q. In these trivializations, the canonical isomorphism (3.3.1.1) is identified
with the map

Ĝm ×Qp/Zp → Ĝm ×Qp/Zp
given by (

1 ((1 + ε)−1, (1 + ε)−1/p, . . .))
0 1

)
mod ε

The transpose map

G∨(1+ε)q → G∨q

is identified with (
1 0

((1 + ε)−1, (1 + ε)−1/p, . . .) 1

)
mod ε,

and using Theorem 5.4.1, we concluded that over R∞, in the canonical bases the
map (3.3.1.2) is given by (3.3.1.3), as desired. �

4. Moduli problems for ordinary elliptic curves

In this section, we discuss various moduli problems for ordinary elliptic curves
over a base S where p is locally nilpotent.

4.1. The big Igusa, Igusa, and Katz moduli problems.

4.1.1. Adelic Tate modules. For T a topological space, we write T for the functor
on Sch sending S to Cont(|S|, T ).

Given an elliptic curve E/S over a scheme S, we define the prime-to-p Tate
module

TẐ(p)E := lim
(n,p)=1

E[n],

as a functor on Sch/S, where the transition map from E[n′] to E[n] for n|n′ is
multiplication by n′/n. The transition maps are affine, so the prime-to-p Tate
module is representable. We define the adelic prime-to-p Tate module as the sheaf
on SZar

VA(p)
f

E := TẐ(p)E ⊗Z Q.

The prime-to-p Tate module is functorial for quasi-p-isogenies, and the prime-to-p
adelic Tate module is functorial for quasi-isogenies.
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4.1.2. Structures at p when p is nilpotent. If R is a ring in which p is nilpotent, and
E/SpecR is an elliptic curve, we will consider the following functors on Nilpop

R :

(1) The formal group Ê (as defined already in 2.2),
(2) The p-divisible group

E[p∞] := colimE[pn]

(3) The universal cover of E[p∞],

E[p∞]
∼

= lim
p
E[p∞]

(as defined already in 2.3.)

The formal group and p-divisible group of E are functorial with respect to quasi-
prime-to-p-isogenies of E, and the universal cover of E[p∞] is functorial with respect
to quasi-isogenies of E.

4.1.3. The big Igusa moduli problem. The big Igusa moduli problem Mbig Igusa, clas-
sifies, for SpecR ∈ Nilpop

Zp
the set of triples

(E,ϕ∼, α)

where E/R is an elliptic curve,

ϕ∼ : E[p∞]
∼ ∼−→ µp∞
∼×Qp,

and α is an isomorphism of Zariski sheaves on SpecR

α : (A(p)
f )2 ∼−→ VA(p)

f

E,

all considered up to quasi-isogeny of E.
The data we consider is rigid, that is, any two triples (E,ϕ∼, α) and (E′, ϕ∼′, α′)

representing x differ by a unique quasi-isogeny. Thus we obtain an elliptic curve up-

to-isogeny Ex on SpecR. Because quasi-isogenies induce isomorphisms on E[p∞]
∼

,

we deduce that given x ∈Mbig Igusa(R), the universal cover Ex[p∞]
∼

is well-defined.

4.1.4. The Katz and Igusa moduli problems. The Katz (resp. Igusa) moduli prob-
lem MKatz (resp. MIgusa), classifies, for SpecR ∈ Nilpop

Zp
the set of triples (resp.

quadruples)

(E, ϕ̂, α) (resp. (E, ϕ̂, ϕét, α))

where
ϕ̂ : Ê

∼−→ µp∞ ,

(resp. and

ϕét : E[p∞]/Ê
∼−→ Qp/Zp),

and α is an isomorphism of Zariski sheaves on SpecR

α : (A(p)
f )2 ∼−→ VA(p)

f

E,

all considered up to quasi-prime-to-p-isogeny of E.
Again, in both cases the data we consider is rigid, so any tuples representing

a point x ∈ MKatz(R) or (resp. x ∈ MIgusa(R)) differ by a unique quasi-prime-
to-p isogeny, and thus we obtain an elliptic curve up-to-prime-to-p-isogeny Ex
over SpecR. Because quasi-prime-to-p isogenies induce isomorphisms on p-divisible
groups, we obtain a well-defined p-divisible group Ex[p∞] on SpecR.
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We note that to give the data ϕ̂ and ϕét is equivalent to equipping E[p∞] with
the structure of an extension

(4.1.4.1) EE[p∞],ϕ̂,ϕét : Ĝm → E[p∞]→ Qp/Zp.
In particular, given x ∈MIgusa(R), we obtain a well-defined extension

(4.1.4.2) Ex : Ĝm → Ex[p∞]→ Qp/Zp.

4.1.5. Distinguishing representatives. Standard arguments show that any x ∈Mbig Igusa(R)
can be represented by a triple (E,ϕ∼, α) such that ϕ∼ comes from an isomorphism

ϕ : E[p∞]
∼−→ µp∞ ×Qp/Zp.

We call such a triple a distinguished representative for x. For any two distinguished
representatives (E,ϕ∼, α) and (E′, ϕ∼′, α′), there is a unique quasi-prime-to-p-isogeny

f : E → E′

relating the two triples, i.e. such that

ϕ∼= ϕ∼′ ◦ f∗ and α = (f−1)∗ ◦ α′.

Similarly, if we fix a Ẑ(p)-lattice L in (A(p)
f )2, any x ∈ Mbig Igusa(R) can be rep-

resented by a distinguished triple (E,ϕ∼, α) such that α restricts to an isomorphism

L ∼−→ TẐ(p)E.

We call such a triple an L-distinguished representative for x. For any two L-
distinguished representatives (E,ϕ∼, α) and (E′, ϕ∼′, α′), there is a unique isomor-
phism

f : E
∼−→ E′

relating the two triples.
Similarly, if x ∈ MKatz(R) or x ∈ MIgusa(R) then x can be represented by a

tuple (E, . . . , α) such that α restricts to an isomorphism

L ∼−→ TẐ(p)E,

and we call such a tuple an L-distinguished representative for x, and any two L-
distinguished representatives are related by an isomorphism of the curve.

4.2. Group actions.

4.2.1. Automorphism groups at p. Let

Bp := Aut (µp∞
∼×Qp) ,

Mp := Aut(µp∞
∼)×Aut(Qp) = Q×p ×Q×p

Np := Hom(Qp, µp∞∼) = µp∞
∼

There is a natural projection Bp →Mp. There are also natural inclusions

Mp ↪→ Bp, Np ↪→ Bp,

and Bp = Np oMp

We also write

B◦p := Aut (µp∞ ×Qp/Zp) ,
M◦p := Aut(µp∞)×Aut(Qp/Zp) = Z×p × Z×p
N◦p := Hom(Qp/Zp, µp∞) = Tpµp∞ .
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Again there are natural inclusions

M◦p ↪→ B◦p , N
◦
p ↪→ B◦p

and

B◦p = N◦p oM◦p .

The natural isomorphism

µp∞ ×Qp/Zp
∼

= µp∞
∼×Qp/Zp
∼

= µp∞
∼×Qp

induces inclusions

M◦p ↪→Mp, B
◦
p ↪→ Bp, N

◦
p ↪→ Np,

and these are compatible with the various inclusions above.

4.2.2. Action on the moduli problems. We write Gp = GL2(A(p)
f ). We have natural

actions by composition with the level structures of

• Bp ×Gp on Mbig Igusa,
• M◦p ×Gp on MIgusa,

• and Z×p ×Gp on MKatz

where for the action on MKatz we make the natural identification

Z×p = Aut(µp∞).

4.2.3. Action of the unipotent subgroup on distinguished representatives. For

n ∈ Np(R) = µp∞
∼(R) and x ∈Mbig Igusa(R),

it will be useful when we do computations with the crystalline connection for us to
have a more explicit description of n·x on the distinguished representatives of 4.1.5.
We give such a description now; the key point is that any unipotent automorphism

of the universal cover lifts a unipotent automorphism of the p-divisible group Ĝm×
Qp/Zp modulo a nilpotent ideal.

Write n = (ζk) ∈ µp∞∼(R) and let I be any nilpotent ideal of R containing ζ0−1.
Then,

n mod I = (1, ζ1 mod I, ζ2 mod I, . . .)

is an element of N◦p (R/I). Now, if (E,ϕ∼, α) ∈ Mbig Igusa(R) is a distinguished
representative for x such that ϕ∼ comes from an isomorphism

ϕ : E[p∞]
∼−→ µp∞ ×Qp/Zp,

then

n · (E,ϕ, α) =

(
E′, ϕ′
∼
, α′
)

where E′ is the Serre-Tate lift from R/I to R of ER/I determined by the isomor-
phism

(n mod I) ◦ ϕR/I : ER/I [p
∞]

∼−→ (Qp/Zp × Ĝm)R/I ,

ϕ′ is the natural isomorphism E′[p∞]
∼−→ (Qp/Zp × Ĝm), and α′ is the unique lift

of α|R/I from E′R/I to E′.
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4.2.4. Some characters. We write det : Bp → Q×p for the character given by pro-

jection to Mp composed with multiplication of the two factors; we will also write
det for the determinant on GL2(Ql) for l 6= p. As in the introduction, we write

detur : Gp → Z[1/p]×

(gl)l 6=p 7→
∏
l 6=p

|det(gl)|l

We will also need the character

detp : Bp ×Gp → Z×p

(gp, g
p) = (gl)l 7→ det(gp)

∏
l

|detgl|

= det(gp)|det(gp)|
∏
l 6=p

|detgl|

= det(gp)|det(gp)|detur(g
p).

4.3. Projection from big Igusa to Igusa level. There is a natural projection
map

(4.3.0.1) Mbig Igusa →MIgusa

defined as follows: given

x ∈Mbig Igusa(R),

take a distinguished representative (E,ϕ∼, α) for x as in 4.1.5 and write ϕ for the
isomorphism inducing ϕ∼. We obtain a point of MIgusa(R) determined by E, α,
and the graded parts of ϕ, which is well defined because any two distinguished
representatives differ by a quasi-prime-to-p-isogeny. We define the projection of x
to be this point.

4.3.1. Interaction with group action. The projection map (4.3.0.1) is equivariant
for the group actions of B◦p×Gp ⊂ Bp×Gp on Mbig Igusa and of M◦p ×Gp on MIgusa

under the natural projection from B◦p to M◦p (with kernel N◦p ).

4.3.2. Preimages under projection. If y ∈MIgusa(R), then from our construction we
find that the choice of a preimage x ∈ Mbig Igusa(R) under the projection (4.3.0.1)
is equivalent to the choice of a splitting of the extension Ey (defined in (4.1.4.2)).
Two such splittings differ by a unique unipotent automorphism of µp∞ ×Qp/Zp,
and thus two preimages x and x′ of y differ by the action of a unique element of
N◦p (R). In fact,

Lemma 4.3.3. The projection map 4.3.0.1) realizes Mbig Igusa as an fpqc N◦p -

torsor1 over MIgusa.

1We will explain later that these moduli problem are representable, but at the current point

in the exposition we have not yet shown this, so we do not know yet that these are fpqc sheaves.
Thus, in the mean time this should be interpreted as saying two elements with the same image in

MIgusa(R) differ by a unique element of N◦
p and every element of MIgusa(R) admits a pre-image

after restriction to an fpqc-cover of SpecR.
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Proof. It remains only to see that the map is surjective in the fpqc topology. If

(E, ϕ̂, ϕét, α) ∈MIgusa(R)

then we construct a cover SpecR∞ of SpecR as a limit of the covers SpecRn pa-
rameterizing splittings of the extension

EE[p∞],ϕ̂,ϕét [pn].

These are finite flat over R – indeed, the cover at level n is the fiber of

E[pn]→ 1/pnZ/Z

over 1/pn + Z. Thus, the limit SpecR∞ → SpecR is an fpqc cover, and there is a
canonical splitting of EE[p∞],ϕ̂,ϕét over SpecR∞, giving the pre-image. �

4.4. The Weil pairing and components.

4.4.1. The Weil pairing and the universal cover. For R a ring in which p is nilpotent
and E/SpecR an elliptic curve, the pn-Weil pairing is a perfect antisymmetric
pairing

epn,E : E[pn]× E[pn]→ µpn .

It induces an anti-symmetric Qp-bilinear pairing

e∼E : E[p∞]
∼

× E[p∞]
∼

→ µp∞
∼

given by

e∼E((ak), (bk)) = (ck)

where

ck = (ept,E(ai, bj))
ps

for i + j = s + t + k and t large enough that ai, bj ∈ E[pt] so that the right-hand
side is defined.

Lemma 4.4.2. If f : E → E′ is an isogeny or quasi-prime-to-p isogeny, then

f∗epn,E′ = edeg f
pn,E .

If f is a quasi-isogeny,

f∗e∼E′ = e∼deg f
E .

Proof. The first equation for isogenies is a well-known property of the Weil pairing,
and the second equation for isogenies is then immediate from the definition of e∼.
Once the isogeny statements are established, the quasi-isogeny statements follow as
raising to a prime-to-p integer power is invertible on µpn and raising to any integer
power is invertible on µp∞

∼. �

In particular, we note that the pn Weil pairings epn are functorial in degree one
quasi-prime-to-p-isogenies of E, and the universal cover Weil pairing e∼ is functorial
in degree one quasi-isogenies of E.
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4.4.3. Fixing a Weil-Pairing. Given x ∈Mbig Igusa(R), there is no canonical choice

of a Weil pairing on Ex[p∞]
∼

because the Weil pairings are not preserved by quasi-

isogenies. However, if we fix a Ẑ(p)-lattice L in (A(p)
f )2 and consider an L-distinguished

representative (E,ϕ, α) for x as described in 4.1.5, we obtain a well-defined Weil

pairing on Ex[p∞]
∼

. Moreover, this Weil pairing only depends on the equivalence
class [L] of L, where two lattices are equivalent if they both contain a third lattice

with the same index. We denote this Weil-pairing on Ex
∼

[p∞] by e∼x,[L].
We may proceed similarly from a choice of equivalence classes of lattices [L] to

obtain Weil pairings epn,x,[L] on Ex[pn] for x ∈MIgusa(R) or x ∈MKatz(R).

4.4.4. The p-component map. Given a point x ∈Mbig Igusa(R), we obtain as above

a Weil pairing e∼x,[L] on Ex[p∞]
∼

, and thus, via pull-back through ϕ∼, a non-degenerate
alternating pairing

ϕ∼∗ : e∼x,[L](µp∞
∼×Qp)2 → µp∞

∼.

Any such pairing is a Q×p (R) multiple of the standard pairing

〈(x1, x2), (y1, y2)〉 = xy2

1 y
−x2
1 .

In our case it is even a Z×p (R)-multiple because to obtain our Weil pairing we chose

a representing triple where ϕ∼ came from an isomorphism E[p∞]
∼−→ µp∞ ×Qp/Zp.

Thus we obtain a map

cbig Igusa,[L] : Mbig Igusa → Z×p

by remembering only this scaling factor; we call this the p-component map (with
respect to [L]).

Similarly, given a point x ∈MIgusa(R), we obtain as above Weil pairings epn,x,[L]

on Ex[pn]. We obtain an automorphism of µp∞ given on µpn by

ζ 7→ epn,x,[L]

(
ϕ̂(ζ), ϕét(1/pn)

)
,

and this automorphism is given by a unique element of Z×p (R). This gives a map

cIgusa,[L] : MIgusa → Z×p ,

which we also call the p-component map. It is straightforward to check that the
following diagram commutes (where the vertical map is given by the projection
(4.3.0.1)):

(4.4.4.1) Mbig Igusa

cbig Igusa,[L]

''��
MIgusa cIgusa,[L]

// Z×p

Remark 4.4.5. We can view Z×p as the formal scheme incarnation of the profinite

set Z×p ; it is represented by Cont(Z×p ,Zp). Over Fp, if we choose a lattice L,
the map cbig Igusa,[L] combined with the Weil pairings away from p gives a natural
identification of the connected components of Mbig Igusa,Fp

(and MIgusa,Fp
) with

Z×p × Ẑ(p)
×

(1). In particular, over Fp, the set Z×p is close to being the set of
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connected components of Mbig Igusa,Fp
; there is a finite discrepancy coming from

roots of unity in Fp. The same is true for MIgusa.

4.4.6. Equivariance of the p-component map.

Lemma 4.4.7. The map

cbig Igusa,[L] : Mbig Igusa → Z×p

is Bp ×Gp-equivariant when Mbig Igusa is equipped with the natural action and Z×p
is equipped with the (left) action of multiplication by det−1

p .
Similarly, the map

cIgusa,[L] : MIgusa → Z×p
is M◦p ×Gp-equivariant when MIgusa is equipped with the natural action and Z×p is

equipped with the (left) action of multiplication by det−1
p .

Proof. We first treat the case of Mbig Igusa. For g = gp × g(p) ∈ Bp × Gp(R) and
x ∈ Mbig Igusa(R), we represent x by a L-distinguished triple (E,ϕ∼, α) as in 4.1.5.
Then g−1 · x is represented by a L-distinguished triple (E′, ϕ∼′, α′) where there is a
quasi-isogeny f : E → E′ such that the following two diagrams commute:

(4.4.7.1) (A(p)
f )2

α′

��

g(p)

// (A(p)
f )2

α

��
VA(p)

f

E′ VA(p)
f

E
f
oo

Ĝm
∼
×Qp

ϕ∼−1

��

Ĝm
∼
×Qp

(ϕ∼′)−1

��

gp
oo

E[p∞]
∼ f // E′[p∞]
∼

We deduce from commutativity of the diagrams (4.4.7.1) that

(4.4.7.2) deg f = |det(gp)|pdetur(g
(p)).

Now, c[L](g
−1 · x) is the scaling factor for ((ϕ∼′)−1)∗e∼E′ , and c[L](x) is the scaling

factor for (ϕ∼−1)∗e∼E . The commutativity of the diagram on the right in (4.4.7.1)
gives

ϕ∼′−1 = f ◦ ϕ∼−1 ◦ gp.
Combining the effect of pullback via gp on the canonical pairing and Lemma 4.4.2,
we find

(4.4.7.3) (ϕ∼′−1)∗e∼ = g∗p(ϕ∼−1)∗f∗e∼E′ = g∗p(ϕ∼−1)∗e∼deg f
E =

g∗p
(
(ϕ∼−1)∗e∼E

)deg f
=
(
(ϕ∼−1)∗e∼E

)deg f ·det(gp)
.

Thus, plugging in the expression (4.4.7.2) for deg f , we find

c[L](g
−1 · x) = detp(g) · c[L](x),

giving the claimed equivariance.
The Igusa case can be argued similarly, or deduced from the big Igusa case using

equivariance of the projection map (4.3.0.1), Lemma 4.3.3, and commutativity of
the diagram (4.4.4.1). �

In particular, Lemma 4.4.7 implies that the fibers of cbig Igusa,[L] (resp. cIgusa,[L])
admit an action of ker detp (resp. ker detp|M◦p×Gp).
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4.5. Projection from Igusa to Katz level and the canonical section. There
is a natural projection map

(4.5.0.1) MIgusa →MKatz

given by forgetting ϕét. This map is a quasi-torsor for the functor

Z×p = Aut(Qp/Zp)

acting on MIgusa by composition with ϕét.
In fact, we will now show it is a trivial torsor, and the choice of an equivalence

class of lattices [L] induces a canonical section

scan,[L] : MKatz →MIgusa.

Indeed, as in 4.4.3, for x ∈ MKatz(R), we have Weil pairings epn,x,[L] on Ex[pn]

and we may trivialize E[pn]/Ê[pn] by sending the generator 1/pn of 1
pnZ/Z to the

unique element x of E[pn]/Ê[pn] such that

epn(ϕ̂(·), x) : µpn → µpn

is the identity map. These trivializations compile to a trivialization

ϕét : E[p∞]/Ê
∼−→ Qp/Zp,

and thus we obtain our section scan,[L].

Lemma 4.5.1. The section scan,[L] induces an isomorphism

MKatz
∼−→ c−1

[L](1).

It is Z×p ×Gp-equivariant when MKatz is equipped with the natural action and MIgusa

is equipped with the action given by

Z×p ×Gp ↪→ ker detp ⊂M◦p ×Gp(4.5.1.1)

(a, gp) 7→
((
a, a−1det−1

ur (gp)
)
, gp
)

(4.5.1.2)

and the natural action of ker detp.

Proof. The first claim, that scan,[L] induces an isomorphism MKatz
∼−→ c−1

[L](1) is

clear from the constructions; the inverse is given by the restriction to c−1
[L](1) of the

projection map 4.5.0.1. By Lemma 4.4.7, the component c−1
[L](1) admits an action

of the kernel of detp in M◦p ×Gp. On the other hand, the projection map satisfies

the obvious equivariance. Thus, because the map (4.5.1.1) identifies Z×p ×Gp with

the kernel of detp in M◦p ×Gp, we conclude that the inverse map to scan,[L] satisfies
the given equivariance, and thus so does scan,[L]. �

4.6. Mod π moduli interpretations.

4.6.1. Big Igusa level. Because quasi-isogenies lift uniquely along nilpotent thick-
enings, we find

Lemma 4.6.2. For R ∈ NilpZp
, and π nilpotent in R, the natural reduction map

Mbig Igusa(R)→Mbig Igusa(R/π)

is a bijection.
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In particular, if we take π = p, we find that Mbig Igusa is the pull-back to Nilpop
Zp

of a moduli problem on Sch/Fp. Indeed, as observed in [1], Mbig Igusa is represented
by the Witt vectors of a ring representing Mbig Igusa,Fp

on Sch/Fp; we will return
to this point in 4.8.2.

4.6.3. Igusa level. Let A be a p-adically complete ring and let π ∈ A be topologically
nilpotent for the p-adic topology on A. We consider the moduli problem MIgusa−π
which classifies for SpecR ∈ Nilpop

A , the set of quadruples

(E0, E , ψ, α)

where E0/(R/π) is an elliptic curve, α is an isomorphism of Zariski sheaves on
SpecR/π

α : (A(p)
f )2 ∼−→ VA(p)

f

E,

E is an extension of p-divisible groups over R

E : Ĝm → GE → Qp/Zp,

and ψ : E0[p∞]
∼−→ GE |R/π, all considered up to isomorphism of E and quasi-prime-

to-p-isogeny of E0.
There is a natural map MIgusa,A → MIgusa−π: it sends a point in MIgusa,A(R)

represented by a quadruple (E, ϕ̂, ϕét, α) to

(ER/π, EE[p∞],ϕ̂,ϕét , ψcan, α|R/π) ∈MIgusa−π(R),

where ψcan is the canonical isomorphism

ER/π[p∞] = E[p∞]R/π.

As a simple consequence of Serre-Tate lifting theory, we obtain:

Lemma 4.6.4. The map

MIgusa,A →MIgusa−π

described above is an isomorphism.

4.7. Representability and moduli problems with finite prime-to-p level.

If we fix a Ẑ(p)-lattice L in (A(p)
f )2, we may form the variants M∗,L of our previous

moduli problems where the prime-to-p level structure is an isomorphism

αL : L ∼−→ TẐ(p)E

and the tuples are considered up to isomorphism of the E. It follows from the
discussion in 4.1.5 that the natural map M∗,L →M∗ is an equivalence, equivariant

for the action of GL(L) ⊂ Gp and the group action at p (by Bp, Mp, or Zp× as

∗ = big Igusa, Igusa, or Katz)
If we fix also a prime-to-p integer N , we may form the finite prime-to-p level

variants where the prime-to-p level structure is an isomorphism

αL/N : L/N ∼−→ E[N ]

and the tuples are considered up to isomorphism of the elliptic curve. We then have

M∗,L = lim
(N,p)=1

M∗,L/N .

Thus, we may build off of representability at finite prime-to-p level to obtain rep-
resentability at full prime-to-p level. More precisely, we obtain



A UNIPOTENT CIRCLE ACTION ON p-ADIC MODULAR FORMS 29

Theorem 4.7.1. For ∗ equal to Katz, Igusa, or big Igusa, the moduli problem M∗
is representable by a p-adically complete ring V∗, flat over Zp. Moreover, for any
compact open

Kp ⊂ GL2(A(p)
f ),

the natural map
M∗ → SpfVK

p

∗
is an fpqc Kp-torsor; in particular,

SpfVK
p

∗ = M∗/K
p.

Furthermore, if Kp stabilizes a lattice L,

KN = ker GL(L)→ ker GL(L/NL),

and Kp ⊃ KN , then there is a natural isomorphism

M∗,L/K
p = M∗,L/N/(K

p/KN ).

Proof. As shown by Katz [7], the moduli problem MKatz,L/N is representable by
a p-adically complete ring VKatz,L/N , flat over Zp. It is the p-adic completion of
the colimit of p-adically complete rings representing the finite level version of the
moduli problem parameterizing arithmetic Γ1(pn) structure at p, i.e., where ϕ̂ is
replaced with an injection µpn → E[pn].

We claim that
VKN

Katz,L = VKatz,L/N .

Indeed, this is true mod pn for every n because the covers are Galois finite étale,
and passes to the completion because we also have VKatz,L/N ↪→ VKN

Katz.
On the other hand, it is more or less clear that

MKatz,L/N = MKatz,L

is a KN -torsor: two points in MKatz,L with the same image in MKatz,L/N differ by
a unique element of KN , and the map MKatz,L →MKatz,L/N is an fpqc cover (as a
limit of finite étale covers) and thus surjective in the fpqc topology.

Thus for ∗ = Katz we have verified all claims for Kp = KN . Now, a general Kp

contains some KN as a normal subgroup with finite index, and

MKatz,L/K
p = (MKatz,L/KN )/(Kp/KN )

so that we are reduced to studying the quotient of the Galois finite étale cover

MKatz,L/N →MKatz,L/1

by the action of the subgroup Kp/KN ⊂ GL(L/NL), and we conclude the full
result for ∗ = Katz.

We have seen that MIgusa is a trivializable Z×p torsor over MKatz. The choice

of a trivialization (e.g. by choosing a lattice [L] and taking the canonical section
scan,[L]) induces an isomorphism

MIgusa
∼−→ SpfCont(Z×p ,VKatz).

The same logic applies also for the prime-to-p level structures L/N , and thus the
rest of the proof for Igusa level structure proceeds as the proof for Katz level
structure.

Finally, to treat the case of big Igusa level structure, let

(Euniv, ϕ̂univ, ϕ̂
ét
univ)
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be the universal elliptic curve with Igusa level structure over MIgusa. We find that
M is the limit of finite flat covers parameterizing splittings of EEuniv[p∞],ϕ̂univ,ϕ̂ét

(cf. the proof of Lemma 4.3.3), and thus representable by the p-adic completion
of the colimit of these rings. Again the same logic also applies for the finite level
prime-to-p level structures L/N , and the rest of the proof again follows as before.

�

Example 4.7.2. If Γ1(N) denotes the subgroup of GL2(Ẑ(p)) congruent to(
1 ∗
0 ∗

)
mod N

then we find SpfVΓ1(N)
Katz represents the moduli problem classifying triples (E, ϕ̂, P )

where E is an elliptic curve, ϕ̂ : Ê
∼−→ Ĝm, and P is a point of exact order N on

E, considered up to isomorphism of E.

4.8. The Frobenius. We consider now the action of the diagonal quasi-isogeny
(pn, 1) ⊂Mp ⊂ Bp on the moduli problem Mbig Igusa, and induced maps on MIgusa

and MKatz.
Let x ∈Mbig Igusa(R) and fix a distinguished representative (E,ϕ∼, α) for x as in

4.1.5 where ϕ is induced by an isomorphism ϕ. Via ϕ, we may identify µpn as a
subgroup of E.

There is a unique isomorphism ϕ′ making the following diagram commute:

E // E/µpn

E[p∞] //

OO

ϕ

��

E[p∞]/µpn = E/µpn [p∞]

OO

ϕ′

��
Ĝm ×Qp/Zp

(pn,1) // Ĝm ×Qp/Zp

Thus, we find that

(pn, 1) · x = (E/µpn , ϕ
′∼, α′)

where the prime-to-p level structure α′ on E/µpn is induced from the prime-to-p
level structure α on E by pushforward through the isogeny E → E/µpn .

4.8.1. Exotic isomorphisms. Now,

(pn, 1) · TpĜm · (pn, 1)−1 = pnTpĜm,
and thus we obtain an isomorphism

(pn, 1) : MIgusa = TpĜm\MGcan

∼−→ (pnTpĜm)\MGcan
,

and, combined with the projection to MIgusa, a map

Frobncan : MIgusa →MIgusa.

Applying the computation from the previous paragraph, we find that

Frobncan

(
(E, ϕ̂, ϕét)

)
= (E/µpn , ϕ̂

′, (ϕét)′),

where ϕ̂′ and (ϕét)′ are obtained in the obvious way. In particular, Frobncan is a lift
of the pn-power frobenius on MIgusa,Fp

.
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We can identify (pnTpĜm)\MGcan
as the moduli problem

MIgusa,split pn/MIgusa

whose fiber over x ∈MIgusa(R) parameterizes splittings of the pn-torsion extension

Ex[pn]. The isomorphism MIgusa
∼−→ MIgusa,split pn induced by (pn, 1) is given by

remembering the canonical splitting

1

pn
Z/Z (ϕét)−1

−−−−−→ E[pn]/µpn ↪→ (E/µpn)[pn].

Similarly, viewing

MKatz =
(
TpĜm o (1× Z×p )

)
\MIgusa,

and defining the relative moduli problem

MKatz,split pn/MKatz

parameterizing splittings of

µpn → E[pn]→ E[pn]/µpn ,

we obtain Frobenius lifts Frobncan from the action of (pn, 1), which factor as isomor-
phisms

(4.8.1.1) MKatz
∼−→MKatz,split pn

followed by the natural projection. The isomorphisms (4.8.1.1) are the exotic iso-
morphisms of [8, Lemma 5.6.3].

4.8.2. Frobenius and representability. It is clear from the definitions that

Mbig Igusa = lim
n
MIgusa,split pn .

Rewriting this limit using the exotic isomorphisms, we find

Mbig Igusa = lim
Frobcan

MIgusa.

As observed by Caraiani-Scholze [1], this implies that Vbig Igusa is isomorphic to the
Witt vectors of the perfection of VIgusa,Fp

. Combined with our description of VIgusa,
we find

Vbig Igusa
∼= Cont(Z×p ,W (Vperf

Katz,Fp
)).

4.9. p-adic modular forms. We now explain Katz’s embedding of modular forms
in VKatz. Let Euniv/MKatz denote the universal elliptic curve up to prime-to-p-
isogeny.

We have a natural trivialization of ω = ωEuniv
given by ϕ̂∗univ

dt
t and the isomor-

phism ωEuniv
= ω

Êuniv
. This trivialization is fixed by the Gp-action and transforms

by the inverse of the identity character for the Z×p -action, thus we obtain an iso-

morphism of equivariant line bundles

ωk
∼−→ O ⊗ z−k � triv

where z−k � triv is the character of

Z×p ×Gp

which is z−k on the first component and trivial on the second.
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There is an equivariant Kodaira-Spencer isomorphism

(4.9.0.1) ω2 ∼−→ Ω⊗H2
dR(Euniv).

For an elliptic curve, the trace gives a canonical trivialization of H2
dR(Euniv), but

this is not preserved by isogeny – instead it is multiplied by the degree. Thus,
we find that the choice of an equivalence class of lattices [L] induces a canonical
trivialization of H2

dR(E) on MKatz, but it is not equivariant for the action of Gp.
Instead, it introduces a twist by the unramified determinant character detur.

Thus the choice of an equivalence class of lattices [L] induces an equivariant
isomorphism

H2
dR(E)

∼−→ O ⊗ detur,

and combining this with the Kodaira-spencer map, we obtain an equivariant iso-
morphism

ω2
E
∼−→ Ω⊗ detur.

Using the canonical trivialization of ωE , we thus obtain an isomorphism of Zp××Gp-
equivariant bundles

(4.9.0.2) ωk−2
E ⊗ Ω

∼−→ O ⊗ z−k � det−1
ur .

Now, there is a map from MKatz to the formal p-adic completion Y ∧ord of the
ordinary locus Yord on the classical modular curve over Z(p)

Y := lim
Kp

YGL2(Zp)Kp .

The map is given by forgetting ϕ̂. This realizes MKatz as a Z×p -torsor over this

locus. In particular, H0(Y ∧ord, ω
k−2
E ⊗ Ω) is identified GL2(A(p)

f )-equivariantly with

the Z×p -invariant elements in H0(Y ∧ord, ω
k−2
E ⊗ Ω). Via the trivialization (4.9.0.2),

these are identified GL2(A(p)
f )-equivariantly with the elements of VKatz ⊗ det−1

ur

which transform via the character zk under the Z×p -action.
Extending this, one defines p-adic modular forms of weight κ for any continuous

character κ with values in a p-adically complete ring R as the Gp representation

VKatz,R[κ]⊗ det−1
ur .

On Kp-invariants, the action of GL2(A(p)
f ) induces an action of the abstract prime-

to-p double coset Hecke algebra

R[Kp\GL2(A(p)
f )/Kp]

preserving the space of weight κ p-adic modular forms of level Kp (i.e. the Kp-
invariants), and for integral weights this definition matches the Hecke action given
classically when viewing a modular form as a section of a line bundle on Y ∧ord,GL2(Zp)Kp .

5. The Ĝm-action

5.1. Extending the action on MIgusa. We have seen that MIgusa admits a natural
action ofM◦p×Gp, described in terms of the moduli problem. Using the presentation

MIgusa = N◦p \Mbig Igusa

given by Lemma 4.3.3, we will enlarge this to an action of a larger group.
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Let B′p be the pre-image of M◦p in Bp under the natural projection; it contains
Np and M◦p under the natural inclusions and is a semi-direct product

B′p = Np oM◦p ⊂ Bp = Np oMp.

Then, N◦p is a normal subgroup in B′p, and, using Lemma 2.3.1 for Ĝm, we find
that there is an fpqc quotient

B′p/N
◦
p = Bp := Ĝm oMp.

Because Mbig Igusa admits an action of Bp ×Gp, and in particular of the subgroup

B′p×Gp, we find that MIgusa admits an action of Bp×Gp, and the equivariance of
the projection map shows that this action extends the moduli action of M◦p ×Gp.
The new part of the action is that of Ĝm = Np/N

◦
p ; the statement that we have

an action of Bp×Gp includes the existence of this action plus a compatibility with
the moduli action of M◦p ×Gp.

5.2. Extending the action on MKatz. The map detp restricted to B′p×Gp factors

through Bp ×Gp, and we write Bp
1

for the kernel in Bp ×Gp of the induced map.

The group Ĝm = Ĝm × 1 is a normal subgroup of Bp
1
. We also have a natural

inclusion of Zp××GL2(A(p)
f ) in Bp

1
induced by the map (4.5.1.1) of Lemma 4.5.1,

and together these give a presentation

Bp
1

= Ĝm o (Zp× ×Gp)

where the conjugation action of Zp× ×Gp on Ĝm is given by

(a, gp) · ζ · (a, gp)−1 = ζa
2detur(g

p).

If we fix an equivalence class [L] of Ẑ(p) lattices in (A(p)
f )2, then by Lemma 4.5.1

the section scan,[L] induces an isomorphism

MKatz
∼−→ c−1

Igusa,[L](1)

which is equivariant for the action of Zp××Gp. On the other hand, from the equiv-

ariance of the p-component maps (Lemma 4.4.7) and commutativity of (4.4.4.1),
we find that the action of Bp on MIgusa constructed in the previous section induces

an action of Bp
1

on c−1
Igusa,[L](1).

Thus, we have extended the action of Zp× ×Gp to an action of

Ĝm o (Zp× ×Gp).

In particular, taking [L] = [Ẑ(p))2] and restricting and restricting to Ĝm, we obtain

a Ĝm-action that will turn out to be the action described in Theorem A. Moreover,
we have established the second part of Theorem A for this action.

Remark 5.2.1. For two lattice classes [L] and [L′], the induced Ĝm-actions differ

by the automorphism [L : L′] ∈ Z×p of Ĝm.
The fact that different components lead to different actions is a reflection of the

fact that we cannot obtain a Ĝm action on MKatz using the presentation

MKatz = (N◦p o (1× Zp×))\Mbig Igusa

because N◦p o (1× Zp×) is not a normal subgroup of Np o (1× Zp×).
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5.3. Differentiating the action. We consider the action map

Ĝm ×MIgusa →MIgusa,

describing the action of Ĝm ⊂ Bp on MIgusa. To differentiate it, we compose with

the tangent vector t∂t at the identity in Ĝm. The latter is given by a map D → Gm
which in coordinates is

Zp[t±1]→ Zp[ε]/ε2, t 7→ 1 + ε.

Thus, the composition of the action map with t∂t gives a vector field on MIgusa

described as a map
tu : D ×MIgusa →MIgusa.

On the other hand, we have the universal extension

EEuniv[p∞],ϕ̂univ,ϕét
univ

: Ĝm → Euniv[p∞]→ Qp/Zp
(cf. (4.1.4.1)), and, as explained in 3.1, this extension gives rise to a differential
dτ ∈ ΩMIgusa

. We will show:

Theorem 5.3.1. Notation as above,

dτ(tu) = 1

Because the section

scan,[(Ẑ(p))2] : MKatz →MIgusa

identifies the Ĝm action on MIgusa with the Ĝm action on MKatz and pulls back
the universal extension to the universal extension on MKatz, Theorem 5.3.1 implies
the first part of Theorem A from the introduction. The second part of Theorem A
having already been shown in the previous section, this will complete our proof of
Theorem A.

Proof of Theorem 5.3.1. It suffices to work over Z/pn for arbitrary n. We abbrevi-
ate S = MIgusa|Z/pn and R = VIgusa/p

n so that S = SpecR. We write π : E → S

for the universal elliptic curve up-to-prime-to-p-isogeny over S and ϕ̂, ϕét for the

universal trivializations of Ê and E[p∞]/Ê.
We recall the definition of dτ (mod pn): we have the canonical extension

EE[p∞],ϕ̂,ϕét : Ĝm → E[p∞]→ Qp/Zp
and the induced trivialization ωcan, ucan of the crystal the vector bundle LieEE[p∞]
with connection ∇crys, and dτ is defined by the equation

∇crys(ωcan) = ucandτ..

As in 2.6.2, we write ∇crys,tu for the isomorphism

t∗uLieEE[p∞]
∼−→ 0∗LieEE[p∞]

over D × S induced by ∇crys. In light of (2.6.2.1), it suffices to show that

(5.3.1.1) ∇crys,tu(ωcan) = ωcan + ε · ucan.

Now, we have that tu = (1 + ε) · 0 via the Ĝm action, where we view the tangent

vectors tu and 0 as R[ε]-points of S and (1 + ε) as an R[ε]-point of Ĝm. Thus, if we
write

(E0, ϕ̂0, ϕ
ét
0 , α0)
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for the quadruple classified by 0 and

(Eu, ϕ̂u, ϕ
ét
u , αu)

for the triple classified by tu, we have

(5.3.1.2) (1 + ε) · (E0, ϕ̂0, ϕ
ét
0 , α0) = (Eu, ϕ̂u, ϕ

ét
u , αu)

In particular, ∇crys,tu is identified with the Messing isomorphism

LieEEu[p∞]∨
∼−→ LieEE0[p∞]∨

induced by the isomorphism

Eu mod ε = E0 mod ε

given by 1 + ε = 1 mod ε and (5.3.1.2).
To compute this, we pass to the flat cover

S∞ = SpecVbig Igusa/p
n[ε, (1 + ε)1/p∞ ]/ε2.

Over Vbig Igusa/p
n[ε] and thus over S∞, we have a canonical splitting of EE0[p∞],ϕ̂0,ϕét

which gives an isomorphism

ϕ0 : E0[p∞]R∞
∼−→ Ĝm ×Qp/Zp.

If we let

gε :=

(
1 (1 + ε, (1 + ε)1/p, . . .)
0 1

)
∈ Np(S∞)

our description of the unipotent action in 4.2.3 then shows that over S∞, Eu is the
Serre-Tate lift to S∞ corresponding to the isomorphism

gε ◦ ϕ0 : E0|S∞/ε[p
∞]→ Ĝm ×Qp/Zp.

Thus, the Messing isomorphism in the canonical basis is identified over S∞ with
the map

LieE(Qp/Zp × Ĝm)→ LieE(Qp/Zp × Ĝm)

induced by gtε. If we write this in the canonical basis we get a map

Ga
dt

t
×Gat∂t → Ga

dt

t
×Gat∂t,

and, by Lemma 2.5.1, it is given by (
1 0
ε 1

)
.

By construction, these bases are identified with the bases ωcan, ucan, and thus we
obtain equation (5.3.1.1), concluding the proof.

�
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5.4. Computing the action. Recall that for π-topologically nilpotent in R we
defined in 4.6.3 a moduli problem MIgusa−π canonically isomorphic to MIgusa,R

which places the emphasis on the canonical extension of Qp/Zp by Ĝm. Recall also
from 3.2 that there is a Kummer construction which, given q ∈ Gm(R) produces
an extension of p-divisible groups

Eq : 0→ Ĝm → Gq → Qp/Zp → 0.

Using the explicit description of the unipotent action in 4.2.3, we find

Theorem 5.4.1. Suppose ζ ∈ Ĝm(R) and π ∈ R is such that ζ ≡ 1 mod π, and

(E0, Eq, ψ, αN ) ∈MIgusa−π(R)

for q ∈ Gm(R). Then

ζ · (E0, Eq, ψ, α) = (E0, Eζ−1q, ψ
′, α)

where ψ′ is the composition of ψ with the canonical identification

Eq|R/π = Eζ−1q|R/π
coming from q ≡ ζ−1q mod π.

Proof. If we write x1 for the point

(E0, Eq, ψ, αN ) ∈MIgusa(R)

and x2 for the point

ζ · (E0, Eq, ψ, αN ) = (E0, Eζ−1q, ψ
′, αN )

It suffices to show that over the cover R[q1/p∞ , ζ1/p∞ ], there are lifts of these points

to Mbig Igusa and a lift ζ̃ of ζ to Ĝm
∼

such that ζ̃ · x̃1 = x̃2. The desired lifts are given

by the splittings 1/pn 7→ (q1/pn , 1/pn) and 1/pn 7→ ζ−1/pnq1/pn of Eq and Eζ−1q,

respectively, and ζ̃ = (ζ1/pn)n. That ζ̃ · x̃1 = x̃2 then follows from commutativity
of the following diagram mod ζ − 1:

Gq
= // Gζ−1q

Ĝm ×Qp/Zp

1/pn 7→(q1/pn ,1/pn)

OO

(
1 ζ̃
0 1

) // Ĝm ×Qp/Zp

1/pn 7→(ζ−1/pnq1/pn ,1/pn)

OO

�

5.4.2. Action on the Tate curve and q-expansions. Let

R =
(

colim(N,p)=1W (Fp)((q1/N ))
)∧

and consider the Tate curve Tate(q) over R. We have the canonical trivialization

ϕcan : T̂ate(q)
∼−→ Ĝm,
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and, if we fix a compatible system of prime-to-p roots of unity ζN , we obtain a basis
(ζN )N , (q

1/N )N for TẐ(p)Tate(q) over R and thus a trivialization α(ζN )N ,(q1/N )N of
the prime-to-p adelic Tate module.

The cusps of MKatz are the R-points in the GL2(Ẑ(p))-orbit of(
Tate(q), ϕ̂can, α(ζN )N ,(q1/N )N

)
.

For g ∈ VKatz,A and a cusp c, we call the element c(g) ∈ A⊗̂R the q-expansion of
g at c. We find

Corollary 5.4.3. If c is a cusp of MKatz and g ∈ VKatz,A has q-expansion at c∑
k∈Z(p)

akq
k,

then, for ζ ∈ Ĝm(R),

ζ · g := (ζ−1·)∗g
has q-expansion at c

(5.4.3.1)
∑
k∈Z(p)

ak(ζq)k =
∑
k∈Z(p)

ζkakq
k

(where the powers ζk make sense because k ∈ Z(p) ⊂ Z×p ).

Proof. The q-expansion in 5.4.3.1 is the image of c(g) under the the map

γζ : R⊗̂A→ R⊗̂A

qk 7→ (ζq)k.

Thus, because the action of Ĝm commutes with the action of GL2(Ẑ(p)) (because
the latter is in the kernel of detur), we may assume our cusp is given by the triple(

Tate(q), ϕ̂can, α(ζN )N ,(q1/N )N

)
.

Then, it follows from Theorem 5.4.1 that

ζ−1 ·
(

Tate(q), ϕ̂can, (ζN , q
1/N )

)
=
(

Tate(ζq), ϕ̂can, (ζN , ζ
1/Nq1/n

)
).

This is the base change of(
Tate(q), ϕ̂can, α(ζN )N ,(q1/N )N

)
through γζ , and thus we conclude. �

Remark 5.4.4. Using Corollary 5.4.3 over A = Zp[ε], we find that if we differenti-

ate the Ĝm-action along t∂t in the sense of 5.3, the induced operator on q-expansions
is −q∂q = −θ (we get a minus sign because to get the derivation in 5.3 we did not
compose with an inverse as we have to obtain the natural left action on functions).

Remark 5.4.5. In this remark we show that for Euniv the universal curve over
MKatz,Fp

, the canonical extension EEuniv,ϕ̂univ
is not a Kummer p-divisible group

(in the sense of 3.2). In particular, this shows Theorem 5.4.1 cannot be applied
directly to compute the action on all points of MKatz.

Suppose by way of contradiction that EEuniv,ϕ̂univ
were of the form Equniv for

quniv ∈ VKatz,Fp
. Then, writing MKatz,Fp

as a limit of finite level moduli problems

(cf. 4.7) parameterizing inclusions we find that quniv only depends on ϕ̂|µpn
and
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the Kp orbit of α for some n > 0 and some compact open Kp ⊂ GL2(A(p)
f ). In

particular, we find that the element 1 + pn ∈ Z×p fixes quniv.
Because(

Tate(q), (1 + pn) ◦ ϕ̂can, α(ζN ,q1/N )

)
= 1 + pn ·

(
Tate(q), ϕ̂can, α(ζN ,q1/N )

)
,

we find that quniv of these two points agree. Because

ETate(q),ϕ̂can
= Eq

and

ETate(q),(1+pn)◦ϕ̂can
= Eq2pn+2 ,

we conclude Eq2pn+2 is isomorphic to Eq over R. By Lemma 3.2.7 this cannot be
the case, giving a contradiction.

Note that we could make a similar argument using the formal neighborhood of
an ordinary point instead of the Tate curve.

5.4.6. Action on the formal neighborhood of an ordinary curve. We may also con-
sider the local expansions at an ordinary point: to do so, fix an elliptic curve E0/Fp,
and consider its universal deformation E/SpfR where R is a smooth complete 2-
dimensional local ring over W (Fp) with residue field Fp. If we fix trivializations

ϕ̂0 : Ê0
∼−→ Ĝm and ϕét : E0[p∞]/Ê

∼−→ Qp/Zp,

these deform uniquely to a trivializations

ϕ̂0 : Ê
∼−→ Ĝm and ϕét : E[p∞]/Ê

∼−→ Qp/Zp.

We thus obtain a map SpfR→MIgusa.

Remark 5.4.7. The choice of a basis x ∈ TpE0(Fp) is equivalent the to the choice

ϕét
0 , and via the Weil pairing, also gives a choice of ϕ̂0, (•, x) : Ê0 → Ĝm.

The extension

E
E[p∞],ϕ̂,ϕ̂ét : Ĝm → E[p∞]→ Qp/Zp

is of the form Gq for a unique q ∈ Ĝm(R), and, as in Remark 3.2.6, the element
q−1 is the Serre-Tate coordinate for this extension. From Theorem 5.4.1, we deduce

that the action of Ĝm preserves the formal subscheme SpfR ⊂ MKatz, and on this
formal subscheme ζ acts as multiplication by ζ on the Serre-Tate coordinate q−1.

5.5. The action of Cont(Zp, R). For any p-adically complete ring R, the action

map for the Ĝm-action gives a continuous map

a∗ : VKatz,R → R[[T ]]⊗̂RVKatz,R.

The natural left action of Ĝm(R) on VKatz,R is by ζ · g = (ζ−1·)∗g, and we can

express this using the action map: if we consider ζ ∈ Ĝm(R) as the map R[[T ]]→ R

given by T 7→ ζ, and write ι for the inverse map Ĝm → Ĝm, then ζ · g is the image
of

(ι× Id)∗a∗g

under the induced map

ζVKatz,R
: R[[T ]]⊗̂RVKatz,R → VKatz,R.
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More generally, if we identifyR[[T ]] with the continuousR-linear dual of Cont(Zp, R)
via the Amice transform, we obtain an R-linear map

Cont(Zp, R)× VKatz,R → VKatz,R

(f, g) 7→ f · g := 〈f, (ι× Id)∗a∗g〉.

If we let χζ be the R-valued character of Zp given by χζ(a) = ζa, viewed as an
element of Cont(Zp, R), we find

χζ · g = ζ · g.

That we have an action of Ĝm to begin with is equivalent to this being an algebra
action of Cont(Zp, R) on VKatz,R.

More generally, we find:

Theorem 5.5.1. If g ∈ VKatz,R has q-expansion at a cusp c

c(g) =
∑
k∈Z(p)

akq
k,

then the q-expansion of f · g is

c(f · g) =
∑
k∈Z(p)

f(k)akq
k.

Proof. Because for a general R,

VKatz,R = VKatz,Zp
⊗̂R and Cont(Zp, R) = Cont(Zp,Zp)⊗̂R,

it suffices to verify this for R = Zp. Then, because the base change is injective on
the target ring for q-expansions, it suffices work over R = OCp

. Moreover it suffices
to verify the identity for the action of locally constant functions on Zp, which are
dense in continuous functions. But for any locally constant function, some OCp -
multiple can be written as a linear combination of characters, and thus Corollary
5.4.3 gives the result for a multiple of each locally constant function. Since the
total q-expansion map (i.e. the product of the q-expansion maps over all cusps) is
injective and the target ring is torsion-free over OCp

, we find that the result holds
for all locally constant functions. �

5.6. A classical construction and Gouvea’s twisting measure. In [4, III.6.2],
Gouvea constructed the algebra action of the previous section on Γ1(N)\MKatz

(viewed as a “twisting measure”). The construction of Gouvea has the advantage
of using only classical notions in the p-adic theory of modular forms, available
already in work of Katz [9], but does not provide the same conceptual clarity as
the modular construction from the isogeny action on the big Igusa variety.

Gouvea’s construction can be paraphrased in our language as follows: by the q-
expansion principle, it suffices to construct the action of finite order characters. This
action can be obtained as the natural action of µpn on MKatz,split pn ⊂MIgusa,split pn

(via the canonical section scan,[(Ẑ(p))2]), viewed as an action on MKatz through the

exotic isomorphisms of 4.8.1. This can be computed explicitly for the Tate curve,
and we obtain the claimed action.

This construction can be modified slightly to give the Ĝm-action directly instead
of the algebra action: once we have the actions of µpn on MKatz, the computation
on q-expansions and the q-expansion principle shows that they are compatible for
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varying n, and thus compile to an action of Ĝm. That this action agrees with the

Ĝm-action as constructed previously follows from the considerations of 4.8.1.

6. Eisenstein measures

In a series of papers ([7, 9, 8]), Katz introduced increasingly general Eisenstein
measures with values in VKatz interpolating Eisenstein series. These Eisenstein
measures specialize at the cusps and ordinary CM points to p-adic L-functions
interpolating L-values of Dirichlet characters (at the cusps) and grossencharacter
(at ordinary CM points).

The papers [7, 9] are concerned with single variable p-adic L-functions, whereas
[8] gives two variable L-functions by interpolating not just holomorphic Eisenstein
series but also certain real analytic Eisenstein series.

In this section, we explain how “half” of the two-variable measure can be pro-

duced by a type of convolution of the single-variable measure with the Ĝm-action.

To keep the exposition clear, we work at level Kp = GL2(Ẑ(p)) away from p.

Remark 6.0.1. The real analytic Eisenstein series are related to the holomorphic
Eisenstein series by iterated application of the differential operator θ – thus, we can
summarize the difference between our approach and that of Katz by saying that
instead of applying θ and then interpolating, we have first interpolated θ and then
applied this interpolated operator to the holomorphic Eisenstein measure.

6.1. Measures. For R a p-adically complete Zp-algebra and X a profinite set, an
R-valued measure on X is an element

µ ∈ HomZp
(Cont(X,Zp), R).

Note that such a µ is automatically continuous for the p-adic topology on Cont(X,Zp)
and R. In fact, the stronger basic congruence property holds: if f ≡ g mod pn,
then µ(f) ≡ µ(g) mod pn – this observation is at the heart of the application of
measures to p-adic L functions.

Remark 6.1.1. An R-valued distribution is an R-valued functional on the space
of locally constant functions on X, C∞(X,Zp). The space C∞(X,Zp) is dense
in Cont(X,Zp), thus when R is p-adically complete a distribution automatically
completes to a measure, and the two notions are equivalent. We will use this
below.

6.1.2. Measures on products.

Proposition 6.1.3. Let X and Y be profinite sets, and R a p-adically complete
Zp-algebra. If ( , ) is an R-valued Zp-bilinear pairing on Cont(X,Zp)×Cont(Y,Zp),
then there is a unique R-valued measure µ on X×Y such that for f ∈ Cont(X,Zp)
and g ∈ Cont(Y,Zp),

(6.1.3.1) µ(fg) = (f, g).

Proof. By Remark 6.1.1, it suffices to construct a functional on C∞(X × Y,Zp)
satisfying (6.1.3.1), and then verify that (6.1.3.1) holds for any continuous f and g
and the unique extension of that distribution to a measure. So, suppose we have
constructed a measure µ such that (6.1.3.1) holds for f and g locally constant.



A UNIPOTENT CIRCLE ACTION ON p-ADIC MODULAR FORMS 41

Then, for any continuous f and g and n ∈ Z>0, pick fn and gn locally constant
such that f ≡ fn mod pn and g ≡ gn mod pn. Then

fg ≡ fngn mod pn

and thus
µ(fg) ≡ µ(fngn) ≡ (fn, gn) ≡ (f, g) mod pn

and we conclude µ(fg) = (f, g).
Thus it remains to construct the distribution and show that it is unique. The

bilinear pairing ( , ) induces a functional on C∞(X,Zp) ⊗Zp
C∞(Y,Zp), thus to

conclude, it suffices to show that the product map

C∞(X,Zp)⊗Zp
C∞(Y,Zp)→ C∞(X × Y,Zp)

is an isomorphism: For any profinite set W , C∞(W,Zp) is the colimit over finite
coverings U = {U1, ..., Un} of W by disjoint compact opens of C∞U (W,Zp), the space
of functions constant on each of the Ui. In particular, if U = {U1, ..., Un} is such a
cover of X and V = {V1, ..., Vm} is such a cover of Y then

U × V := {Ui × Vj}
is such a cover of X×Y , and the covers of this form are cofinal for covers of X×Y
by disjoint compact opens. Considering the basis of characteristic functions, we
find that the product map induces an isomorphism

C∞U (X,Zp)⊗Zp
C∞V (Y,Zp)→ C∞U×V(X × Y,Zp)

and passing to the colimit over covers U and V, we conclude. �

Example 6.1.4. If νX and νY are R-valued measures on X and Y , respectively,
then

(f, g) 7→ νX(f)νY (g)

is a bilinear form and the resulting measure µ on X × Y is the product measure.

6.2. Katz’s Eisenstein measures. In this section, we write V = VGL2(Ẑ(p))
Katz for

the ring representing the Katz moduli problem with no prime-to-p level structure.

6.2.1. Single variable measures. In [7, XII], Katz introduced the single variable
Eisenstein measures

µ(a) : Cont(Zp,Zp)→V
characterized by the moments

µ(a)(zk−1) = (1− ak)2Gk

where 2Gk for k ≥ 2 is the Eisenstein series with q-expansion

ζ(1− k) + 2

∞∑
n=1

qn ·
∑
d|n

dk−1

and 2G1 = 0.

Remark 6.2.2. For f a locally constant function on Zp, µ(a) satisfies the following
additional interpolation property [9, Corollary 3.3.8]2:

µ(a)(zk−1) = (1− ak)2Gk,f

2In this reference, µ(a) = Ha,1 for N = 1, except for a shift from k to k + 1.
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where 2Gk,f has q-expansion

L(1− k, f) + 2

∞∑
n=1

qn ·
∑
d|n

dk−1.

6.2.3. Two variable measures. In [8], Katz introduced the two variable Eisenstein-
Ramanujan measures

µ(a,1) : Cont(Zp × Zp,Zp)→V

characterized by the moments

µ(a,1)(xkyr) = (1− ak+r+1)Φk,r

where

Φk,r =

{
2Gk+r+1 if k = 0 or r = 0

2
∑∞
n=1 q

n
∑
dd′=n d

kd′r if k, r 6= 0

In other words,

Φk,r =

{
θr2Gk+1−r if k ≥ r
θk2Gr+1−k if r ≥ k

Remark 6.2.4. The symmetry between k ≥ r and r ≤ k becomes more compli-
cated as soon as we consider locally constant functions as in Remark 6.2.2.

6.2.5. Halving the measure. Our technique will only recover “half” of the measure,
i.e. only the moments for k =≥ r. To make this precise, consider the map

ϕ : Zp × Zp → Zp × Zp
(x, y) 7→ (x, xy)

with image the subset of (x, y) with |y| ≤ |x|. The measure ϕ∗µ
(a,1) is characterized

by the moments

(6.2.5.1) ϕ∗µ
(a,1)(xsyt) = µ(a,1)(xs+tyt) = (1− as+2t+1)θt2Gs+1

6.3. Convolution of the one-variable measure and the action map.

Theorem 6.3.1. There is a V-valued measure ν on Zp × Zp with moments

ν(xsyt) = ψ((1− as+1)2Gs+1)(yt) = (1− as+1)θt2Gs+1.

Proof. From the one-variable Eisenstein measure µ(a) and the action map

ψ : V→ Meas(Zp,V),

we obtain a bilinear form on Cont(Zp,Zp)× Cont(Zp,Zp)

(f, g) 7→ ψ(µ(a)(f))(g)

and thus, by Proposition 6.1.3, a measure ν such that

ν(xsyt) = ψ((1− as+1)2Gs+1)(yt) = (1− as+1)θt2Gs+1.

�
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Comparing with (6.2.5.1), we see that the measure ν interpolates the same Eisen-
stein series as ϕ∗µ

(a,1), although with a different normalizing factor (recall that this
normalizing factor removes the powers of p in the denominator of the constant term
ζ(1− k) of Gk when k ≡ −1 mod p− 1). This type of construction may be useful
for studying special values of families of automorphic forms and their images under
differential operators on other Shimura varieties where explicit computations with
q-expansions are not always available.

7. Ordinary p-adic modular forms

7.1. Ordinary modular forms. We consider the sub-ring VKatz,hol ⊂ VKatz of

functions with holomorphic q-expansions (i.e. q-expansion contained in W [[q1/N ]]).
By the theory of Hida, for any g ∈ VKatz,hol, the limit

lim
n→∞

Un!
p f

exists, and the assignment sending g to this limit defines an idempotent operator,
the ordinary projector

e : VKatz,hol → VKatz,hol.

We define the ordinary part

Vord
Katz,hol := eVKatz,hol

so that

VKatz,hol = Vord
Katz,hol ⊕ ker e.

7.2. The sheaf on Zp and the fiber at 0. By the considerations of 5.5, the
space VKatz,hol is a Z×p -equivariant p-adically complete topological module over
Cont(Zp,Zp). We may thus think of it as a quasi-coherent sheaf V on the profinite
set Zp, thought of as the formal scheme

Zp = SpfCont(Zp,W ).

We have an action of Z×p on Zp where a ∈ Z×p acts as multiplication by a2. The

Z×p action on VKatz,hol can be interpreted by saying that the corresponding sheaf

V is Z×p -equivariant. We also have the multiplication by p map P : Zp → Zp, and
the Up operator induces an isomorphism U : p∗V → V.

The point 0 ∈ Zp is a fixed-point for both the Z×p -action and multiplication

by p, and thus the fiber at 0, V|0 admits a Z×p -action and is equipped with an
automorphism induced by U . The restriction map from global sections to 0 is
equivariant for these structures (the endomorphism Up on global sections is given
by restriction to pZp composed with U).

Note that we can interpret this completely algebraically:

V|0 = VKatz,hol/(mVKatz,hol)
∧

where m is the ideal of functions in Cont(Zp,W ) vanishing at 0 and (·)∧ denotes
p-adic completion. The restriction map from global sections is identified with the
quotient map, and the Z×p and U actions are induced on the quotient because Z×p
and Up both preserve mVKatz,hol.
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7.3. Comparison. The main result of this section is

Theorem 7.3.1. The kernel of the restriction map

VKatz,hol = V(Zp)→ V|0
is equal to the kernel of the ordinary projection, ker e. In particular, restriction
induces a Z×p , Up-equivariant isomorphism

Vord
Katz

∼−→ V|0.

Proof. As both the kernel of e and the kernel of restriction are closed, it suffices
to verify the identity mod pn. To say that an element g ∈ VKatz,hol is in ker e is
then the same as saying that there is some n such that the coefficient of qa in its
q-expansion is zero whenever pn|a. Certainly the elements of m ·VKatz,hol meet this
condition, and on the other hand, if g ∈ ker e and n is as above, then g = f · g
where f is the locally constant function which is 1 on Zp− pnZp and 0 on pnZp, so
g ∈ m · VKatz,hol. �

7.4. Questions. The construction of this section leads to some natural questions,
some of which we plan to return to in future work:

(1) Can we explain the finiteness properties of the space of ordinary modular
forms shown by Hida from the perspective of the Cont(Zp,Zp)-action?

(2) By looking at the fiber at zero, can we give a proof that the p-adic Banach
GL2(Qp)-representations attached to ordinary modular forms admit a non-
zero map to principal series that is in the same spirit as looking at the
constant term for classical modular forms? In the same vein, what does the
restriction away from zero have to do with p-adic Whittaker and Kirillov
models?

(3) Is there a reasonable sense in which the whole space VKatz,hol, admits good
finiteness properties over

Cont(Zp,W ) o Zp[[Z×p ]]?

(4) If we consider instead functions on the Igusa variety, then the natural action
of

Bp = Ĝm o (Z×p × Z×p )

commutes with the natural action of GL2(Af ). Note that the combined
action is completely determined by the action on VKatz via induction. If
we fix a Hecke eigensystem, what information about the corresponding
Galois representation is encoded by considering the representation of this
algebra on a Hecke eigenspace in VKatz,hol? What about for the action of
Bp on functions on the big Igusa variety? In future work we will explain a
connection between this representation and (φ,Γ)-modules; the appearance
of ordinary modular forms above is a shadow of this connection, related to
the fact that ordinary modular forms are precisely those for which Dnr of
the associated Galois representation is non-zero.
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