Recall

Last time — Finished proof of Sylow theorem.
 Simplicity of A_n for $n \geq 5$.

Example: Groups of order 15.
 Talk about generalizing to groups of order pq.

Today: semidirect products.
 A tool for building new groups out of old groups.

Example: D_8, symmetries of the square.

$\mathbb{Z}/2\mathbb{Z} \leq D_8$
 \uparrow Rotation

$\langle s \rangle$: Rotation by $\frac{k\pi}{2}$.
 $\langle s \rangle$: Reflection along l.

$\langle s \rangle = \mathbb{Z}/2\mathbb{Z} \leq D_8$.

$\langle s \rangle < \langle s \rangle = D_8$

We know $|HK| = \frac{|H||K|}{|H \cap K|}$.

(H is normal)

$\langle HK : H \rangle = \langle K : H \cap K \rangle$.

$HI/H \cong K/HK$.
We can get every element of the group by multiplying elements of \(\mathbb{Z}/17 \times \mathbb{Z}/17 \).

i.e. there is a bijection of sets.

\[
\mathbb{Z}/17 \times \mathbb{Z}/17 \rightarrow D_8
\]

\[
K \times J \rightarrow \rho^K \rho^J
\]

Not a group isomorphism.

Semi-direct product: change the group law on the set \(\mathbb{Z}/17 \times \mathbb{Z}/17 \).

So that this becomes a group isomorphism.

\[
(K, J) \times (K', J') \mapsto \rho^K \rho^J \rho^{K'} \rho^{-J'}
\]
The example says

\[D_8 \cong \mathbb{Z}/4\mathbb{Z} \times_{\phi} \mathbb{Z}/2\mathbb{Z} \]

\[\phi: \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(\mathbb{Z}/4\mathbb{Z}) \]

\[1 \mapsto \text{multiplication by } -1. \]

Definition/Theorem:

If \(H \) and \(K \) are groups and \(\phi: K \to \text{Aut}_{\text{group}}(H) \), then \(H \times_{\phi} K \) is the set

\[(h_1, k_1) \times_{\phi} (h_2, k_2) = (h_1, \phi(k_1)(h_2), K, K_2). \]

This defines a group, and

\[H \to H \times_{\phi} K \]

\[h \mapsto (h, 0) \]

identifies \(H \) with a normal subgroup of \(H \times_{\phi} K \).

\[K \to H \times_{\phi} K \]

\[k \mapsto (0, K) \]

identifies \(K \) with a subgroup.
s.t. \(KHK^{-1} = \phi(K)(h) \)

\[
(0, K) \phi(h, 0) \phi(0, K^{-1}) = (\phi(K)(h), 0).
\]

Example: \(D_{2n} = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) – a reflection.
Symmetry of regular \(n \)-gon.

Exercise: what is \(\phi \)?

Example: For any group \(H \),
\[
H \times \text{Aut}(H).
\]

Recognition principle: If \(G \) is a group,
\(H \leq G \), \(K \leq N_G(H) \)
then \(HK \) is a subgroup of \(G \)
and if \(HNKH = \{e\} \), then the map
\((h, K) \mapsto HK \)
is a group isomorphism
\[
H \times K \overset{\phi}{\to} HK
\]
(\(\phi : K \to N_G(H) \cong \text{Aut}(H) \)).

(Usually use Hall when \(HK = \text{one of } H \) or \(G \).

Groups of order \(pq \) For \(p \neq q \) prime:

Suppose \(G \) has order \(pq \).
\(p, q \) are primes.
\(p = 1 \mod {p} \) and \(p = 1 \mod {q} \).
\(p = 1, p+1, 2p+1, \ldots \) \(\mathbb{Z} / p \mathbb{Z} \)
so \(n \neq 1 \), so let \(H \triangleleft G \).

By Cauchy's Theorem, a subgroup of order \(q \), \(K \),

\[HK = \mathbb{Z}/q\mathbb{Z} \]

\[|HK| = p^2 \]

so \(HK = G \).

Recognition principle: \(G \cong H \times K \)

\[\cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \]

\[\phi: \mathbb{Z}/p\mathbb{Z} \rightarrow (\mathbb{Z}/p\mathbb{Z})^* = \mathbb{Z}/(p-1)\mathbb{Z} \]

\[\text{Aut}_{\text{group}}(\mathbb{Z}/p\mathbb{Z}) \]

If \(q \nmid p-1 \) then \(\phi \) is only non-trivial

\[\Rightarrow G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \]

If \(q \mid p-1 \) then there is a unique cyclic subgroup of order \(q \) in \(\mathbb{Z}/(p-1)\mathbb{Z} \)

There will be \(q-1 \) non-trivial \(\phi \).

\[\mathbb{Z}/q\mathbb{Z} \rightarrow \mathbb{Z}/(p-1)\mathbb{Z} \]

Exercise: Check that \(\phi \) also gives isomorphic groups.

Important: Often \(\phi_1 \neq \phi_2 \)

but \(H \cdot K \cong H \cdot K \)

Conclusion: \(q \nmid p-1 \)
Then \(\mathbb{Z}/p\mathbb{Z} \) is the only group of order \(p \).

Otherwise there is \(\mathbb{Z}/p\mathbb{Z} \) and one nonabelian group of order \(p^2 \) (up to isomorphism).