Some of these exercises can be found in Savin - Chapter 7.

Exercise 1 (required). Variations on Pepin’s test.
The nth Fermat number is \(F_n := 2^{2^n} + 1 \). Pepin’s test says \(F_n \) is prime if and only if
\[
3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}.
\]

1. Use Pepin’s test to show that \(F_4 \) is prime.
2. Let \(n \geq 2 \). Show that \(F_n \equiv 2 \pmod{5} \).
3. Let \(n \geq 2 \). Assume that \(F_n \) is prime. Use part (2) to show that \(\frac{5}{F_n} \equiv -1 \).
4. Following our justification for Pepin’s test (see the Tuesday video), explain why for \(n \geq 2 \) the Fermat number \(F_n \) is prime if and only if \(3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n} \).
5. Can a version of Pepin’s test be developed with 7 instead of 3? How about with 11?

Exercise 2 (required). Some computations in \(\mathbb{F}_p[i] \)
Let \(p \) be a prime congruent to 3 mod 4, and let \(\mathbb{F}_p[i] \) be the set of elements \(a + bi \) where \(a, b \in \mathbb{F}_p \) with \(i^2 = -1 \) – this is a field with \(p^2 \) elements (indeed, we can construct it also as \(\mathbb{F}_p[x]/(x^2 + 1) \), where \(x \) is identified with \(i \), which is a field since \(x^2 + 1 \) is a prime polynomial in \(\mathbb{F}_p[x] \) in this case).

1. Find a primitive root (i.e. a primitive \((p^2 - 1) \)st root of unity) in \(\mathbb{F}_3[i] \), and write down the corresponding discrete logarithm function \(I : \mathbb{F}_3[i]^* \rightarrow \mathbb{Z}/8\mathbb{Z} \).
2. Show that any \(d \in \mathbb{F}_p \) has a square root in \(\mathbb{F}_p[i] \).
3. Show that \((a + bi)^p = (a - bi) \). Hint: for any \(x, y \) in a field containing \(\mathbb{F}_p \), \((x + y)^p = x^p + y^p \).
4. The norm of an element \(a + bi \) in \(\mathbb{F}_p[i] \) is
\[
N(a + bi) = (a + bi)(a - bi) = a^2 + b^2 \in \mathbb{F}_p.
\]

Show that for \(x, y \in \mathbb{F}_p[i] \), \(N(xy) = N(x)N(y) \).
5. Deduce from (3) that \(N(a + bi) = (a + bi)^{p+1} \)
6. Let \(T(p) \) denote the elements \(z \in \mathbb{F}_p[i]^* \) such that \(N(z) = 1 \). Show that \(T(p) \) is a subgroup of \(\mathbb{F}_p[i]^* \) – this means that if \(x, y \in T(p) \) then \(xy \in T(p) \) and \(x^{-1} \in T(p) \).
7. Deduce from (5) that there are exactly \(p + 1 \) elements in \(T(p) \).
8. For which \(p \equiv 3 \mod 4 \) is \(i \) a square in \(\mathbb{F}_p[i] \)?
9. For which \(p \equiv 3 \mod 4 \) is \(i \) the square of an element in \(T(p) \)?
10. If \(p \equiv 1 \mod 4 \), then we can still define \(\mathbb{F}_p[i] \) as a ring, but it is not a field. Illustrate this in a specific case by finding a non-zero element in \(\mathbb{F}_5[i] \) that is not invertible.

\text{Hint: in any ring, a zero divisor is an element } x \text{ such that there is another non-zero element } y \text{ with } xy = 0. \text{ A zero divisor is never invertible – indeed, if } x \text{ is is invertible then }\]
\[
xy = 0 \impliedby x^{-1}xy = x^{-1}0 \impliedby y = 0.
\]

Thus it suffices to find a non-zero zero divisor in \(\mathbb{F}_5[i] \).
Exercise 3. Recall from Week 7 that the Mersenne numbers are defined by $M_k = 2^k - 1$; these can be prime only if k is a prime, and the even perfect numbers are exactly those of the form $2^k - 1$ where M_k is prime. We are thus interested in knowing when M_ℓ is prime, and an algorithm is furnished by:

The Lucas-Lehmer test. Define numbers s_n recursively by $s_1 = 4$ and $s_{n+1} = s_n^2 - 2$. For $\ell > 2$ a prime number, M_ℓ is prime if and only if $s_{\ell-1} \equiv 0 \mod M_\ell$.

In Week 7 we spent some time in class using the Lucas-Lehmer test to find Mersenne primes (Week 7 - 3). This exercise builds on the video for Thursday to give a justification of the Lucas-Lehmer test.

Let $\alpha = 2 + \sqrt{3}$ and let $\beta = 2 - \sqrt{3}$.

1. Show $\alpha \beta = 1$.

2. Show $\alpha + \beta = s_1$.

3. Assuming $\alpha^{2^{n-1}} + \beta^{2^{n-1}} = s_n$, show that $\alpha^{2^n} + \beta^{2^n} = s_{n+1}$.

Assuming (2) and (3), the principle of mathematical induction yields $s_n = \alpha^{2^{n-1}} + \beta^{2^{n-1}}$ for all $n \geq 1$. In the video for Thursday, we show:

Theorem. M_ℓ is prime if and only if $\alpha^{2^{\ell-1}} \equiv -1 \mod M_\ell$.

We now show this theorem is equivalent to the Lucas-Lehmer test:

4. Show $s_{\ell-1} \equiv 0 \mod M_\ell$ if and only if $\alpha^{2^{\ell-2}} = -\beta^{2^{\ell-2}} \mod M_\ell$
 (note that the latter is an identity mod M_ℓ in $\mathbb{Z}[\sqrt{3}]$).

5. Show that $\alpha^{2^{\ell-2}} = -\beta^{2^{\ell-2}} \mod M_\ell$ if and only if $\alpha^{2^{\ell-1}} = -1 \mod M_\ell$
 Hint: Multiply by $\alpha^{2^{\ell-2}}$ to go one way and by $\beta^{2^{\ell-2}}$ to go the other.

6. Conclude.