Fields: Commutative ring s.t. non-zero elements are invertible.

\implies Ring whose only idel is 0 and R.

Examples: \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p, \mathbb{F}_p^n, $\mathbb{Z}/p\mathbb{Z}$

$\text{Frac}\, \mathbb{Z}$.

$C(t) = \text{"field of rational functions in one variable over } C"$

$\left\{ \frac{f(t)}{g(t)} \mid f(t), g(t) \text{ polynomials.} \right\}$

$F(t_1, t_2, t_3, \ldots, t_n) = \text{Frac } F[t_1, \ldots, t_n]$

$\text{Frac } F(t_1, t_2, \ldots) = \text{Frac } F[t_1, t_2, \ldots]$

Weird: $\mathbb{A}(t_1; 1 \in S) \subseteq \mathbb{C}$.

$\mathbb{C}[x, y]/y^2 - (x^3 + 1) \nLeftarrow \text{Integral domain}

\nLeftarrow \text{irreducible.}$

$\text{Frac } \mathbb{C}[x, y]/y^2 - x^3 + 1$ is a field.

\mathbb{A}^1 (Weierstrass theory of elliptic functions).

Field of meromorphic functions on \mathbb{C}; $\mathbb{C}((z))$.
If \(R \) is a commutative ring and \(\mathfrak{p} \) is a prime ideal then \(\text{Frac}(R/\mathfrak{p}) \) is a field.

If \(\mathfrak{p} \) is maximal then \(R/\mathfrak{p} \) is a field.

\[\mathbb{Q}_p \rightarrow \text{Complete } \mathbb{Q} \text{ for the } p \text{-adic absolute value.} \]

\(R \rightarrow \text{completed } \mathbb{Q} \text{ for the } p \text{-adic absolute value, } \]
\[\text{defined by } p \text{-adic absolute value.} \]
\[\text{Any } \mathbb{Q}_p \text{ is } \mathbb{Q}, \text{ absolute value of measure } \]
\[\text{distance of measure } \text{by a prime number } p. \]

Observation: If \(K \) is a field then there is a unique map \(\phi : \mathbb{Z} \rightarrow K. \)

\[1 \mapsto 1 \]
\[2i \mapsto 1 + 1 \]
\[3i \mapsto 1 + 1 + 1, \]

This map has a kernel, \(\sqrt{\text{Prime ideals of } \mathbb{Z}} \).
\(\phi(p) \) is a prime number. \(\text{In } \phi \cong \mathbb{Z} / \ker \phi \) is an integral domain. (similar of a field).

So \(\ker \phi \) is a prime ideal.

\(\mathbb{Z} \) is a PID so we know what prime ideals are.

Either \(\ker \phi = 0 \) \(\mathbb{Z} \cong K \) by definition of a field.

\(\phi \mathbb{Z} \cong K \)

\(\ker \phi = (p) \)

\(\mathbb{Z}/p\mathbb{Z} \cong K \).

\[\mathbb{F}_p \]

Definition/Theorem: The characteristic of a field \(K \) is the smallest positive \(n \) such that

\[1 + 1 + \cdots + 1 = 0 \]

\(n \) times

or 0 if there is no such \(n \).

\(\Rightarrow \)

\(K \) has char \(p \) \(\Rightarrow \mathbb{F}_p \cong K \)

\(K \) has char 0 \(\Rightarrow \mathbb{Q} \cong K \).
Recall: If R is any ring and F is a field, then any map $F \rightarrow R$ of rings is injective (ker is a ideal $\neq F \Rightarrow \ker = \{0\}$).

Remark/Exercise: If K has characteristic p, then for any $a \in K$

\[\underbrace{a + a + \ldots + a}_{p \text{ times}} = 0. \]

\[p(a) = \left(1 + 1 + \ldots + 1\right) a. \]

\[= 0 \cdot a = 0. \]

If $K \subseteq L$ are both fields, we say K is a subfield of L or L/K is an extension of fields.

Degree of a field extension L/K

\[[L : K] = \dim_{K}(L) \text{ as a } K\text{-vector space}. \]

E.g. $[C : \mathbb{R}] = 2$ and \mathbb{C} has basis $1, i$ as an \mathbb{R}-vector space.

This can be infinite. But for us, well just work with \mathbb{N} if it's finite or \mathbb{C} if it's not.
L/K - how to build L from K?

Idea: Just add in one element at a time.

Suppose $\alpha \in L$, I want to look at $K(\alpha)$ defined to be the smallest subfield of L containing both K and α.

$K \subseteq K(\alpha) \subseteq L$.

(The intersection of all such)

The trick of everything: $K(\alpha)$ admits a single abstract description.

$K(\alpha)$ is an extension of K, not an subfield of L.

Observation: There is a unique map

$K + \mathbb{C} \to L$

sending $1 \to \alpha$

and $= \text{identity on } K$.

Kernel of this map: 0 or $(m_\alpha(\mathbb{C}))$

monic irreducible polynomial.

Make sure you don't work down to some ideal first.
Let Ker be 0

$k + J \rightarrow L$

L extends uniquely.

$k(c) \rightarrow L \quad k(c) = \mathbb{K}(\alpha) \leq L.$

$+ \rightarrow \alpha$

If $Ker = (M_{\alpha}(c))$

$k + J \rightarrow \frac{M_{\alpha}(c)}{M_{\alpha}(c)} \rightarrow L

$\leftarrow \text{maximal ideal}$

$\text{Image is } K(\alpha). \quad \text{so quotient is a field}$

$k + J / (M_{\alpha}(c)) \rightarrow \mathbb{K}(\alpha) \leq L.$

Example:

$R \in \mathbb{C}$

$+ \in \mathbb{C}.$

$R + J \rightarrow R(i)$

$+ \rightarrow i$

$\text{Kernel is } (t^2 + 1)$

$R(t^2 + 1) \rightarrow R(i) = \mathbb{C}.$

$R + J / (t^2 + 1) \rightarrow \mathbb{C}$

Warning: There is another construction like this.

$R + J / (t^2 + 1) \rightarrow \mathbb{C}$

Identify on R.

$t \rightarrow \text{root of } t^2 + 1.$

$t \rightarrow i$ (just saw)

$t + i \rightarrow \text{add and}$
X-algebras \xrightarrow{\text{Forget}} \text{Sets}$

\[\text{Hom}(K_{E_{II}} \coprod_{I_{II}} I_{II}, A) = \text{Hom}(I_{II}, A) \]