4400-001 - SPRING 2022 - WEEK 14 (4/19, 4/21) ELLIPTIC CURVES (BONUS)

Some of these exercises can be found in Savin - Chapter 9.

Exercise 1 (required for bonus assignment).

Consider the equation $E: y^2 = x^3 + 8$. (1) For $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, assuming $x_1 \neq x_2$, give a formula for P + Q.

(2) Compute $(-2, 0) +_E (1, 3)$

(3) For P = (x, y), give a formula for 2P.

(4) Compute 2P and 4P for P = (1,3).

(5) Solve the equation $2P = \infty$ on E.

Exercise 2.

(1) Compute all of the points on $E: y^2 = x^3 + 8$ over \mathbb{F}_5 .

(2) Find a partner and use ECC with this curve over \mathbb{F}_5 to establish a shared secret.

Exercise 3.

(1) For small values of p, compute all of the solutions to $y^2 = x^3 + x$ in \mathbb{F}_p . Notice any patterns? Can you prove them?

(2) Explain why if α is a Gaussian integer and P = (x, y) is a solution in \mathbb{C}^2 to $y^2 = x^3 + x$, it makes sense to write $\alpha \cdot P$ (generalizing nP for $n \in \mathbb{Z}$).

(3) Questions (1) and (2) are related. How?