Exercise 0.
(1) Show any \(x \in \mathbb{Q}_p \) can be expressed uniquely as \(\sum_{k=-N}^{\infty} a_k p^k \) for \(a_k \in \{0,1,\ldots,p-1\} \).
(2) Express \(-1\) in this way.

Exercise 1. Let \(K \) be a field with an absolute value \(|\cdot| \). Recall that \(|\cdot| \) is called non-archimedean if there exists \(C > 0 \) such that \(|m| \leq C \) for all \(m \in \mathbb{Z} \) (using the natural map \(\mathbb{Z} \to K \)).
(1) Show that \(|\cdot| \) is non-archimedean if and only if the strong triangle inequality holds:
\[
|x + y| \leq \max(|x|,|y|)
\]
(2) Show that \(|\cdot| \) is non-archimedean and \(|x| \neq |y| \) then
\[
|x + y| = \max(|x|,|y|).
\]
(3) Generalize (1) and (2) to \(\sum_{i=1}^{N} x_i |\).

Exercise 2 (Similar to Milne 7-2). Let \(K \) be a field with a non-archimedean absolute value \(|\cdot| \).
(1) Show that the set of elements in \(K \) of absolute value \(\leq 1 \) is a subring (called the valuation ring of \(|\cdot| \)). Why doesn’t this hold for an archimedean absolute value?
(2) We can define a norm on the vector space \(K^n \) by \(||(a_1,\ldots,a_n)|| = \max(|a_1|,\ldots,|a_n|) \). Show that “any point in a ball in \(K^n \) is its center.” (part of the exercise is to make sense what this means! This is already interesting when \(n = 1 \), so feel free to treat just that case).
(3) The freshman’s dream. If \(K \) is complete, then for \(a_n \) a sequence in \(K \), show that the series \(\sum_{n=0}^{\infty} a_n \) converges if and only if \(\lim_{n \to \infty} a_n = 0 \).

Exercise 3. Let \(K \) be complete with respect to a non-archimedean absolute value \(|\cdot| \) and \(\text{char} K = 0 \).
(1) What are the possible restrictions of \(|\cdot| \) to \(\mathbb{Q} \subseteq K \) (Hint: Ostrowski’s theorem).
(2) For which \(x \in K \) does \(\log(1 + x) \) converge, where
\[
\log(1 + x) := x - \frac{x^2}{2} + \frac{x^3}{3} + \ldots
\]
(3) For which \(x \in K \) does \(\exp(x) \) converge, where
\[
\exp(x) := 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
\]
(4) Show that \(\exp \) and \(\log \) are inverse functions when they are defined, i.e.
\[
\exp(\log(s)) = s \quad \text{and} \quad \log(\exp(t)) = t.
\]
for values of \(s \) and \(t \) where these make sense (what values are these?)

Exercise 4. If you know a little bit of functional analysis, prove that if \(\mathbb{C} \subseteq K \) and \(K \) is complete for an absolute value extending the standard absolute value on \(\mathbb{C} \), then \(\mathbb{C} = K \). Hint: \(K \) is a Banach space; what do you know about the spectrum of a bounded operator on a complex Banach space?.
(No analogous statement holds for non-archimedean absolute values – in particular, there is no “biggest” complete algebraically closed field containing \(\mathbb{Q}_p \). This fact is one reason that \(p \)-adic analytic geometry behaves like a mixture of complex analytic geometry and algebraic geometry).
Exercise 5. Consider the following result:

Theorem (Weak Approximation). Let $\cdot |_{1}, \cdot |_{2}, \ldots, \cdot |_{n}$ be nontrivial inequivalent absolute values on a field K, and let a_{1}, \ldots, a_{n} be elements of K. For any $\varepsilon > 0$, there is an element $a \in K$ such that $|a - a_{i}| < \varepsilon$ for all $1 \leq i \leq n$.

1. (Similar to Milne 7-1) Suppose A is a Dedekind domain, $K = \text{Frac}(A)$, and $|\cdot |_{i}$ are all absolute values that come from distinct primes of A. Prove the weak approximation theorem in this case by using the Chinese Remainder Theorem.
2. Prove the Weak Approximation theorem (if you get stuck this follows a section in Milne):
 (a) First show there is an element a such that $|a|_{1} > 1$ and $|a|_{i} < 1$ for $i \neq 1$.
 (b) Use this to construct an element a with $|a - 1|_{1}$ close to 0 and $|a|_{i}$ close to zero for $i \neq 1$.
 (c) Conclude.

Exercise 6. We have the following important results on roots and factorization:

Theorem (Simple Hensel's lemma for roots). Let A be a complete DVR with residue field κ (e.g. $A = \mathbb{Z}_{p}$ or $A = \kappa[[t]]$). For $f \in A[x]$, write \bar{f} for the image in $\kappa[x]$ by reducing all the coefficients modulo the maximal ideal. Show that if there is an $\bar{a} \in \kappa$ such that $\bar{f}(\bar{a}) = 0$ and $\bar{f}'(\bar{a}) \neq 0$, then there is a unique $a \in A$ with reduction \bar{a} such that $f(a) = 0$. In other words, simple roots in κ lift uniquely to simple roots in A.

Theorem (Strong Hensel's lemma for roots). Let K be complete for a non-archimedean absolute value $|\cdot |$, and let $A \subset K$ be the valuation subring / unit ball consisting of $k \in K$ with $|k| \leq 1$. Suppose $f(x) \in A[x]$ and $a_{0} \in K$ is such that $|f(a_{0})| < |f'(a_{0})|^{2}$. Show there is a unique root a of $f(x)$ with $|a - a_{0}| \leq |f(a_{0})|/|f'(a_{0})|$.

Theorem (Hensel's lemma for factorization). Let A be a complete DVR with residue field κ. Suppose $f \in A[x]$ is monic and $\bar{f}(x) = \bar{g}_{1}(x) \ldots \bar{g}_{m}(x)$ where the $\bar{g}_{i}(x)$ are pairwise coprime in $\kappa[x]$. Then the factorization lifts uniquely to a factorization $f(x) = g_{1}(x) \ldots g_{m}(x)$ in $A[x]$.

1. What is the relation between these three results? (I.e. which imply which?)
2. Compute $\mu(\mathbb{Q}_{p})$, the group of roots of unity in \mathbb{Q}_{p}. Hint: Hensel's lemma will do most of the job, but you'll also need an earlier computation for pth roots. Pay attention when $p = 2$!
3. Show that $(x^{2} - 2)(x^{2} - 17)(x^{2} - 34)$ has a root in \mathbb{Z}_{p} for all p and in \mathbb{R}, but has no root in \mathbb{Q}.
4. Prove strong Hensel's lemma for roots (Hint: use Newton's method.).
5. Show that $5x^{3} - 7x^{2} + 3x + 6$ has a root $\alpha \in \mathbb{Z}_{7}$ with $|\alpha - 1|_{7} < 1$. Find $\alpha \in \mathbb{Z}$ such that $|\alpha - a|_{7} < 7^{-4}$.
6. Prove Hensel's lemma for factorization, or read the proof in Milne (Theorem 7.33).

Exercise 7.

1. Show that for p odd, $\mathbb{Q}_{p}^{\times} \cong \mathbb{Z}_{p}^{\times} \times p^{\mathbb{Z}} \cong (1 + p\mathbb{Z}_{p}) \times \mu(\mathbb{Q}_{p}) \times p^{\mathbb{Z}}$.
2. What happens for $p = 2$? Hint: the first identity still holds, but what about the second one?
3. Compute $\mathbb{Q}_{p}^{\times}/(\mathbb{Q}_{p}^{\times})^{2}$. Hint: use Hensel's lemma or the exponential/logarithm, but pay attention when $p = 2$!
4. How many quadratic extensions of \mathbb{Q}_{p} are there?
5. Show $\mathbb{Q}_{p}^{\times}/(\mathbb{Q}_{p}^{\times})^{n}$ is finite for any p and n – in particular, if \mathbb{Q}_{p} contains the nth roots of unity, deduced that there are only finitely many cyclic degree n extensions of \mathbb{Q}_{p}. Next week we will see that there are only finitely many extensions of any fixed degree of \mathbb{Q}_{p}.