4400-001 - SPRING 2022 - WEEK 11 (3/29, 3/31) FERMAT PRIMES AND MERSENNE PRIMES

Some of these exercises can be found in Savin - Chapter 7.

Exercise 1 (required). Variations on Pepin's test.

The *n*th Fermat number is $F_n := 2^{2^n} + 1$. Pepin's test says F_n is prime if and only if

$$3^{\frac{r_n-1}{2}} \equiv -1 \mod F_n.$$

- (1) Use Pepin's test to show that F_4 is prime.
- (2) Let $n \ge 2$. Show that $F_n \equiv 2 \mod 5$.
- (3) Let $n \ge 2$. Assume that F_n is prime. Use part (2) to show that $\begin{pmatrix} 5\\ F_n \end{pmatrix} = -1$.
- (4) Following our justification for Pepin's test (see the Tuesday video), explain why for $n \ge 2$ the Fermat number F_n is prime if and only if $5^{\frac{F_n-1}{2}} \equiv -1 \mod F_n$.
- (5) Can a version of Pepin's test be developed with 7 instead of 3? How about with 11?

Exercise 2 (required). Some computations in $\mathbb{F}_p[i]$

Let p be a prime congruent to 3 mod 4, and let $\mathbb{F}_p[i]$ be the set of elements a + bi where $a, b \in \mathbb{F}_p$ with $i^2 \coloneqq -1$ – this is a field with p^2 elements (indeed, we can construct it also as $\mathbb{F}_p[x]/(x^2 + 1)$, where x is identified with i, which is a field since $x^2 + 1$ is a prime polynomial in $\mathbb{F}_p[x]$ in this case).

- (1) Find a primitive root (i.e. a primitive $(p^2 1)$ st root of unity) in $\mathbb{F}_3[i]$, and write down the corresponding discrete logarithm function $I : \mathbb{F}_3[i]^{\times} \to \mathbb{Z}/8\mathbb{Z}$.
- (2) Show that any $d \in \mathbb{F}_p$ has a square root in $\mathbb{F}_p[i]$.
- (3) Show that $(a+bi)^p = (a-bi)$. Hint: for any x, y in a field containing \mathbb{F}_p , $(x+y)^p = x^p + y^p$.
- (4) The norm of an element a + bi in $\mathbb{F}_p[i]$ is

$$N(a+bi) = (a+bi)(a-bi) = a^2 + b^2 \in \mathbb{F}_p$$

Show that for $x, y \in \mathbb{F}_p[i]$, N(xy) = N(x)N(y).

- (5) Deduce from (3) that $N(a + bi) = (a + bi)^{p+1}$
- (6) Let T(p) denote the elements $z \in \mathbb{F}_p[i]^{\times}$ such that N(z) = 1. Show that T(p) is a subgroup of $\mathbb{F}_p[i]^{\times}$ this means that if $x, y \in T(p)$ then $xy \in T(p)$ and $x^{-1} \in T(p)$.
- (7) Deduce from (5) that there are exactly p + 1 elements in T(p).
- (8) For which $p \equiv 3 \mod 4$ is *i* a square in $\mathbb{F}_p[i]$?
- (9) For which $p \equiv 3 \mod 4$ is *i* the square of an element in T(p)?
- (10) If $p \equiv 1 \mod 4$, then we can still define $\mathbb{F}_p[i]$ as a ring, but it is not a field. Illustrate this in a specific case by finding a non-zero element in $\mathbb{F}_5[i]$ that is not invertible. *Hint: in any ring, a zero divisor is an element x such that there is another non-zero element y with xy = 0. A zero divisor is never invertible – indeed, if x is is invertible then*

$$xy = 0 \implies x^{-1}xy = x^{-1}0 \implies y = 0.$$

Thus it suffices to find a non-zero zero divisor in $\mathbb{F}_5[i]$.

Exercise 3. Recall from Week 7 that the Mersenne numbers are defined by $M_k = 2^k - 1$; these can be prime only if k is a prime, and the even perfect numbers are exactly those of the form $2^{\ell-1}M_{\ell}$ where M_{ℓ} is prime. We are thus interested in knowing when M_{ℓ} is prime, and an algorithm is furnished by:

The Lucas-Lehmer test. Define numbers s_n recursively by $s_1 = 4$ and $s_{n+1} = s_n^2 - 2$. For $\ell > 2$ a prime number, M_ℓ is prime if and only $s_{\ell-1} \equiv 0 \mod M_\ell$.

In Week 7 we spent some time in class using the Lucas-Lehmer test to find Mersenne primes (Week 7 - 3). This exercise builds on the video for Thursday to give a justification of the Lucas-Lehmer test.

Let $\alpha = 2 + \sqrt{3}$ and let $\beta = 2 - \sqrt{3}$. (1) Show $\alpha\beta = 1$.

(2) Show $\alpha + \beta = s_1$.

(3) Assuming
$$\alpha^{2^{n-1}} + \beta^{2^{n-1}} = s_n$$
, show that $\alpha^{2^n} + \beta^{2^n} = s_{n+1}$.

Assuming (2) and (3), the principle of mathematical induction yields $s_n = \alpha^{2^{n-1}} + \beta^{2^{n-1}}$ for all $n \ge 1$. In the video for Thursday, we show:

Theorem. M_{ℓ} is prime if and only if $\alpha^{2^{\ell-1}} \equiv -1 \mod M_{\ell}$.

We now show this theorem is equivalent to the Lucas-Lehmer test:

- (4) Show $s_{l-1} \equiv 0 \mod M_{\ell}$ if and only if $\alpha^{2^{\ell-2}} = -\beta^{2^{\ell-2}} \mod M_{\ell}$ (note that the latter is an identity mod M_{ℓ} in $\mathbb{Z}[\sqrt{3}]$).
- (5) Show that $\alpha^{2^{\ell-2}} = -\beta^{2^{\ell-2}} \mod M_{\ell}$ if and only if $\alpha^{2^{\ell-1}} = -1 \mod M_{\ell}$ Hint: Multiply by $\alpha^{2^{\ell-2}}$ to go one way and by $\beta^{2^{\ell-2}}$ to go the other.
- (6) Conclude.