
4400-001 - SPRING 2022 - WEEK 11 (3/29, 3/31)

FERMAT PRIMES AND MERSENNE PRIMES

Some of these exercises can be found in Savin - Chapter 7.

Exercise 1 (required). Variations on Pepin’s test.
The nth Fermat number is Fn ∶= 22

n + 1. Pepin’s test says Fn is prime if and only if

3
Fn−1

2 ≡ −1 mod Fn.

(1) Use Pepin’s test to show that F4 is prime.

(2) Let n ≥ 2. Show that Fn ≡ 2 mod 5.

(3) Let n ≥ 2. Assume that Fn is prime. Use part (2) to show that ( 5
Fn
) = −1.

(4) Following our justification for Pepin’s test (see the Tuesday video), explain why for n ≥ 2 the

Fermat number Fn is prime if and only if 5
Fn−1

2 ≡ −1 mod Fn.

(5) Can a version of Pepin’s test be developed with 7 instead of 3? How about with 11?

Exercise 2 (required). Some computations in Fp[i]
Let p be a prime congruent to 3 mod 4, and let Fp[i] be the set of elements a + bi where a, b ∈ Fp

with i2 ∶= −1 – this is a field with p2 elements (indeed, we can construct it also as Fp[x]/(x2 + 1),
where x is identified with i, which is a field since x2 + 1 is a prime polynomial in Fp[x] in this case).

(1) Find a primitive root (i.e. a primitive (p2 − 1)st root of unity) in F3[i], and write down the
corresponding discrete logarithm function I ∶ F3[i]× → Z/8Z.

(2) Show that any d ∈ Fp has a square root in Fp[i].
(3) Show that (a + bi)p = (a − bi). Hint: for any x, y in a field containing Fp, (x + y)p = xp + yp.
(4) The norm of an element a + bi in Fp[i] is

N(a + bi) = (a + bi)(a − bi) = a2 + b2 ∈ Fp

Show that for x, y ∈ Fp[i], N(xy) = N(x)N(y).
(5) Deduce from (3) that N(a + bi) = (a + bi)p+1

(6) Let T (p) denote the elements z ∈ Fp[i]× such that N(z) = 1. Show that T (p) is a subgroup
of Fp[i]× – this means that if x, y ∈ T (p) then xy ∈ T (p) and x−1 ∈ T (p).

(7) Deduce from (5) that there are exactly p + 1 elements in T (p).
(8) For which p ≡ 3 mod 4 is i a square in Fp[i]?
(9) For which p ≡ 3 mod 4 is i the square of an element in T (p)?

(10) If p ≡ 1 mod 4, then we can still define Fp[i] as a ring, but it is not a field. Illustrate this in
a specific case by finding a non-zero element in F5[i] that is not invertible.
Hint: in any ring, a zero divisor is an element x such that there is another non-zero element
y with xy = 0. A zero divisor is never invertible – indeed, if x is is invertible then

xy = 0 *⇒ x−1xy = x−10 *⇒ y = 0.
Thus it suffices to find a non-zero zero divisor in F5[i].
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Exercise 3. Recall from Week 7 that the Mersenne numbers are defined by Mk = 2k−1; these can be
prime only if k is a prime, and the even perfect numbers are exactly those of the form 2ℓ−1Mℓ where
Mℓ is prime. We are thus interested in knowing when Mℓ is prime, and an algorithm is furnished by:

The Lucas-Lehmer test. Define numbers sn recursively by s1 = 4 and sn+1 = s2n − 2. For ℓ > 2 a
prime number, Mℓ is prime if and only sℓ−1 ≡ 0 mod Mℓ.

In Week 7 we spent some time in class using the Lucas-Lehmer test to find Mersenne primes (Week
7 - 3). This exercise builds on the video for Thursday to give a justification of the Lucas-Lehmer test.

Let α = 2 +
√
3 and let β = 2 −

√
3.

(1) Show αβ = 1.

(2) Show α + β = s1.

(3) Assuming α2n−1 + β2n−1 = sn, show that α2n + β2n = sn+1.

Assuming (2) and (3), the principle of mathematical induction yields sn = α2n−1 + β2n−1 for all n ≥ 1.
In the video for Thursday, we show:

Theorem. Mℓ is prime if and only if α2ℓ−1 ≡ −1 mod Mℓ.

We now show this theorem is equivalent to the Lucas-Lehmer test:

(4) Show sl−1 ≡ 0 mod Mℓ if and only if α2ℓ−2 = −β2ℓ−2 mod Mℓ

(note that the latter is an identity mod Mℓ in Z[
√
3]).

(5) Show that α2ℓ−2 = −β2ℓ−2 mod Mℓ if and only if α2ℓ−1 = −1 mod Mℓ

Hint: Multiply by α2ℓ−2 to go one way and by β2ℓ−2 to go the other.

(6) Conclude.
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