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(My apple pencil broke!)
Today:
Galois theory of finite fields
Cyclotomic polynomials/extensions

Let Fq be a field with q = pn elements. Let [F ∶ Fq] = k (the unique field with qk = pnk elements).

Exercise: Fpd ⊂ Fpk if and only if d∣k. This is terrible notation! One way you could make sense

of this is fix an algebraic closure Fp/Fp (this is a choice!) then define Fpk to be the splitting field of

xp
k − x over Fp in Fp.
Exercise: Produce an algebraic closure of Fp without using axiom of choice. (Hint: Look at split-

ting fields of xp
n! − x to create a tower of extensions whose union is algebraically closed).

Let Fq be a field with q = pn elements. Let [F ∶ Fq] = k (the unique field with qk = pnk elements).

Theorem. F/Fq is Galois with Galois group Z/kZ generated by the q-power Frobenius automorphism

Frobq ∶ α ↦ αq.

(I.e. there is an isomorphism Z/kZ→ Gal(F/Fq) sending 1 to Frobq. )

Proof. Galois because it’s a splitting field of x∣F∣ − x = xqk − x = xpnk − x. (not necessary for the proof
but good sanity check).

Claim: Just need to check (why?)
1) Frobq ∈ Gal(F/Fq)
2) Check that the order of Frobq is k.

For 1) – x ↦ xq definitely fixes Fq because the elements of Fq are exaclty the roots of xq − x, i.e.
such that xq = x i.e. such that Frobq(x) = x.

For 2) – definitely Frobkq = Frobqk = Id on F because ... (same justification with qk). So the order

divides k; on the other hand, if Frobdq = Frobqd = Id for d < k then everything in F satisfies xq
d = x

but there are only qd roots of this polynomial – contradiction since ∣F∣ = qk > qd.
So this shows Frobq generates a copy of Z/kZ ≤ Aut(F/Fq). But we know that for any field

extension ∣Aut(L/K)∣ ≤ [L ∶K] with equality if and only if its Galois. Thus get

Z/kZ = ⟨Frobq⟩ = Aut(F/Fq).
□

Sentence to remember: Any extension of finite fields is Galois with Galois group cyclic generated
by Frobenius. (Note – this is absolutely central to modern number theory!)

Note: it’s quite unusual to have a field such that all of its extension are Galois. (Exercise: if there
is a polynomial f(x) in K[x] whose Galois group is non-abelian then there is an extension that is not
Galois [ use the fundamental theorem ]).
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Cyclotomic polynomials / extensions of Q.
The nth cyclotomic polynomial:

Φn(x) = ∏
k∈(Z/nZ)×

(x − e2πik/n) ∈ C[x]

The roots are the primitive nth roots of unity (primitive means ζn = 1 but ζd ≠ 1 for d∣n).
Alternative definition:

Φn(x) = (xn − 1)/gcd(xn − 1, ∏
d∣n,d≠n

xd − 1)

Thus Φn(x) ∈ Z[x].
Another equivalent inductive definition:

Φ1(x) = x − 1, then (xn − 1)/ ∏
d∣n,d≠n

Φd(x).

Lemma 1. If K is a field, then the roots of Φn(x) in K are exactly the primitive nth roots of unity
in K, i.e. the elements ζ ∈K such that ζn = 1 and ζd ≠ 1 for d∣n, d ≠ n.

Proof. Prove inductively by applying the inductive definition. □
(Note if K = Fp then the image of Φn(x) in K[x] is just given by reducinig coefficients mod p).

A polynomial over the integers is simultaneously a polynomial over every single field (or even ring)
because there is a unique map Z→ R for any ring R.

Theorem. Φn(x) is irreducible (of degree ∣(Z/mZ)×∣ = φ(n) = number of numbers less than n coprime

to n) and Q(e2πi/n)/Q is Galois, there is a canonical isomorphism

(Z/nZ)× → Gal(Q(e2πi/n)/Q), k ↦ σk

such that σk(ζ) = ζk for any nth root of unity in ζ ∈ Q(e2πi/n).

Proof. Note: easy to see every automorphism must be of this form, but needs an argument to see
that there is an automorphism that does this. HOWEVER, the extension is Galois because it’s the
splitting field of xn − 1, so I know that ∣Aut∣ = degree of extension. So it suffices to show that the

degree is φ(n). So it suffices to show that Φn(x) is the minimal polynomial of e2πi/n, i.e. that it is
irreducible – see next lemma. □
Lemma 2. Φn(x) is irreducible (in Q[x] or equivalently Z[x]).

Example 0.1. If ℓ is a prime number then

Φℓ(x) = (xℓ − 1)/(x − 1) = 1 + x + x2 + ... + xℓ−1

is irreducible by Eisenstein (after substitution x-1=y).

But this doesn’t generalize.

Proof of Lemma 2. Write ζ = e2πi/n. Write Z[ζ] ⊂ C smallest subring containing ζ and Z. If I write
g(x) for the minimal polynomial (over Q) of ζ, since it has integral coefficients then easy to check
that

Z[ζ] ≅ Z[x]/g(x).
Pick a prime p not dividing n.

Z[ζ]/p ≅ Fp[x]/g(x).
g = reduce coefficients mod p. Pick a map Fp[x]/g(x) → Fp (think about this – just choose an
irreducible factor of g(x)).

Then I get bijections

{ Roots of Φn(x) in Fp}↔ { Roots of Φn(x) in Z[ζ]}↔ { Roots of Φn(x) in C}
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Because
Φn(x) = ∏

k∈(Z/nZ)×
(x − ζk) in Z[ζ][x]

gives a factorization also in Fp. Because p doesn’t divide n this polynomial is separable (already
xn − 1 is).

This bijection preserves roots of g(x). Now apply the Frobenius to see that the roots of g(x) are
preserved by raising by p powers! Apply for all p not dividing n, which generate (Z/nZ)×. □
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