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116 THE ALGEBRA OF SETS

the n digits 1, 2, 3, -+ , n are written down in random order, the probability 4 |

at least one digit will occupy its proper place is

|_\|'
1 1 1 1 A
ST T !

(5) Pn = |
where the last term is taken with a plus or minus sign according as n is odg,

even. In particular, for n = 5 the probability is J
1 1 1 1 19
=1l——+4— = -4 - =—=10.63333 -+, ;
el atiTw f
We shall see in Chapter VIII that as n tends to infinity the expression
1 1 1 1 :
(R T LI B
& 2! 3! +4l nl

tends to a limit, 1/¢, whose value to five places of decimals is .36788. Since '__\j:.

(5) pn = 1 — S, , this shows that as » tends to infinity
pa— 1 — 1/e = .63212.

4 The Education University |
(:f' of Hong Kong
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CHAPTER III

. GEOMETRICAL CONSTRUCTIONS. THE ALGEBRA OF
NUMBER FIELDS

INTRODUCTION

Construction problems have always been a favorite subject in geom-
etry. With ruler and compass alone a great variety of constructions
nay be performed, as the reader will remember from school: a line seg-
ent or an angle may be bisected, a line may be drawn from a point
pendicular to a given line, a regular hexagon may be inscribed in a
Je, etc. In all these problems the ruler is used merely as a straight-
e, an instrument for drawing a straight line but not for measuring
marking off distances. The traditional restriction to ruler and com-
alone goes back to antiquity, although the Greeks themselves did
hesitate to use other instruments.

One of the most famous of the classical construction problems is

(a “circle” with radius zero or “infinity,” respectively). For example,
it may be required to construct a circle tangent to two given straight
lines and passing through a given point. While such special cases are
rather easily dealt with, the general problem is considerably more

- Of all construction problems, that of constructing with ruler and
compass a regular polygon of n sides has perhaps the greatest interest.
;rFor certain values of n—e.g. n = 3, 4, 5, 6—the solution has been known
since antiquity, and forms an important part of school geometry. But
for the regular heptagon (n = 7) the construction has been proved
impossible. There are three other classical Greek problems for which
asolution has been sought in vain: to trisect an arbitrary given angle,
todouble a given cube (i.e. to find the edge of a cube whose volume shall
be twice that of a cube with a given segment as its edge) and to square
the circle (i.e. to construct a square having the same area as a given
117
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circle). In all these problems, ruler and compass are the only ing by,
ments permitted.

Unsolved preblems of this sort gave rise to one of the most remarkg) ble
and novel developments in mathematics, when, after centuries of fyj
search for solutions, the suspicion grew that these problems might
definitely unsolvable. Thus mathematicians were challenged to inveg
gate the question: How s it possible to prove that certain problems canpy
be solved? tion: How can all constructible problems be completely charac-

In algebra, it was the problem of solving equations of degree 5 apg @88 s/0d? After we have answered this question, it will be an easy
higher which led to this new way of thinking. During the sixteep ter to show that the problems mentioned above do not fall into this
century mathematicians had learned that algebraic equations of deg gory.

3 or 4 could be solved by a process similar to the elementary meth + the age of seventeen Gauss investigated the constructibility of
for solving quadratic equations. All these methods have the follo lar “p-gons” (polygons with p sides), where p is a prime number.
characteristic in common: the solutions or “roots” of the equation construction was then known only for p = 3 and p = 5. Gauss
be written as algebraic expressions obtained from the coefficients of he overed that the regular p-gon is constructible if and only if p is a
equation by a sequence of operations, each of which is either a rationg ne “Fermat number,”

operation—addition, subtraction, multiplication, or division—or the '
traction of a square root, cube root, or fourth root. One says t]
algebraic equations up to the fourth degree can be solved by radica
(radix is the Latin word for root). Nothing seemed more nat
than to extend this procedure to equations of degree 5 and higher, by
using roots of higher order. All such attempts failed. Even distin
guished mathematicians of the eighteenth century deceived themselves
into thinking that they had found the solution. It was not until ea
in the nineicenth century that the Italian Ruffini (1765-1822) and
Norwegian genius N. H. Abel (1802-1829) conceived the then revo
tionary idea of proving the impossibility of the solution of the gener
algebraic equation of degree n by means of radicals. One must clear
understand that the question is not whether any algebraic equation of
degree n possesses solutions. This fact was first proved by Gaussin
his doctoral thesis in 1799. So there is no doubt about the existe
of the roots of an equation, especially since these roots can be found by
suitable procedures to any degree of accuracy. The art of the nu

- merical solution of equations is, of course, very important and highly
developed. But the problem of Abel and Ruffini was quite different:
can the solution be effected by means of rational operations and radical
alone? It was the desire to attain full clarity about this question that
inspired the magnificent development of modern algebra and group
theory started by Ruffini, Abel, and Galois (1811-1832). i

The question of proving the impossibility of certain geometrical con-

ructions provides one of the simplest examples of this trend in algebra.
the use of algebraic concepts we shall be able in this chapter to
the impossibility of trisecting the angle, constructing the regular
on, or doubling the cube, by ruler and compass alone. (The
yroblen of squaring the circle is much more difficult to dispose of; see
40.) Our point of departure will be not so much the negative question
he impossibility of certain constructions, but rather the positive

=2" + 1L

1f{ia first Fermat numbers are 3, 5, 17, 257, 65537 (see p. 26). So
whelmed was young Gauss by his discovery that he at once gave
;;,; his intention of becoming a philologist and resolved to devote his
to mathematics and its applications. He always looked back on
first of his great feats with particular pride. After his death, a
nze statue of him was erected in Goettingen, and no more fitting
or could be devised than to shape the pedestal in the form of a
ar 17-gon.

‘When dealing with a geometrical construction, one must never forget
at the problem is not that of drawing figures in practice with a certain
egree of accuracy, but of whether, by the use of straightedge and
pass alone, the solution can be found theoretically, supposing our
nstruments to have perfect precision. What Gauss proved is that his
onstructions could be performed in principle. His theory does not
oncern the simplest way actually to perform them or the devices which
could be used to simplify and to cut down the number of necessary steps.
This is a question of much less theoretical importance. From a prac-
tical point of view, no such construction would give as satisfactory a
result as could be obtained by the use of a good protractor. Failure
properly to understand the theoretical character of the question of geo-
metrical construction and stubbornness in refusing to take cognizance
of well-established scientific facts are responsible for the persistence of
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ive characterization of geometrical objects by real numbers, based on
,i' introduction of the real number continuum, that provides the
oundation for the whole theory.

_ First we observe that some of the simplest algebraic operations corre-
. d to elementary geometrical constructions. If two segments are
n with lengths @ and b (as measured by a given “unit” segment),
it is very easy to construct @ + b, @ — b, ra (where r is any rational

—umber), a/b, and ab.

an unending line of angle-trisectors and circle-squarers. Those amg,
them who are able to understand elementary mathematics might py,
by studying this chapter. ;

Once more it should be emphasized that in some ways our cong,
of geometrical construction seems artificial. Ruler and compasg .
certainly the simplest instruments for drawing, but the restriction ¢,
these instruments is by no means inherent in geometry. As the G
mathematicians recognized long ago, certain problems—for exam .
that of doubling the cube—can be solved if, e.g., the use of a ruler in To construct @ + b (Fig. 27) we draw a straight line and on it mark
form of a right angle is permitted; it is just as easy to invent instrumengg 5 & with the compass the distances OA = a and AB = b. Then OB =
other than the compass by means of which one can draw ellipses, hyp b. Similarly, for @ — b we mark off OA = ¢ and AB = b, but
bolas, and more complicated curves, and whose use enlarges considers time with AB in the opposite direction from OA. Then OB =
the domain of constructible figures. In the next sections, howeve b. To construct 3a we simply add @ 4+ a + a; similarly we can

shall adhere to the standard concept of geometrical constructions
3]

only ruler and compass. cr___mb_ﬁ_.ra
F—a—+b
o
PART I ]———r a ———1p o 5 A
O b d—— b — ok s, MR
IMPOSSIBILITY PROOFS AND ALGEBRA Fig. 27, Construstion of & b and & — b Fig, g8 Blsstioion a8

§1. FUNDAMENTAL GEOMETRICAL CONSTRUCTIONS g J
U| Q}V fronig A

1. Construction of Fields and Square Root Extraction
To shape our general ideas we shall begin by examining a few of

%,

classical constructions. The key to a more profound understan < .
lies in translating the geometrical problems into the language of algebra, 0 —1—wD ] \ b
Any geometrical construction problem is of the following type: a certain T ¥

Fig. 20. Construction of a/b. Fig. 30. Construction of ab.

set of line segments, say @, b, ¢, --- , is given, and one or more other
segments Z,y, -+, are sought. It is always possible to formulate prob-
lems in this way, even when at first glance they have a quite different
aspect. The required segments may appear as sides of a triangle to
constructed, as radii of circles, or as the rectangular coérdinates
certain points (see e.g. p. 137). For simplicity we shall suppose that
only one segment z is required. The geometrical construction then
amounts to solving an algebraic problem: first we must find a relation-
ship (equation) between the required quantity x and the given quanti-
ties @, b, ¢, -+ - ; next we must find the unknown quantity z by solving
this equation, a.nd finally we must determine whether this solution can
be obtained by algebraic processes that correspond to ruler and compass
constructions. It is the principle of analytic geometry, the quantits-

1 . 5
construct pa, where p is any integer. We construct a/3 by the following

device (Fig. 28): we mark off 04 = a on one line, and draw any second
?jjne through 0. On this line we mark off an arbitrary segment OC = ¢,
and construct OD = 3¢c. We connect A and D, and draw a line through
C parallel to AD, intersecting OA at B. The triangles OBC and 04D
‘are similar; hence OB/a = OB/OA = 0C/0D = 1/3, and OB = a/3.
In the same way we can construct a/g, where ¢ is any integer. By
performmg this operation on the segment pa, we can thus construct ra,
where 7 = p/q is any rational number.

- To construct a/b (Fig. 29) we mark off OB = b and OA = a on the
sides of any angle O, and on OB we mark off 0D = 1. Through D we
~draw a line parallel to AB meeting 04 in C. Then OC will have the
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length a/b. The construction of ab is shown in Figure 30, where A D j; isg

line parallel to BC through A. i
From these considerations it follows that the “rational” algebraic prog.

esses,—addition, subtraction, multiplication, and division of knowy
quantltles—can be performed by geometrical constructions. From
given segments, measured by real numbers a, b, ¢, - -+ , we can, by s
cessive application of these simple constructions, construct any quant;
that is expressible in terms of @, b, ¢, -+ in a rational way, i.e. by

peated application of addition, subtraction, multiplication and divisio

The totality of quantities that can be obtained in this way froy
a, b, ¢, --- constitute what is called a number field, a set of numbey
such that any rational operations applied to two or more members
the set again yield a number of the set. We recall that the ratio

numbers, the real numbers, and the complex numbers form such fields,

In the present case, the field is said to be generated by the given numb-e:_' ;
a, br (U

The decisive new construction which carries us beyond the field just

obtained is the extraction of a square root: if a segment a is glven;
then v/a can also be constructed by using
only ruler and compass. On astraight line we
mark off 04 = @ and AB = 1 (Fig. 31). We
draw a circle with the segment OB as its dia-
meter and construct the perpendicular to OB
through A, which meets the circle in C. The
triangle OBC has a right angle at C, by the

theorem of elementary geometry which states that an angle inscribed
£ ABC, the right |

in a semicircle is a right angle. Hence, Z0CA =
triangles 0AC and CAB are similar, and we have for z = AC,

= va.

2
r=a,

B
[

2. Regular Polygons

Let us now consider a few somewhat more elaborate construction
Suppose that a regular
decagon is inscribed in a circle with radius 1 (Fig. 32), and call it
Since z will subtend an angle of 36° at the center of the circle,
the other two angles of the large triangle will each be 72° and hence

problems. We begin with the regular decagon.

side .
the dotted line which bisects angle A4 divides triangle OAB into t

isosceles triangles, each with equal sides of length 2. The radius of
circle is thus divided into two segments, z and 1 — =z.

Fig. 31. Construction of vz,

Since OARB

REGULAR POLYGONS 123

g. nilar to the smaller isosceles triangle, we have 1 /a: = z/(1 — z).
Trom this proportion we get the quadratic equation z* + z — 1 = 0,
+he solution of which is z = (4/5 — 1)/2. (The other solution of the
~quation is irrelevant, since it yields a negative z.) From this it is
oJear that = can be constructed geometrically. Having the length z, we
'” ay now construct the regular decagon by marking off this length ten
nes as a chord of the circle. The regular pentagon may now be
sonstructed by joining alternate vertices of the regular decagon.

Instead of constructing +/5 by the method of Figure 31 we can also obtain
it as the hypotenuse of a right triangle whose other sides have lengths 1 and 2.
\, o then obtain z by subtracting the unit length from 4/5 and bisecting the result.

- The ratio OB:AB of the preceding problem has been called the
golden ratio, because the Greek mathematicians considered a rectangle

A

A,

Fig. 32 Regular decagon. Fig. 33. Regular hexagon.

whose two sides are in this ratio to be aesthetically the most pleasing.
ts value, incidentally, is about 1.62.

~ Of all the regular polygons the hexagon is simplest to construct. We
start with a circle of radius r; the length of the side of a regular hexagon
inscribed in this cirele will then be equal to . The hexagon itself can
be constructed by successively marking off from any point of the circle
chords of length » until all six vertices are obtained.

- From the regular n-gon we can obtain the regular 2n-gon by bisecting
he arc subtended on the circumseribed circle by each edge of the n-gon,
ing the additional points thus found as well as the original vertices for
the required 2n-gon. Starting with the diameter of a circle (a “2-gon”),
Wwe can therefore construct the 4, 8, 16, ... , 2"-gon. Similarly, we can
obtain the 12-, 24-, 48-gon, etc. from the hexagon, and the 20-, 40-gon,
ete, from the decagon.
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|
If 5. denotes the length of the side of the regular n-gon inscribed in the --h'
circle (cirele with radius 1), then the side of the 2r-gon is of length

=Vi-vi-&

This may be proved as follows: In Figure 34 s, is equal to DE = 2DC, s,, equy
to DB, and AB equal to 2. The area of the right triangle ABD is give
iBD- AD and by 34AB-CD. Since AD = 4/AB* — DB?, we find, by substit

Ezercise: Since 2™ — «, prove as a consequence that
‘\/2+'\/2+"'+‘\/§-—32 a8 f—> oo,
7 Bquare roots.

~ The results obtained thus far exhibit the following characteristic
feature: The sides of the 2"-gon, the 5-2"-gon, and the 3-2"-gon, can all
found entirely by the processes of addition, subtraction, multiplication,
division, and the extraction of square roots.

on = 82\ & — 8 or 8 = 53, (4 — s1n).
*3. Apollonius’ Problem ¥

A_nother construction problem that becomes quite simple from the
algebraic standpoint is the famous contact problem of Apollonius already
ntioned. In the present context it is unnecessary for us to find a
ticularly elegant construction. What matters here is that in prin-
ciple the problem can be solved by straightedge and compass alone.
We shall give a brief indication of the proof, leaving the question of a
‘more elegant method of construction to page 161.

- Let the centers of the three given circles have coérdinates (z1, %1),
(@2, ¥2) and (73, ys), respectively, with radii 7y, s, and ;. Denote the
center and radius of the required circle by (z, %) and ». Then the condi-
n that the required circle be tangent to the three given circles is
tained by observing that the distance between the centers of two
gent circles is equal to the sum or difference of the radii, according
as the circles are tangent externally or internally, This yields the

Solving this quadratic equation for z = sf,. and observing that o must be Jeg
than 2, one easily finds the formula given above.

Fig. 34,

From this formula and the fact that s (the side of the square) is equal to \/ir:
it follows that
3!"'\/2—‘\/5, ﬂl"'\/2—‘\/2+-\/§’
. 1/2 - \/2'*"\/2-[-\/2_, ete.

As a general formula we obtain, for n > 2,

8;--=V2—‘\/2+»\/2+ +\/‘ ;

with n — 1 nested square roots. The circumference of the 2"-gon in the circle
is 2"s; . As n tends to infinity, the 2"-gon tends to the circle. Hence PACE
approaches the length of the circumference of the unit circle, which is by defini-
tion 2x. Thus we obtain, by substituting m for n — 1 and cancelling a factor 2,
the limiting formula for =:

2 ‘\/2'—\/2+‘\/§+...+\/§ — r a8 m— w0,

m square roots

@E—2)+@—wm) — (rxtnr) =
(F—2) 4+ @ —w) — (rx£n) =0,
—2)+@—y)’— (r£m) =0,

(la.) e T —22m — 2y £ 2+ 2+ s — 1 =0,

etc. The plus or minus sign is to be chosen in each of these equations
according as the circles are to be externally or internally tangent. (See
Fig. 35.) Equations (1), (2), (3) are three quadratic equations in three
unknowns z, y, r with the property that the second degree terms are
the same in each equation, as is seen from the expanded form (la.)
Hence, by subtracting (2) from (1), we get a linear equation in z, y, r
(4) az + by + cr = d,

Where @ = 2(z, — z,), etc. Similarly, by subtracting (3) from (1), we
get another linear equation,

(5) a'z + by + ¢'r = d'.
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[Ty

Solving (4) and (5) for z and y in terms of r and then substituting in 1)

we get a quadratic equation in r, which can be solved by rational Operg,

tions and the extraction of a square root (see p. 91). There wil] in
general be two solutions of this equation, of which only one wil] b§
positive. After finding r from this equation we obtain z and ¥ from the
two linear equations (4) and (5). The circle with center (z, y) ap
radius r will be tangent to the three given circles, In the whole Proces
we have used only rational operations and square root extractions. Jj
follows that r, z, and y can be constructed by ruler and compass along

0
B

Fig. 35. Apollonius circles.

There will in general be eight solutions of the problem of Apollonius,
corresponding to the 2.2.2 = 8 possible combinations of -+ and — signs
in equations (1), (2), and (3). These choices correspond to the condi-

tions that the desired circles be externally or internally tangent to each
It may happen that our algebraic procedure
This will be the
case, for example, if the three given circles are concentric, so that no

of the three given circles.
does not actually yield real values for z, ¥, and r.

solution to the geometrical problem exists. Likewise, we must expect
possible “degenerations” of the solution, as in the case when the three
given circles degenerate into three points on a line.
lonius circle degenerates into this line. We shall not discuss these

Then the Apok |
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Sossibilities in detail; a reader with some algebraic experience will be
Ie to complete the analysis.

#§2. CONSTRUCTIBLE NUMBERS AND NUMBER FIELDS

1. General Theory

Qur previous discussion indicates the general algebraic background
of geometrical constructions. Every ruler and compass construction
consists of a sequence of steps, each of which is one of the following:
) connecting two points by a straight line, 2) finding the point 6f
intersection of two lines, 3) drawing a circle with a given radius about
point, 4) finding the points of intersection of a circle with another
circle or with a line. An element (point, line, or circle) is considered to
pe known if it was given at the outset or if it has been constructed in
some previous step. For a theoretical analysis we may refer the whole
construction to a codrdinate system z, y (see p. 73). The given ele-
ments will then be represented by points or segments in the z, y plane.
1f only one segment is given at the outset, we may take this as the unit
length, which fixes the point z = 1, y = 0. Sometimes there appear
igrbitrary’ elements: arbitrary lines are drawn, arbitrary points or radii
are chosen. (An example of such an arbitrary element appears in
constructing the midpoint of a segment; we draw two circles of equal

In such cases we may choose the element to be rational;
i.e. arbitrary points may be chosen with rational coordinates z, y, arbi-
trary lines az + by + ¢ = 0 with rational coefficients a, b, ¢, arbitrary
circles with centers having rational codrdinates and with rational radii.
‘We shall make such a choice of rational arbitrary elements throughout;
if the elements are indeed arbitrary this restriction cannot affect the
result of a construction.

For the sake of simplicity, we shall assume in the following discussion
‘that only one element, the unit length 1, is given at the outset. Then
according to §1 we can construct by ruler and compass all numbers
that can be obtained from unity by the rational processes of addition,
subtraction, multiplication and division, i.e. all the rational numbers
/s, where r and s are integers. The system of rational numbers is
“closed” with respect to the rational operations; that is, the sum, differ-
ence, product, or quotient of any two rational numbers—excluding divi-
sion by 0, as always—is again a rational number. Any set of numbers
possessing this property of closure with respect to the four rational
‘operations is called a number field.
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very number in the “extension field” F; has been established. We may
~ow extend the scope of our constructions, e.g. by taking a number
Fy,sayk =1+ 4/2, and extracting the square root, thus obtaining

(Hint: If a =|= 0 is a number in the field F, then a/a = 1 belongs to F, and fmm
we can obtain any rational number by rational operations.)

number field and hence all the rational points (i.e. points with bgty V1 + 42 =k,

codrdinates rational) in the z, ¥ plane. We can reach new, itla.t.ion d with it, according to §1, the field consisting of all the numbers
numbers by using the compass to construct e.g. the number 4/2 whi; B

as we know from Chapter II, §2, is not in the rational field. Hayj p+ avk,

constructed 4/2 we may then by the “rational” constructions of § where now p and ¢ may be arbitrary numbers of Fy, i.e. of the form
find all numbers of the form - bx/ﬁ with a, b in Fy, i.e. rational. s

1) a+bv2,
where @, b are rational, and therefore are themselves constructible.
may likewise construct all numbers of the form

a+ b2 .
m or (a+ b\/é)(c + d\/_Z),

Ezemsm Represent

ey, L) Vivitr s (+vRe-v(va+ \/k)
TRy N OV N 1+v2k

n the form (2).
~ All these numbers have been constructed on the assumption that only one

where @, b, ¢, d are rational. These numbers, however, may alwaysbs | gegment was given at the outset. If two segments are given we may select one
of them as the unit length. In terms of this unit suppose that the length of the

written in the form (1). For we have i ; :
other segment is a. Then we can construct the field G consisting ‘of all numbers

a+bvV2 _a+bv/2 ¢c—dv/2 of the form

ctdv2 c+dv2 c— dv2 ana™ + Gmoaa™l 4 oo 4 gra + ag
_ac—2bd | bc — ad 3 baa® + bpra™t + oo bia -+ b
T — o + ¢t — 2d? \/E =Pt Q"\/ﬁ,ﬁ where the numbers ao, +++, an and by, +++ , by are rational, and m and n are

. i itrary positive integers.
where p, ¢ are rational. (The denominator ¢’ — 2d* cannot be zezio,:

for if ¢* — 2d° = 0, then A/2 = ¢/d, contrary to the fact that \/2_|£
irrational.) Likewise i
(@ +bv2)(e + dv/2) = (ac + 2bd) + (be + ad)\/Z = 1 + s/3,
where r, s are rational. Hence all that we reach by the construction
of 4/2 is the set of numbers of the form (1), with arbitrary rational a,b. |
Ezercises: Fromp =14 /2, ¢ =2 — 4/2, 7 = —3 + +/2 obtain the numben

_bar :D+qr
14+ g+ prt!

~ Ezercise: If two segments of lengths 1 and « are given, give actual construc-
nns forl+e+ea? 14+ a)/(l — a),

Now let us assume more generally that we are able to construct all
the numbers of some number field . We shall show that the use of the
uler alone will never lead us out of the field F. The equation of the
aight line through two points whose codrdinates a:, by and az , bs are
0 Fis (by — ba)z + (a2 — a))y + (aib: — ash)) = 0 (see p. 491); its
coefficients are rational expressions formed from numbers in F, and
y o+, o —p)? therefore, by definition of a field, are themselves in F. Moreover,

in the form (1).

These numbers (1) again form a field, as the preceding discussionf . . . v8 — By'
shows. (That the sum and difference of two numbers of the form () ound by solving these two simultaneous equations, are z = of — B’
are also of the form (1) is obvious.) This field is larger than the rationﬂ-‘ oy — v - b L .
field, which is a part or subfield of it. But, of course, it is smallefi ¥ = S5 g 7+ Smmce these are likewise numbers of F, it is clear that

than the field of all real numbers. Let us call the rational field Fy and the use of the ruler alone cannot take us beyond the confines of the
the new field of numbers of the form (1), F1. The constructibility of | fi
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Ezercises: The lines z + 4/2y — 1 = 0, 2z — y + /2 = 0, have coefficientg;_
the field (1). Calculate the codrdinates of their point of intersection, and ve )
that these have the form (1).—Join the points (1, 4/2) and (1/2, 1 — 4/2) b
line az + by + ¢ = 0, and verify that the coefficients are of the form (1).-_.

the same with respect to the field (2) for the lines v/1 + V22 + /2y = }

(1++/2)z — y=1—4/1+ /2, and the points (1/2, — 1), (1++/3, \/l_m):

respectively.

We can only break through the walls of F by using the COmpagy
For this purpose we select an element & of F which is such that Vi

isnot in . Then we can construct /% and therefore all the numbegrg

i

@) a + bVF,
where a and b are rational, or even arbitrary elements of F. The sum
and the difference _9f two numbers @ + by/k and ¢ + d\/F, theip
product, (¢ + bv/k)(c + dv/k) = (ac + kbd) + (ad + be)\/F, ang
their quotient,
a+bVvEk  (a+ bvVE)(c — d\/E) _ac—kbd_]_bc—ad\/.ﬁ
c+dvE ¢ — kd Tl —kd T E—kEV "
are again of the form p + ¢+/% with p and ¢in F. (The denominater

¢® — kd’ cannot vanish unless ¢ and d are both zero ; for otherwise wg |

would have VE = c¢/d, a number in F, contrary to the assumption
that v/k is not in F.) Hence the set of numbers of the form a + bv/k

forms a field F'. The field F’ contains the original field F, for we may,
in particular, choose b = 0. F’is called an extension field of F, and F

a subfield of F’,

As an example, let F be the field @ + b+/2 with rational a, b, and take
k = 4/2. Then the numbers of the extension field F’ are represented
by p + gv/2, where pand gare in F, p = a + /2, ¢ = o’ + b'A/3
with rational a, b, a’, ¥’. Any number in F’ can be reduced to that
form; for example

L N3 N3

V2+ 72 (V24 V2)(V2-V2) 2-+/2
_ V2 N2 _\/‘2'(2+x/§)_(2+\/§)\4/§
2—-42 2-—-+4/2° 4—2 4—2
= (L4 V2) = (1 + 19 V2

Exercise: Let F be the field p + qm where p and ¢ are of the form

a + b4/2. a, b rational. Represent 1+—2+—@ in this form.
2 —3V2+42
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We have seen that if we start with any field ¥ of constructible num-
g containing the number &, then by use of the ruler and a single
j pljca,tion of the compass we can construct /& and hence any number
f the form a + b\/k, where a, b, are in F.

* We now show, conversely, that by a single application of the compass

o can obtain only numbers of this form. For what the compass does

5 a construction is to define points (or their codrdinates) as points of

tersection of a circle with a straight line, or of two circles. A circle
with center £, 7 and radius r has the equation (z — 4 (y — ﬂ.)z - ?:2;
ence, if £ 7, r are in F, the equation of the circle can be written in

the form

2+ ' + 20z + 28y + v = 0,

with the coefficients «, 8, v in F. A straight line,

ax + by +c¢=0,

F, as we have seen on page 129. By eliminating y from these simulta-
neous equations, we obtain for the z-codrdinate of a point of inter-
section of the circle and line a quadratic equation of the form

Az 4+ Bz + C = 0,

with coefficients A, B, C in F (explicitly: 4 = o* + b, B =
2(ac + b'a — abB), C = ¢* — 2beB + by). The solution is given by the
;formula

_ —B+/B*— 4AC

- 24 ¥

which is of the form p + ¢+/%, with p, ¢, k in F. A similar formula
holds for the y-codrdinate of a point of intersection.
Again, if we have two circles,

2+ 4y + 2z + 28y +v =0,
2+ 9+ 22+ 28y + 4 =0,

then by subtracting the second equation from the first we obtain the
linear equation

2@—d)x+2B8—-8w+ @ —7%)=0

which may be solved with the equation of the first circle as before.
In either case, the construction yields the 2- and y-cobrdinates of either

x
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o of the number n of necessary extensions does not matter; in a way
it measures the degree of complexity of the problem.

" The following example may illustrate the process. We want to reach
\I' e numbﬂr

p + ¢\/k, with p, ¢, k in F. In particular, of course, 4/k may 11;3

belong to F, e.g., when & = 4, Then the construction does not yle;
anything essentially new, and we remain in . But in general this w
not be the case.

Ve+ /Y Vitvatv3+s.

1t Fo denote the rational field. Putting ko = 2, we obtain the field F, ,
which contains the number 1 4+ /2. We now take ky = 1 + /2
and k2 = 3. As a matter of fact, 3 is in the original field Fo, and
. fortior: in the field F,, so that it is perfectly permissible to take
= 3. We then take ks = V1 + /2 + +/3, and finally k; =

1+ 42+ /3 + 5. The field Fy thus constructed contains the
ed number, for 4/6 is also in Fs, since 4/2 and /3, and therefore
r product, are in Fy and therefore also in F .

Ezercises: Consider the circle with radius 24/2 about the origin, and the luﬁ
joining the points (1/2, 0), (44/2, +/2). Find the field F’ determined by t},
codrdinates of the points of intersection of the eirele and the line. Do the s
with respect to the intersection of the given circle with the circle with radj

4/2/2 and center (0, 2+/2).

Summarizing again: If certain quantities are given at the outset, thep en
we can construct with a straightedge alone all the quantities in
field F generated by rational processes from the given quanti
Using the compass we can then extend the field F of constructih
quantities to a wider extension field by selecting any number % of }
extracting the square root of k, and constructmg the field ' consisting
of the numbers a + b\/%, where aand barein F. Fis called a s‘ubﬁe' |
of F'; all quantities in F' are also contained in F’, since in the expression v
a + b\/ k we may choose b = 0. (It is a.ssumed that /% is a ney
number not lying in F, since otherwise the process of adjunction ¢f
/% would not lead to anything new, and ¥’ would be identical with
We have shown that any step in a geometrical construction (dra
a line through two known points, drawing a circle with known ce
and radius, or marking the intersection of two known lines or circles)
will either produce new quantities lying in the field already known tti
consist of constructible numbers, or, by the construction of a square
root, will open up a new extension field of constructible numbers. I

The totality of all constructible numbers can now be described with
precision. We start with a given field Fy , defined by whatever qua
ties are given at the outset, e.g. the field of rational numbers if on
single segment, chosen as the unit, is given. Next, by the adjune-
tion of 4/%o , where ko is in Fy , but 4/% is not, we construct an extension
field F, of constructible numbers, consisting of all numbers of the form
as + bov/ks, where ao and b, may be any numbers of Fy. Then F: )
a new extension field of F;, is defined by the numbers a; + b;
where a; and b, are any numbers of Fy, and %, is some number of E{
whose square root does not lie in Fy. Repeating this procedure, we |
shall reach a field F, after n adjunctions of square roots. Constructible
numbers are those and only those which can be reached by such a sequence of '
extension fields; that is, which lie in a field Fy of the type described. The

Ezercises: Verify that, starting with the rational field, the side of the regular
on (see p. 124) is a constructible number, with n = m — 1. Determine the
squence of extension fields. Do the same for the numbers

VI+VZ+VI+6 (VB + I/ + VT -3),
(Ve+ V3 (VE+VI+ 425 B+ V3 - V7).

{ 2. All Constructible Numbers are Algebraic

If the initial field F is the rational field generated by a single segment, then
all constructible numbers will be algebraic. (For the definition of algebraic
numbers see p. 103). The numbers of the field Fy are roots of quadratic equa-
, those of Fj are roots of fourth degree equations, and, in general, the num-
of F are roots of equations of degree 2% with rational coefficients. To show
his for a field s we may first consider a8 an examplez=+v2++/3 1 /3. We
have (z — V2! =34+ V2,22 +2—-2vV2z =34+ V2, or 2 — 1 = V32 + 1),
uadratlc equation with coefficients in a field F, . By squaring, we finally

(2 — 1)2 = 2(2z + 1),

which is an equation of the fourth degree with rational coefficients.
In general, any number in a field F» has the form

z=p+ ¢V,

re p, ¢, w are in a field F,, and hence have the form p = a + b4/, ¢ =
c+dy/3, w=c¢ + fA/s, where a, b, ¢, d, ¢, f, s are rational. From (4) we have

z* — 2pz + p* = ¢'w,
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here P, ¢, and w belong to some Fi_;, but 4/w does not. Now, by a
: ple but importa.nt type of algebraic reasoning, we shall show that if
- » + gv/w is a solution of the cubic equation (1), then B =
e q\/tTJ is also a solution. Since z is in the field 7y, 2* and 2°* — 2

where all the coefficients are in a field Iy , generated by v's. Hence this eqy,
tion may be rewritten in the form

2?4 uz + v = Vs(rz + 1),

where 7, 8, {, u, v are rational. By squaring both sides we obtain an equatjq,
of the fourth degree are also in Fz, and we have

(5) (22 + uz 4 v)2 = s(rz + 1)? 2t — 2 =a+ by,

with rational coefficients, as stated. - where @ and b are in Fi ;. By an easy calculation we can show that
Exercises: 1) Find the equations with rational coefficients for a) _r,a, '+ 3pg'w — 2, b = 3p°¢ + ¢*w. If we put
V2 +V3ib)z =2+ 4/3;0) 2 = 1/v/5 + V3. # = e BASE -

2) Find by a similar method equations of the eighth degree for a) z &
'hell a substitution of —g¢ for ¢ in these expressions for @ and b shows

V24Vt Vb e =vVI+ VIt VEz=1+/5+VB+ Vi
To prove the theorem in general for z in a field Fj with arbitrary k, we
by the procedure used above that = satisfies a quadratic equation with ¢

cients in a field F;—; . Repeating the procedure, we find that = satisfies an eli Y 'ya — 2 =a— byv/uw.
tion of degree 22 = 4 with coefficients in a field Fy_s , etc.

Ezxercise: Complete the general proof by using mathematical inductio . Wag Supp osed to be a root of #° — 2 = 0, hence
show that = satisfies an equation of degree 2! with coefficients in a field F a + b\/ﬁ =

0 < I < k. This statement for [ = k is the desired theorem. !
*$3. THE UNSOLVABILITY OF THE THREE GREEK PROBLEM§

1. Doubling the Cube

Now we are well prepared to investigate the old problems of trisect
the angle, doubling the cube, and constructing the regular hepta;
We consider first the problem of doubling the cube. If the given cuh
has an edge of unit length, its volume will be the cubic unit; it is req
that we find the edge = of a cube with twice this volume. The required
edge = will therefore satisfy the simple cubic equation

(1) f—2=0.

Our proof that this number z cannot be constructed by ruler and comps
alone is indirect. We assume tentatively that a construction is possibl
According to the preceding discussion this means that z lies in s
field F obtained, as above, from the rational field by successive exten-
sions through adjunction of square roots. As we shall show, t'
assumption leads to an absurd consequence.

We already know that z cannot lie in the rational field Fy , for
is an irrational number (see Exercise 1, p. 60). Hence 2 can
lie in some extension field Fj, where k is a positive integer. We
as well assume that & is the least positive integer such that z lies in
some I}, It follows that = can be written in the form

z=p+ ¢vw

both be zero. If b were not zero, we would infer from (3) that v/w =
_g/b. But then 4/w would be a number of the field Fr_; in which a
and b lie, contrary to our assumption.  Hence b = 0, and it follows
immediately from (3) that a = 0 also.

Now that we have shown that ¢ = b = 0, we immediately infer
from (2’) that y = p — ¢g+/w is also a solution of the cubic equation (1),
since 3° — 2 is equal to zero. Furthermore, ¥ # z, i.e. z — y 5 0;
for, z — ¥ = 2g+/w can only vanish if ¢ = 0, and if this were so then
¢ = p would lie in Fy_;, contrary to our assumption.

- We have therefore shown that, if z = p + ¢\/w is a root of the
:il bic equation (1), then y = p — g+/w is a different root of this equa-
tion. This leads immediately to a contradiction. For there is only
one real number z which is a cube root of 2, the other cube roots of 2
being imaginary (see p. 98); ¥y = p — g+/w is obviously real, since
?, ¢, and +/w were real,

1 Thus our basic assumption has led to an absurdlty, and hence is
proved to be wrong; a solution of (1) cannot lie in a field F, so that
doubling the cube by ruler and compass is impossible.

2. A Theorem on Cubic Equations

Our concluding algebraic argument was especially adapted to the par-
ticular problem at hand. Tf we want to dispose of the two other Greek
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problems, it is desirable to proceed on a more general basis. All threq
problems depend algebraically on cubic equations. It is a fundamenta) § contradicts the hypothesis that % is the smallest number such that
fact concerning the cubic equation ' ome Fi contains a root of (4). Hence the hypothesis is absurd, and
iei heorem is proved.
4 3 2 - Lo root of (4) can lie in such a field F . -The general t p
o il aion ek g the basis of this theorem, a construction by ruler and compass alone
proved to be impossible if the algebraic equivalent of the problem is
+the solution of a cubic equation withno rationalroots. This equivalence
1q at once obvious for the problem of doubling the cube, and will now

We

be established for the other two Greek problems.

here A/w has disappeared, so that u is a number in the field Fi-:.

that, if ), 22, 5 are the three roots of this equation, then
(5) ot ot o= —at
Let us consider any cubic equation (4) where the coefficients @, b, ¢ arg

rational numbers. It may be that one of the roots of the equation 5
rational; for example, the equation 2° — 1 = 0 has the rational root I
while the two other roots, given by the quadratic equationz® + 2 4+ 1 =
0, are necessarily imaginary. But we can easily prove the general theg.
rem: If a cubic equation with rational coefficients has no rational root, then
none of its roots is constructible starting from the rational field Fy . 1

Again we give the proof by an indirect method. Suppose = were a.

3. Trisecting the Angle

We shall now prove that the trisection of the angle by ruler and
compass alone is in general impossible. Of course, there are angles, such
190° and 180°, for which the trisection can be performed. What we
have to show is that the trisection cannot be effected by a procedure
\ for every angle. For the proof, it is quite sufficient to exhibit
e y one angle that cannot be trisected, since a valid general method
would have to cover every single example. Hence the non-existence of
g general method will be proved if we can demonstrate, for example,
‘that the angle 60° cannot be trisected by ruler and compass alone.

- We can obtain an algebraic equivalent of this problem in different
ways; the simplest is to consider an angle § asgiven by its cosine: cosf = g.
Then the problem is equivalent to that of finding the quantity = =
cos (6/3). By a simple trigonometrical formula (see p. 97), the cosine
of 6/3 is connected with that of 8 by the equation

cos 6 = g = 4 cos® (6/3) — 3 cos (6/3).

In other words, the problem of trisecting the angle 6 with cos § = ¢
‘amounts to constructing a solution of the cubic equation

42" — 3z — g = 0.

chain of extension fields, Fy, Fy, --- , Fx, as above. We may assume
that k is the smallest integer such that a root of the cubic equation (4}
lies in an extension field F.. Certainly £ must be greater than zero'i |
since in the statement of the theorem it is assumed that no root z lies
in the rational field Fy. Hence x can be written in the form )

z=p+¢vw,
where p, g, w are in the preceding field, F;_; , but /wisnot. It follows,
exactly as for the special equation, 2' — 2 = 0, of the preceding article;ll',
that another number of Fy,

y=7- 0V |
will also be a root of the equation (4) As before, we see that ¢ # 0
and hence =z = .

From (5) we know that the third root u of the equation (4) is given
by ¥ = —a — z — y. But since z + y = 2p, this means that

U= —a — 2p,

To show that this cannot in general be done, we take § = 60° so
that ¢ = cos 60° = 4. Equation (6) then becomes

16 823 — 6z = 1.
t The polynomial z* 4+ az* 4+ bz 4+ ¢ may be factored into the product )

(z = 21)(z — 22)(z — =z3), where z1, =1, 73, are the three roots of the equation |
(4) (see p. 101). Hence ;

2tazt+bz4tc=2— (4 22+ z3)2 + (2122 + 2121 + T274)2 — T1ZTeTs, 1
so that, since the coefficient of each power of z must be the same on both sides,

By virtue of the theorem proved in the preceding article, we need
‘only show that this equation has no rational root. Let# = 2z. Then

' =3 =1
—a =z + 22 + 23, b = 2123 + =125 + 2073, —C ="Z1TaT3 .
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If there were a rational number v = r/s satisfying this equatlon, whera mow that the vertices of the heptagon are given by the roots of the
and s areintegers Wlthoutacommon factor > 1, weshould haver® — 342 Tis ' '-quation

s*. From this it follows that & = »(r* — 3s) is divisible by 7, whig ,,| 2 g —1=0

means that r and s have a common factor unless r = 1. leewm ! ) ’
s*is a factor of 7* = s*(s + 3r), which means that r and s have a commgy
factor unless s = =4=1. Since we assumed that r and s had no comm.a
factor, we have shown that the only rational numbers which coylg
possibly satisfy equation (8) are +1 or —1. By substituting +1 apg
—1 for v in equation (8) we see that neither value satisfies it. Hengy
(8), and consequently (7), has no rational root, and the impossibility of
trisecting the angle is proved. ]

the coordinates z, y of the vertices being considered as the real and
imaginary parts of complex numbers z = x + yi. One root of this
equation is z = 1, and the others are the roots of the equation

A -

L=t bk 1=0,

ol amed from (9) by factoring out 2 — 1 (see p. 99). Dividing (10) «
I, ', we obtain the equation

The theorem that the general angle cannot be trisected with ruler and compagg § (. —1) 241 /z o gl /32 gt 1o b 1 =
alone is true only when the ruler is regarded as an instrument for drawi g

Btraight line through any two given points and ngthing else. In our gene: " i :37; a simple algebl‘a.ic transformation thiS may be Written in the fOl'm

12) +1/2°—3¢@+1/)+@+1/2' -2+ @+ 1/2)+1=0.
Denoting the quantity z 4+ 1/z by y, we find from (12) that

B (13) y+y-2—1=0.

We know that z, the seventh root of unity, is given by

4 0 (14) z = cos ¢ + ¢ sin ¢,

Fie: 35, Avchomatles"srisechion olun hagle. ere ¢ = 360°/7 is the angle subtended at the center of the circle by
edge of the regular heptagon; likewise we know from Exercise 2,
page 97, that 1/z = cos ¢ — 4 sin ¢, so that y = z 4+ 1/z = 2 cos ¢.
If we can construct ¥, we can ~lso construct cos ¢, and conversely.
Hence, if we can prove that y is not constructible, we shall at the same
time show that z, and therefore the heptagon, is not constructible.
Thus, considering the theorem of Article 2, it remains merely to show
;' t the equation (13) has no rational roots. This, too, is proved
indirectly. Assume that (13) has a rational root r/s, where r and s are
integers having no common factor. Then we have

J15) r’ =+ rls — s — & = 0;

whence it is seen as above that r° has the factor s, and s the factor r.
Since » and s have no common factor, each must be =£1; therefore
an have only the possible values +1 and —1, if it is to be rational.
substituting these numbers in the equation, we see that neither of
m satisfies it. Hence y, and therefore the edge of the regular hepta-
gon, is not constructible.

characterization of constructible numbers the use of the ruler was always limited
to this operation only. By permitting other uses of the ruler the totality of
possible constructions may be greatly extended. The following method for tri-
secting the angle, found in the works of Archimedes, is a good example.

Let an arbitrary angle « be given, as in Fig. 36. Extend the base of t
angle to the left, and swing a semicircle with O as center and arbitrary radiusy,
Mark two points A and B on the edge of the ruler such that AB = r. Keeping
the point B on the semicircle, slide the ruler into the position where 4 lies on
the extended base of the angle z, while the edge of the ruler passes through tlm
intersection of the terminal side of the angle & with the semicirele about 0. With |
the ruler in this position draw a straight line, making an angle y with the ex
tended base of the original angle =.

Ezercise: Show that this construction actually yields y = z/3.

4. The Regular Heptagon

We shall now consider the problem of finding the side z of a regul
heptagon inscribed in the unit circle. The simplest way to dispose of|
this problem is by means of complex numbers (see Ch. II, §5). We,
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5. Remarks on the Problem of Squaring the Circle

We have been able to dispose of the problems of doubling the ey
trisecting the angle, and constructing the regular heptagon, by
paratively elementary methods. The problem of squaring the cir
much more difficult and requires the technique of advanced m
matical analysis. Since a circle with radius r has the area =’
problem of constructing a square with area equal to that of a given
whose radius is the unit length 1 amounts to the construction of
segment of length /7 as the edge of the required square. This
ment will be constructible if and only if the number = is construct;
In the light of our general characterization of constructible num
we could show the impossibility of squaring the circle by showing
the number = cannot be contained in any field F; that can be res
by the successive adjunction of square roots to the rational field F
Since all the members of any such field are algebraic numbers, jg
numbers that satisfy algebraic equations with integer coefficients, 71
will be sufficient if the number = can be shown to be not algebraic, i,
to be transcendental (see p. 104). ol

The technique necessary for proving that = is a transcendental number
was created by Charles Hermite (1822-1905), who proved the number
e to be transcendental. By a slight extension of Hermite’s methoﬁ:
F. Lindemann succeeded (1882) in proving the transcendence of =, and
thus definitely settled the age-old question of squaring the circle. The
proof is within the reach of the student of advanced analysis, but is
beyond the scope of this book. '

.ons is by no means restricted to construction problems, but affects
'?'r'. everything in geometry. In Chapters IV and V we shall deal
"+t this general aspect of geometrical transformations. Here we shall
- dv a particular type of transformation, the inversion of the plane

5 circle, which is a generalization of ordinary reflection in a straight

g Y a transformation, or mapping, of the plane onto itself we mean a
1o which assigns to every point P of the plane another point P’, called
» smage of P under the transformation; the point P is called the
odent of P'. A simple example of such a transformation is given «
he reflecifon of the plane in a given straightline L as in a mirror:
nt P on one side of L has as its image the point P’, on the other side
[, and such that L is the perpendicular bisector of the segment PP,
transformation may leave certain points of the plane fixed; in the
use of a reflection this is true of the points on L.

. C
P

Fig. 37. Reflection of a point in a line. Fig. 38. Inversion of a point in a circle.

Other examples of transformations are the rotations of the plane about
a fixed point O, the parallel translations, which move every point a dis-
e d in a given direction (such a transformation has no fixed points),
more generally, the rigid motions of the plane, which may be thought
of as compounded of rotations and parallel translations.
The particular class of transformations of interest to us now are the
1. Cenoral Remarics | insersions with respect to circles. (These are sometimes known as cir-
reflections, because to a certain approximation they represent the
ion between original and image in reflection by a circular mirror.)
fixed plane let C be a given circle with center O (called the center
version) and radius r. The image of a point P is defined to be the
t P’ lying on the line OP on the same side of O as P and such that

OP-OP' = 1

PART II ‘
VARIOUS METHODS FOR PERFORMING CONSTRUCTI ONQSI

A

§4. GEOMETRICAL TRANSFORMATIONS. INVERSION

In the second part of this chapter we shall discuss in a systemaﬁg
way some general principles that may be applied to construction prob-
lems. Many of these problems can be more clearly viewed from the
general standpoint of “geometrical transformations”; instead of study-
ing an individual construction, we shall consider simultaneously a whole
class of problems connected by certain processes of transformation.

The clarifying power of the concept of a class of geometrical transforma-
‘\
|

The points P and P’ are said to be inverse points with respect to C.
From this definition it follows that, if P’ is the inverse point of P,




