4400-001 - SPRING 2022 - WEEK 4 (2/01, 2/03) RINGS, GROUPS, AND MODULAR ARITHMETIC

Some of these exercises can be found in Savin - Chapter 2, §4 and §5

Exercise 1 (recommended). Euler's ϕ **function.** Recall from the video for Week 4 - Tuesday, that for n a positive integer, $\phi(n)$ is defined to be the number of integers $0 \le a < n$ such that gcd(a, n) = 1. Equivalently, by results from last week,

$$\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|.$$

Explain the following formulas claimed at the end of the video.

(1) If p is prime and k is a positive integer,

$$\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1).$$

(2) If m and n are coprime, then

$$\phi(mn) = \phi(m)\phi(n)$$

(Hint: use the Chinese Remainder Theorem).

(3) If m_1, \ldots, m_s are pairwise coprime (i.e. $gcd(m_i, m_j) = 1$ for all $i \neq j$), then

 $\phi(m_1\ldots m_s)=\phi(m_1)\ldots\phi(m_s).$

(Hint: repeatedly apply part (2)).

You will need to know and use these formulas, even if you do not work through this exercise!

Exercise 2 (required). Congruences and Lagrange's theorem.

(1) Find the order of:

- (a) $(\mathbb{Z}/15\mathbb{Z})^{\times}$
- (b) $(\mathbb{Z}/25\mathbb{Z})^{\times}$
- (c) $(\mathbb{Z}/100\mathbb{Z})^{\times}$
- (d) $(\mathbb{Z}/1000\mathbb{Z})^{\times}$
- (2) Find the last two digits of 3^{125} and 3^{9999} .
- (3) Find the last two digits of 2^{9999} (Warning: 2 is not coprime to 100, so you need to be a bit more clever here! Hint: $100 = 4 \cdot 25$; apply the Chinese Remainder Theorem).
- (4) Compute 3^{25} modulo 45.
- (5) Find the last three digits of 7^{403} .

Exercise 3 (recommended). Solving more equations.

- (1) Solve $x^{62} 16 = 0$ in $\mathbb{Z}/31\mathbb{Z}$.
- (2) Solve 19x 11 = 0 in $\mathbb{Z}/31\mathbb{Z}$.
- (3) Solve 13x 11 = 0 in $\mathbb{Z}/31\mathbb{Z}$.
- (4) Find all solutions to each of the following equations in the ring $\mathbb{Z}/30\mathbb{Z}$

$$21x - 24 = 0$$

$$24x - 11 = 0$$

$$11x - 24 = 0$$

Exercise 4 (required). The Euclidean algorithm for polynomials.

Polynomial long division says that if a(x) and b(x) are two non-zero polynomials with coefficients in a field K then there are unique polynomials q(x) and r(x) with coefficients in K such that

- 1. a(x) = q(x)b(x) + r(x), and
- 2. $\deg r(x) < \deg b(x)$.

The Polynomial Euclidean Algorithm and gcd equation work exactly like for integers – if $a(x), b(x) \in \mathbb{K}[x]$ then there are polynomials s(x) and t(x) with coefficients in \mathbb{K} such that

$$a(x)s(x) + b(x)t(x) = \gcd(a(x), b(x))$$

We can find s(x) and t(x) by using long division as above to write

$$a(x) = q_0(x)b(x) + r_0(x)$$

$$b(x) = q_1(x)r_0(x) + r_1(x)$$

$$r_0(x) = q_2(x)r_1(x) + r_2(x)$$

$$r_1(x) = q_3(x)r_2(x) + r_3(x)$$

The last non-zero remainder is the gcd, and we get s(x) and t(x) by unraveling backwards – just like the Euclidean algorithm for integers

(1) Compute q(x) and r(x) for the long division a(x)/b(x) when

$$a(x) = 3x^{3} - 5x^{2} + 10x - 3, b(x) = 3x + 1.$$

(2) Carry out the polynomial Euclidean algorithm to compute the gcd in $\mathbb{Q}[x]$ of

$$a(x) = x^{5} + x^{4} + x^{3} + 2x^{2} + 1$$
 and $b(x) = x^{8} + x^{7} + x^{5} + x^{3} + x^{2} + 1$.

and express it as a(x)s(x) + b(x)t(x).

(3) Carry out the polynomial Euclidean algorithm to compute the gcd in $\mathbb{F}_3[x]$ of

$$a(x) = x^{3} + x^{2} + 1$$
 and $b(x) = x^{3} + x^{2}$

and express it as a(x)s(x) + b(x)t(x).

Exercise 5 (More difficult). Polynomial gcd and squarefree polynomials. For \mathbb{K} a field and any polynomial $f(x) \in \mathbb{K}[x]$, if we write $f(x) = a_n x^n + x_{n-1} x^{n-1} + \ldots a_0$, then we define the "derivative" f'(x) using the standard formula

$$f'(x) = na_n x^{n-1} + (n-1)x_{n-1}x^{n-2} + \ldots + a_1$$

(Note that the traditional definition using calculus does not make sense, e.g., if $\mathbb{K} = \mathbb{Z}/p\mathbb{Z}$).

- (1) Show this definition satisfies the product rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).
- (2) A polynomial is called square free if it is not divisible by the square of a non-constant polynomial. If f(x) is a non-zero polynomial, show that f(x) is square free if and only if gcd(f(x), f'(x)) = 1.

Exercise 6 (More difficult). Invertible elements in power series and polynomial rings. Let \mathbb{K} be a field. Recall that $\mathbb{K}[x]$ denotes the ring of polynomials in the variable x with coefficients in \mathbb{K} . We consider also $\mathbb{K}[[x]]$, the ring of power series in the variable x with coefficients in \mathbb{K} (we do not require any convergence properties, which don't make sense for general \mathbb{K} – i.e., we consider "formal" power series, which cannot necessarily be interpreted as functions).

- (1) What is $\mathbb{K}[x]^{\times}$?
- (2) What is $\mathbb{K}[[x]]^{\times}$?