6320 - Modern Alg II.

Group, Galois theory, Representation theory.

Rough schedule:

Field extensions.

Week 1 - Motivation, first concepts.
Weeks 2-5 - The structure of finite groups.
Week 6 - Character theory of abelian group

\[\text{Hom}(G, \mathbb{C}^*) \].

Week 7 - Review, midterm.
Week 8 - Spring Break.
Weeks 9-12 - Galois theory.

D\text{2n}: dishedal group of order 2n.

Good teacher \hspace{1cm} Bad teacher

Rigid symmetries of the regular \n-gon in the plane.

 Regular n-gon

0°, 90°, 180°, 270° rotation

Reflect about any axis of

\[\langle r, \tau \mid r^n = 1, \tau^2 = 1, \tau r \tau = r^{-1} \rangle \]
Autopmorphisms \[\text{Symmetries} \] \[\text{Structure} \]

Fewer symmetries. \[\rightarrow \] More structure

\[\text{GL}_2(\mathbb{R}) \leftrightarrow \mathbb{R}^2 \]

2x2 invertible matrices

All maps from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) as a set

\[\text{Defn} \] A group is a set \(G \) equipped with

- Multiplication \(m : G \times G \rightarrow G \)
 \[(a, b) \mapsto ab \]
- Inversion \(i : G \rightarrow G \)
 \[a \mapsto a^{-1} \]
- Identity \(e : \ast \rightarrow G \)
 \[* \mapsto e \]

satisfying some compatibilities:

- Associativity
- Existence of inverses
Examples: \(\mathbb{Z} / n\mathbb{Z} \)
\(\text{GL}_n(\mathbb{R}) \)
\(\text{Sn} \)
\(\text{SL}_n(\mathbb{R}) \)
\(\text{Aut}_\mathbb{R}(\mathbb{R}^n) \)
\((x \mapsto x) \)
\(\cong \)
\(\text{Fundamental group} \)
\(\text{D}_2n \)
\(\text{Mapping class group} \)
R^x for R any ring.

$S_n = \text{Aut}_{\text{set}}(\{1, 2, \ldots, n\})$

$GL_n(R) = \text{Aut}_{R\text{-vector space}}(R^n)$

$GL_1(R) = \text{Aut}_{R\text{-module}}(R)$

$O(n) = \text{Aut}_{\text{inner product spaces}}(R^n, \langle \cdot, \cdot \rangle)$

$SL_n(R) = \text{Aut}_{\text{vector space with multilinear form}}(R^n, e_1^* \wedge e_2^* \wedge \ldots \wedge e_n^*)$

$= \text{Aut}_{R\text{-vector space with volume and orientation}}(R^n)$
$S^1 = \int_0^1 \circ \circ = 1$

$\mathbb{R} \to S^1$

π

$t \mapsto e^{2\pi i t}$

$\mathbb{C} = \text{Aut}(\mathbb{R} \to S^1)$

acting by translation

$\text{Aut}_S^* \text{ polynomial space } R$

$s i t \mapsto \pi G(t) \to \pi(+)$.

$n = t \mapsto t + n$,

G a group. G is a right G-set.

$x \cdot g = xg$.

$\text{Aut}_{\text{Right}}(G) = G$

G acts by multiplication on the left.