
6370-001 - FALL 2021 - WEEK 9 (10/26, 10/28)

Exercise 1. More about finding roots.

(1) If you did not do the exercise about Hensel’s lemma last week, go back and do it!
(2) Read the section of Milne about Newton’s polygon, then do Milne’s exercise 7-8.

Exercise 2. Qp and Cp. Let Qp be an algebraic closure of Qp, and recall that the absolute value

on Qp extends uniquely to an absolute value on Qp.

(1) Show that Qp is not complete (hint: for each n ≥ 1 let ζn be a primitive nth root of unity in

Qp, and consider ∑(n,p)=1 ζnpn).
(2) Let Cp be the completion of Qp. Show Cp is algebraically closed (hint: use one of the versions

of Krasner’s lemma from the lecture).

(3) Show that C, Cp, and Qp are alll isomorphic as fields.

Exercise 3. Rings of integers and absolute values.

(1) Let K be a field that is complete for a non-archimedean absolute value ∣ ⋅ ∣. Write OK ∶= {k ∈
K, ∣k∣ ≤ 1} (last week you showed this was a subring – if you didn’t, then do it now!). If L/K
is a finite extension, show that OL is equal to the integral closure of OK in L (where here we
define OL to be the elements of absolute value ≤ 1 for the extension of ∣ ⋅ ∣ to L).

(2) Let A be a Dedekind domain, and K = Frac(A). Show that

A = {k ∈K, ∣k∣p ≤ 1 for all nonzero primes p of A.}
When K = C(t), explain what this means geometrically.

(3) Let A be a Dedekind domain, and K = Frac(A). For any prime p of A, show that the
topological closure of A in Kp (the completion of K for ∣ ⋅ ∣p), is OKp .

Exercise 4. Rings of integers in extensions of Qp are monogenic. Let K/Qp be a finite extension.
We will show that OK = Zp[α] for some α, i.e. that OK is monogenic.

(1) Let K0 be the maximal unramified subextension. Show that OK0 = Zp[ζ] for some root of
unity ζ ∈K.

(2) Let π be a uniformizer, i.e. a generator of the maximal ideal in OK . Show that OK = OK0[π].
(3) For ζ,π as above, show that OK = Zp[ζ+π] (hint: find a simple polynomial f with coefficients

in Zp such that f(ζ + π) is also a uniformizer, then apply (1) and (2)).

Exercise 5. Compare with Week 4 - Exercise 1.

(1) Show that f(x) = x3 + 3x + 12 is irreducible in Q[x].
(2) Use the strong Hensel’s lemma for roots (see last week’s worksheet) to show that f(x) has

three distinct roots in Q2.
(3) Let K = Q[x]/f(x). Deduce that OK is unramified at (2), and thus that there are three

distinct maps OK → F2.
(4) Conclude that the integral closure of Z(2) in K is not monogenic over Z(2).
(5) Why does this not contradict the previous exercise?
(6) Give an algorithm that, for any k ≥ 1, finds an irreducible polynomial g(x) such that, for

K = Q[x]/g(x), OK cannot be generated by k elements over Z.
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Exercise 6. Local fields.

(1) Suppose K is complete for a discrete non-archimedean absolute value and the residue field
of OK is finite. Show that OK is a compact and open subset of K.

It turns out that any valued field as in (1) is isomorphic to a finite extension of Qp with the p-adic
absolute value or to Fq((t)) with the t-adic absolute value. More generally, a field K complete
with respect to an absolute value is called a local field if it admits an open neighborhood U of 0
such that the closure U is compact (this implies K is locally compact). It can be shown that the
non-archimedean local fields are exactly those considered above; the only two archimedean complete
fields, R and C, are also local.

Exercise 7. Existence and uniqueness of absolute values on field extension.

(1) In the last paragraph of the proof of Theorem 7.38, Milne claims a certain sequence is a
Cauchy sequence. Verify this claim.

(2) Prove that, for K a field complete for an absolute value ∣ ⋅ ∣, any finite dimensional normed
K-vector space is equivalent to Kn with the sup norm, thus, in particular complete (two
normed vector spaces are equivalent if there is an linear homeomorphism between them).
Hint: argue by induction. At each step of the induction, show that any linear functional is
continuous by applying the inductive hypothesis to deduce that the kernel is closed.

(3) What is the relation between (1) and (2)?
(4) For K a complete field, show that any two norms on Kn are equivalent, i.e. ∃m,M > 0 s.t.

m∣∣ ⋅ ∣∣1 ≤ ∣∣ ⋅ ∣∣2 ≤M ∣∣ ⋅ ∣∣1.
Hint: Use the previous exercise and the open mapping theorem.

(5) Conclude that for L/K a finite extension, there is at most one absolute value extending the
absolute value on K.

(6) In the lecture we gave a simple algebraic argument using the theory of Dedekind domains to
show that if the absolute value on K is discretely valued then there exists an extension of
the absolute value to any finite separable extension L. Use uniqueness to deduce that

∣ ⋅ ∣L = ∣NmL/K(⋅)∣1/[L∶K].
(7) One can show in general that this formula always defines an absolute value, thus an extension

of an absolute value always exist. The archimedean case is simple because the only possibil-
ities are R and C which can be done explicitly, so the tricky part is the triangle inequality
in the general non-archimedean case. To prove this, first reduce to showing that if L =K(c)
and ∣NL/K(c)∣K ≤ 1 then also ∣NL/K(1 + c)∣ ≤ 1. To establish this latter fact, it suffices to
show that *all* of the coefficients of the minimal polynomial of c have absolute value ≤ 1; to
establish this, argue by contradiction – to get the contradiction, you’ll need to show that any
polynomial whose largest coefficient is not the leading or constant term is reducible (careful
not to use cyclic reasoning here; this can be argued directly like proving Hensel’s lemma, and
is in fact a special case of a version of Hensel’s lemma for factorization that we did not state).
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