4400-001 - SPRING 2022 - WEEK 10 (3/22, 3/24) EXPLAINING QUADRATIC RECIPROCITY

Some of these exercises can be found in Savin - Chapter 6.

Exercise 1 (required). More computations with squares mod p.

- (1) Use the formula $\binom{n}{p} = n^{\frac{p-1}{2}} \mod p$ to determine if the following are squares. You may use a calculator; double-check your answers using the rules for the Legendre symbol (but you do not have to include this double-check in your homework that you turn in).
 - (a) $2 \mod 31$
 - (b) $2 \mod 43$
 - (c) $3 \mod 31$

(d) 7 mod 29

- (2) Use the discrete logarithm with base g = 3 to find the square roots of 5 in \mathbb{F}_{19} .
- (3) Which of the following equations have solutions? *Hint: complete the square.*(a) x² + 4x + 11 = 0 mod 43
 - (b) $x^2 6x + 11 = 0 \mod 131$
 - (c) $x^2 6x + 28 = 0 \mod 131$

Exercise 2 (required). Roots of unity and square roots

An *n*th root of unity in a field \mathbb{K} is an element $\zeta \in \mathbb{K}$ such that $\zeta^n = 1$. An *n*th root of unity ζ is *primitive* if $\zeta^d \neq 1$ for any proper divisor *d* of *n*. In the following, Euler's identity $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ may be helpful!

- (1) Show that $\zeta_n \coloneqq e^{2\pi i/n}$ is a primitive *n*th root of unity in \mathbb{C} .
- (2) Verify that $(\zeta_3 \zeta_3^2)^2 = -3$ in \mathbb{C} .
- (3) Verify that $(\zeta_8 + \zeta_8^7)^2 = 2$ in \mathbb{C} .
- (4) Verify that $(\zeta_5 + \zeta_5^4 \zeta_5^2 \zeta_5^3)^2 = 5$ in \mathbb{C} .
- (5) Explain why \mathbb{F}_p contains a primitive *n*th root of unity if and only if $p \equiv 1 \mod n$. *Hint* : Use the discrete log.
- (6) Find a primitive third root of unity $\zeta \in \mathbb{F}_7$, then verify by direct computation that $(\zeta^2 - \zeta)^2 = -3 \text{ in } \mathbb{F}_7$
- (7) Find a primitive eight root of unity $\zeta \in \mathbb{F}_{17}$, then verify by direct computation that $(\zeta + \zeta^7)^2 = 2 \text{ in } \mathbb{F}_{17}.$
- (8) Find a primitive fifth root of unity $\zeta \in \mathbb{F}_{11}$, then verify by direct computation that $(\zeta + \zeta^4 - \zeta^2 - \zeta^3)^2 = 5$ in \mathbb{F}_{11} .
- (9) (Challenge, not to turn in). The formulas for square roots of -3 and 5 above are special cases of the following formula, due to Gauss: for ℓ an odd prime and ζ a primitive ℓ th root of unity,

$$\left(\sum_{a=1}^{\ell-1} \left(\frac{a}{\ell}\right) \zeta^a\right)^2 = \left(\frac{-1}{\ell}\right) \cdot \ell.$$

Check this for some more values of ℓ and primitive roots of unity, e.g. in \mathbb{F}_p and \mathbb{C} .

- (10) (Challenge, not to turn in).
 - (a) Show $(\zeta \zeta^2)^2 = -3$ for any primitive third root of unity ζ in any field. Hint: use polynomial division to show that the primitive 3rd roots of unity are exactly the roots of $x^2 + x + 1$, then apply this to simplify the expansion of $(\zeta - \zeta^2)^2$. (b) Show $(\zeta_5 + \zeta_5^4 - \zeta_5^2 - \zeta_5^3)^2 = 5$ for any primitive fifth root of unity ζ in any field. (c) Show $(\zeta - \zeta^7)^2 = 2$ for any primitive eighth root of unity ζ in any field.