Math 4400
Week 14 - Tuesday
Elliptic curves

We’ve spent a lot of time talking about degree 2 (i.e. quadratic) equations... what about degree 3?

Example: $E: y^2 = x^3 + 8$

Solutions in \mathbb{R}^2
Amazing fact: the points on this curve* form a group.

Note: actually have already seen similar things:
• the real solutions to $x^2 + y^2 = 1$

form a group if we view them as the unit circle $|z| = 1$ in \mathbb{C}. $z \leftrightarrow x + y i$.

• In fact, for any D, the solutions to $x^2 + D y^2 = 1$

form a group (for integer solutions by working in $\mathbb{Z}[i]$)

How to add 2 points:

To compute $P + Q$

Note if (x, y) is a solution so is $(x, -y)$.
Addition law: To compute $P + Q$,
1. Draw the line through P and Q
2. Take its 3rd point of intersection with E
3. Reflect it across the x axis to get $P+Q$

This almost works. Two issues:

- What if P and Q have same x-coordinate?
- What if $P = Q$?

Add one more point ∞ —
corresponds to "vertical asymptote" of the graph.
i.e a point that lies on every vertical line.
When we flip 90° about the x-axis get 0 back. so $P+Q=0$ if P and Q are as in first picke.

Fact: This really gives a group law (with 00 as the identity element).
Inverse of (x, y) is $(x, -y)$.

Fact: Works for any equation $y^2 = x^3 + Ax + B$ as long as $x^3 + Ax + B$ has no multiple roots (need to have a tangent line at every point).

Fact: Works over any field!

Fact: If A, B are integers, then there are only finitely many integer solutions. (Siegel).

Example: For $y^2 = x^3 + 8$ here are some:
(-2, 0) (1, 3) (1, -3) (2, 4) (2, -4)

Fact: If A, B are rational, then there can be infinitely many rational solutions to $y^2 = x^3 + Ax + B$, but they can be generated from finitely many (like Pell’s equation).
(Mordell–Weil theorem)

(Like integer solutions to Pell's equation.)

Fact: Fermat's Last Theorem — there are no non-trivial integer solutions to $x^n + y^n = z^n$ for $n \geq 3$ — was proven in the 90s by Wiles (+ Taylor) by reducing to a problem about elliptic curves.

Fact: The Birch & Swinnerton-Dyer conjecture — a Clay millennium problem with a $1,000,000 prize — is about relating rational and mod p solutions to $y^2 = x^3 + Ax + B$ for A, B integer.