RSA is a way for one person to receive encrypted messages from anyone.

To receive messages, I:

pick 2 prime numbers p, q

$m = pq$

$\phi(m) = \phi(p) \phi(q) = (p-1)(q-1)$

e coprime to $\phi(m)$.
Publish publically \(m \) and \(e. \) \(\Delta e \) should be co-prime to \(\phi(M). \)

To send me a message, encode it as a string of numbers, send number \(x \) by sending \(x^e \mod M \) (\(x \) should be smaller than \(m \); to send a long message, break it into chunks).

Meanwhile, I compute \(d = \text{multiplicative inverse of} \ e \mod \phi(M). \)

\[
(x^e)^d = x \mod M.
\]
Exercise 2 (2). Establish a public key (C, m, e) then have a partner transmit a message.

Exercise 1

Primitive root.

If K is a finite field, $g \in K^*$ is a primitive root if every element of K^* can be written as g^a for some a.
In Diffie-Hellman p, g, g is a primitive root in $\mathbb{Z}/p\mathbb{Z} = F_p$.

Naive way to check if g is a primitive root — list out all powers of g and check that you get everything.

$g \in \mathbb{K}^x$ is a primitive root \iff

$g^d \neq 1$ for all d a power of $|\mathbb{K}| - 1$.
Exercise 2 - (2)

2 - (2).

(2) - $p = 31$

$\mathbb{F}_{p^4}^x \mid = p - 1 = 30$

Proper divisors are 2, 3, 5, 6, 10, 15

Try $k = 2$.

$2^2 = 4 \quad 2^3 = 8 \quad 2^5 = 32 = 1 \pmod{31}$

Not a primitive root!
try } K = 3 \)

\[3^2 = 9 \quad 3^3 = 27 \quad 3^5 = 243 \quad 3^6 = \ldots \]

All powers are in } F_{3^6} = \mathbb{Z}/3^6 \mathbb{Z} \)

so compute mod 3^6.