Some of these exercises can be found in Savin - Chapter 2, §4 and §5

Exercise 1 (recommended). Euler’s \(\phi \) function. Recall from the video for Week 4 - Tuesday, that for \(n \) a positive integer, \(\phi(n) \) is defined to be the number of integers \(0 \leq a < n \) such that \(\gcd(a, n) = 1 \). Equivalently, by results from last week,

\[
\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|.
\]

Explain the following formulas claimed at the end of the video.

1. If \(p \) is prime and \(k \) is a positive integer,
\[
\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1).
\]

2. If \(m \) and \(n \) are coprime, then
\[
\phi(mn) = \phi(m)\phi(n)
\]

 (Hint: use the Chinese Remainder Theorem).

3. If \(m_1, \ldots, m_s \) are pairwise coprime (i.e. \(\gcd(m_i, m_j) = 1 \) for all \(i \neq j \)), then
\[
\phi(m_1 \ldots m_s) = \phi(m_1) \ldots \phi(m_s).
\]

 (Hint: repeatedly apply part (2)).

You will need to know and use these formulas, even if you do not work through this exercise!

Exercise 2 (required). Congruences and Lagrange’s theorem.

1. Find the order of:
 (a) \((\mathbb{Z}/15\mathbb{Z})^*\)
 (b) \((\mathbb{Z}/25\mathbb{Z})^*\)
 (c) \((\mathbb{Z}/100\mathbb{Z})^*\)
 (d) \((\mathbb{Z}/1000\mathbb{Z})^*\)

2. Find the last two digits of \(3^{125} \) and \(3^{9999} \).

3. Find the last two digits of \(2^{9999} \) (Warning: 2 is not coprime to 100, so you need to be a bit more clever here! Hint: 100 = 4 \cdot 25; apply the Chinese Remainder Theorem).

4. Compute \(3^{23} \) modulo 45.

5. Find the last three digits of \(7^{403} \).

Exercise 3 (recommended). Solving more equations.

1. Solve \(x^6 - 16 = 0 \) in \(\mathbb{Z}/31\mathbb{Z} \).
2. Solve \(19x - 11 = 0 \) in \(\mathbb{Z}/31\mathbb{Z} \).
3. Solve \(13x - 11 = 0 \) in \(\mathbb{Z}/31\mathbb{Z} \).
4. Find all solutions to each of the following equations in the ring \(\mathbb{Z}/30\mathbb{Z} \)
 \[
 \begin{align*}
 21x - 24 &= 0 \\
 24x - 11 &= 0 \\
 11x - 24 &= 0.
 \end{align*}
 \]
Exercise 4 (required). The Euclidean algorithm for polynomials.

Polynomial long division says that if \(a(x) \) and \(b(x) \) are two non-zero polynomials with coefficients in a field \(\mathbb{K} \) then there are unique polynomials \(q(x) \) and \(r(x) \) with coefficients in \(\mathbb{K} \) such that

1. \(a(x) = q(x)b(x) + r(x) \), and
2. \(\deg r(x) < \deg b(x) \).

The Polynomial Euclidean Algorithm and \(\text{gcd} \) equation work exactly like for integers – if \(a(x), b(x) \in \mathbb{K}[x] \) then there are polynomials \(s(x) \) and \(t(x) \) with coefficients in \(\mathbb{K} \) such that

\[
a(x)s(x) + b(x)t(x) = \gcd(a(x), b(x))
\]

We can find \(s(x) \) and \(t(x) \) by using long division as above to write

\[
\begin{align*}
a(x) &= q_0(x)b(x) + r_0(x) \\
b(x) &= q_1(x)r_0(x) + r_1(x) \\
r_0(x) &= q_2(x)r_1(x) + r_2(x) \\
r_1(x) &= q_3(x)r_2(x) + r_3(x)
\end{align*}
\]

\[\ldots\]

The last non-zero remainder is the \(\text{gcd} \), and we get \(s(x) \) and \(t(x) \) by unraveling backwards – just like the Euclidean algorithm for integers.

(1) Compute \(q(x) \) and \(r(x) \) for the long division \(a(x)/b(x) \) when

\[
a(x) = 3x^3 - 5x^2 + 10x - 3, \quad b(x) = 3x + 1.
\]

(2) Carry out the polynomial Euclidean algorithm to compute the \(\text{gcd} \) in \(\mathbb{Q}[x] \) of

\[
a(x) = x^5 + x^4 + x^3 + 2x^2 + 1 \quad \text{and} \quad b(x) = x^8 + x^7 + x^5 + x^3 + x^2 + 1.
\]

and express it as \(a(x)s(x) + b(x)t(x) \).

(3) Carry out the polynomial Euclidean algorithm to compute the \(\text{gcd} \) in \(\mathbb{F}_3[x] \) of

\[
a(x) = x^3 + x^2 + 1 \quad \text{and} \quad b(x) = x^3 + x^2
\]

and express it as \(a(x)s(x) + b(x)t(x) \).

Exercise 5 (More difficult). Polynomial \(\text{gcd} \) and squarefree polynomials. For \(\mathbb{K} \) a field and any polynomial \(f(x) \in \mathbb{K}[x] \), if we write \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \), then we define the “derivative” \(f'(x) \) using the standard formula

\[
f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + a_1.
\]

(Note that the traditional definition using calculus does not make sense, e.g., if \(\mathbb{K} = \mathbb{Z}/p\mathbb{Z} \).)

(1) Show this definition satisfies the product rule: \((f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \).

(2) A polynomial is called square free if it is not divisible by the square of a non-constant polynomial. If \(f(x) \) is a non-zero polynomial, show that \(f(x) \) is square free if and only if \(\gcd(f(x), f'(x)) = 1 \).

Exercise 6 (More difficult). Invertible elements in power series and polynomial rings.

Let \(\mathbb{K} \) be a field. Recall that \(\mathbb{K}[x] \) denotes the ring of polynomials in the variable \(x \) with coefficients in \(\mathbb{K} \). We consider also \(\mathbb{K}[[x]] \), the ring of power series in the variable \(x \) with coefficients in \(\mathbb{K} \) (we do not require any convergence properties, which don’t make sense for general \(\mathbb{K} \) – i.e., we consider “formal” power series, which cannot necessarily be interpreted as functions).

(1) What is \(\mathbb{K}[x]^\times \)?

(2) What is \(\mathbb{K}[[x]]^\times \)?