Math 4400
Week 12 - Tuesday
Sums of two squares and descent.

Question: which integers \(n \) can be written as sums of 2 squares?

\[n = a^2 + b^2, \ a, b \in \mathbb{Z} \]

Example: \(10 = 3^2 + 1^2 \) \(\checkmark \), but there's no way...
We will give a complete answer this week. —interestingly, it is intimately related to unique factorization in $\mathbb{Z}[i]$.

Simple observations:
If $n = a^2 + b^2$, then
- $n \equiv 0 (a^2, b^2 \equiv 0)$
- $n \equiv 0, 1, \text{ or } 2 \mod 4$.
 $a^2, b^2 \equiv 0 \text{ or } 1 \mod 4$.

A more interesting observation:

Theorem: If m and n are each sums of 2 squares, then so is their product mn.

Proof: If $m = a^2 + b^2$, $n = c^2 + d^2$
\[m = N(a + bi), \quad n = N(c + di) \]
\[N(x + yi) = x^2 + y^2 \]
\[= (x + yi)(x - yi) \]
\[mn = N(a + bi)N(c + di) \]
\[mn = N((a + bi)(c + di)) \]
\[= N(ac - bd + (ad + bc)i) \]
\[(ac-bd)^2 + (ad+bc)^2\]

Example: \(5 = 2^2 + 1^2 = N(2+i)\)
\(13 = 3^2 + 2^2 = N(3+2i)\)
so \(65 = 5 \cdot 13 = N(2+i)N(3+2i)\)
\[= N((2+i)(3+2i))\]
\[= N(4 + 7i) = 4^2 + 7^2.\]

Since every \(n\) is a product of primes, suggest we should first ask:

Which primes are sums of 2 squares?

Example: Recall - Week 1, Exercise 3
You noticed that for \(p < 100\) prime,
\[p = a^2 + b^2 \iff p = 2 \text{ or } p \equiv 1 \mod 4.\]
Theorem: If p is prime then $p = a^2 + b^2$ if and only if $p = 2$ or $p \equiv 1 \mod 4$

Necessity by simple observation above

Hard part: If $p \equiv 1 \mod 4$, then $p = a^2 + b^2$.

We will show this by explaining an algorithm to find a and b.

Step 1: Find a, b s.t. $a^2 + b^2 = mp$

Step 2 (Descent): Modify a, b to get a', b' with $a'^2 + b'^2 = m'p$, $m' < m$.
(Repeat until $m' = 1$)

Step 1: Find a, b s.t. $a^2 + b^2 = mp$

$\Rightarrow a^2 + b^2 \equiv 0 \mod p$

Since $p \equiv 1 \mod 4$, there is a square root of -1 in \mathbb{F}_p.

i.e. there is an integer a s.t. $a^2 \equiv -1 \mod p$.

So $a^2 + 1^2 \equiv 0 \mod p$

i.e. can take $b = 1$.
Example: $5^2 = -1 \pmod{13}$.

$5^2 + 1^2 = 2 \cdot 13$.

Step 2 (Descent): Modify a, b to get a', b' with $a'^2 + b'^2 = m' \cdot p$, $m' < m$.

Have $a^2 + b^2 = mp$. Want to "factor out m" but need to stay in integers.

Trick: multiply $a + bi$ by a Gaussian integer to get something bigger where can factor out m.

Take $-\frac{m}{2} < u, v \leq \frac{m}{2}$ s.t. $u \equiv a \pmod{m}$

$v \equiv b \pmod{m}$.

$u^2 + v^2 = m \cdot r$. Note $r = \frac{u^2 + v^2}{m} \leq \frac{m^2}{4} + \frac{m^2}{9}$

(i.e. $u^2 + v^2 \equiv 0 \pmod{m}$

$u^2 + v^2 \equiv a^2 + b^2 \equiv 0 \pmod{m}$)

so $r \leq \frac{m}{2}$.

$N((u - iv)(a + ib)) = N(u - iv) \cdot N(a + ib) = m^2 \cdot r \cdot p$.

$(u - iv)(a + ib) = (au + vb) + (ub - va) \cdot i$

$(au + vb)^2 + (ub - va)^2 = r^2 \cdot p$

$5^2 + 1^2 = 2 \cdot 13$

$m = 2$

$u = 1, v = 1$ (-1 < $u, v \leq 1$ so u, v 0 or 1).

$(1 - i)(5 + i) = 6 - 4i$

$\{ \text{divide by } m = 2 \}$.

$3 - 2i$

$N(3-2i) = 3^2 + 2^2 = 13$!

In general, set $a' = \frac{au + vb}{m}$, $b' = \frac{vb - ua}{m}$

from above $a'^2 + b'^2 = r \rho$.

integers because

$au + vb \equiv a \cdot a + b \cdot b \pmod{m}$,

$vb - ua \equiv ab - 2a \equiv 0 \pmod{m}$,

so $n \mid ub - va$.

i.e. $n \mid au + vb$.

Now,

$a'^2 + b'^2 = N(a' + b' i)$

$= N\left(\frac{(u-i v)(a+i b)}{m}\right)$

$= \frac{m^2 \rho p}{m^2} = \rho p$, \quad $\rho < m$ \checkmark.

If $\rho > 1$, repeat descent to get smaller ρ till you land at ρ.
Example: $9^4 + 7^4 = 130 = 10 \cdot 13$.

Use to express 13 as $a^2 + b^2$:

\[a = 9 \quad b = 7 \quad p = 13. \]

\[m = 10 \quad -5 < u, v \leq 5 \]

\[u = 9 \mod 10 \Rightarrow u = -1 \]

\[v = 7 \mod 10 \Rightarrow v = -3 \]

\[(u - vi)(a + bi) = (-1 + 3i)(9 + 7i) \]

\[= -30 + 20i \]

\[\downarrow \text{div by } 10 \]

\[(3)^2 + 2^2 = 13. \]

Next time: We'll see this is the Euclidean algorithm in $\mathbb{Z}[i]$, and use that to understand exactly which n are sums of 2 squares.