6370-001 - FALL 2021 - WEEK 8 (10/19, 10/21)

Exercise 0.

- (1) Show any $x \in \mathbb{Q}_p$ can be expressed uniquely as $\sum_{k=-N}^{\infty} a_k p^k$ for $a_k \in \{0, 1, \dots, p-1\}$.
- (2) Express -1 in this way.

Exercise 1. Let K be a field with an absolute value $|\cdot|$. Recall that $|\cdot|$ is called *non-archimedean* if there exists C > 0 such that $|m| \leq C$ for all $m \in \mathbb{Z}$ (using the natural map $\mathbb{Z} \to K$).

(1) Show that $|\cdot|$ is non-archimedean if and only if the strong triangle inequality holds:

$$|x+y| \le \max(|x|,|y|)$$

(2) Show that $|\cdot|$ is non-archimedean and $|x| \neq |y|$ then

$$|x+y| = \max(|x|, |y|)$$

- (3) Generalize (1) and (2) to $|\sum_{i=1}^{N} x_i|$.
- **Exercise 2** (Similar to Milne 7-2). Let K be a field with a non-archimedean absolute value $|\cdot|$.
 - (1) Show that the set of elements in K of absolute value ≤ 1 is a subring (called the valuation ring of $|\cdot|$). Why doesn't this hold for an archimedean absolute value?
 - (2) We can define a norm on the vector space K^n by $||(a_1, \ldots, a_n)|| = \max(|a_1|, \ldots, |a_n|)$. Show that "any point in a ball in K^n is its center." (part of the exercise is to make sense what this means! This is already interesting when n = 1, so feel free to treat just that case).
 - (3) The freshman's dream. If K is complete, then for a_n a sequence in K, show that the series $\sum_{n=0}^{\infty} a_n$ converges if and only if $\lim_{n\to\infty} a_n = 0$.

Exercise 3. Let K be complete with respect to a non-archimedean absolute value $|\cdot|$ and charK = 0.

- (1) What are the possible restrictions of $|\cdot|$ to $\mathbb{Q} \subseteq K$? (Hint: Ostrowski's theorem).
- (2) For which $x \in K$ does $\log(1 + x)$ converge, where

$$\log(1+x) \coloneqq x - \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

(3) For which $x \in K$ does $\exp(x)$ converge, where

$$\exp(x) \coloneqq 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

(4) Show that exp and log are inverse functions when they are defined, i.e.

$$\exp(\log(s)) = s$$
 and $\log(\exp(t)) = t$.

for values of s and t where these make sense (what values are these?).

Exercise 4. If you know a little bit of functional analysis, prove that if $\mathbb{C} \subseteq K$ and K is complete for an absolute value extending the standard absolute value on \mathbb{C} , then $\mathbb{C} = K$. *Hint:* K is a Banach space; what do you know about the spectrum of a bounded operator on a complex Banach space?. (No analogous statement holds for non-archimedean absolute values – in particular, there is no "biggest" complete algebraically closed field containing \mathbb{Q}_p . This fact is one reason that *p*-adic analytic geometry behaves like a mixture of complex analytic geometry and algebraic geometry).

Exercise 5. Consider the following result:

Theorem (Weak Approximation). Let $|\cdot|_1, |\cdot|_2, \ldots, |\cdot|_n$ be nontrivial inequivalent absolute values on a field K, and let a_1, \ldots, a_n be elements of K. For any $\epsilon > 0$, there is an element $a \in K$ such that $|a - a_i|_i < \epsilon$ for all $1 \le i \le n$.

- (1) (Similar to Milne 7-1) Suppose A is a Dedekind domain, K = Frac(A), and $|\cdot|_i$ are all absolute values that come from distinct primes of A. Prove the weak approximation theorem in this case by using the Chinese Remainder Theorem.
- (2) Prove the Weak Approximation theorem (if you get stuck this follows a section in Milne):
 - (a) First show there is an element a such that $|a|_1 > 1$ and $|a|_i < 1$ for $i \neq 1$.
 - (b) Use this to construct an element a with $|a-1|_1$ close to 0 and $|a|_i$ close to zero for $i \neq 1$.
 - (c) Conclude.

Exercise 6. We have the following important results on roots and factorization:

Theorem (Simple Hensel's lemma for roots). Let A be a complete DVR with residue field κ (e.g. $A = \mathbb{Z}_p$ or $A = \kappa[[t]]$). For $f \in A[x]$, write \overline{f} for the image in $\kappa[x]$ by reducing all the coefficients modulo the maximal ideal. Show that if there is an $\overline{a} \in \kappa$ such that $\overline{f}(\overline{a}) = 0$ and $\overline{f}'(\overline{A}) \neq 0$, then there is a unique $a \in A$ with reduction \overline{a} such that f(a) = 0. In other words, simple roots in κ lift uniquely to simple roots in A.

Theorem (Strong Hensel's lemma for roots). Let K be complete for a non-archimedean absolute value $|\cdot|$, and let $A \subset K$ be the valuation subring / unit ball consisting of $k \in K$ with $|k| \leq 1$. Suppose $f(x) \in A[x]$ and $a_0 \in K$ is such that $|f(a_0)| < |f'(a_0)|^2$. Show there is a unique root a of f(x) with $|a - a_0| \leq |f(a_0)/f'(a_0)|$.

Theorem (Hensel's lemma for factorization). Let A be a complete DVR with residue field κ . Suppose $f \in A[x]$ is monic and $\overline{f}(x) = \overline{g}_1(x) \dots \overline{g}_m(x)$ where the $\overline{g}_i(x)$ are pairwise coprime in $\kappa[x]$. Then the factorization lifts uniquely to a factorization $f(x) = g_1(x) \dots g_m(x)$ in A[x].

- (1) What is the relation between these three results? (I.e. which imply which?)
- (2) Compute $\mu(\mathbb{Q}_p)$, the group of roots of unity in \mathbb{Q}_p . *Hint: Hensel's lemma will do most of the job, but you'll also need an earlier computation for pth roots. Pay attention when* p = 2!.
- (3) Show that $(x^2-2)(x^2-17)(x^2-34)$ has a root in \mathbb{Z}_p for all p and in \mathbb{R} , but has no root in \mathbb{Q} .
- (4) Prove strong Hensel's lemma for roots (*Hint: use Newton's method.*).
- (5) Show that $5x^3 7x^2 + 3x + 6$ has a root $\alpha \in \mathbb{Z}_7$ with $|\alpha 1|_7 < 1$. Find $a \in \mathbb{Z}$ such that $|\alpha a|_7 < 7^{-4}$.
- (6) Prove Hensel's lemma for factorization, or read the proof in Milne (Theorem 7.33).

Exercise 7.

- (1) Show that for p odd, $\mathbb{Q}_p^{\times} \cong \mathbb{Z}_p^{\times} \times p^{\mathbb{Z}} \cong (1 + p\mathbb{Z}_p) \times \mu(\mathbb{Q}_p) \times p^{\mathbb{Z}}$.
- (2) What happens for p = 2? Hint: the first identity still holds, but what about the second one?
- (3) Compute $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$. Hint: use Hensel's lemma or the exponential/logarithm, but pay attention when p = 2!.
- (4) How many quadratic extensions of \mathbb{Q}_p are there?
- (5) Show $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^n$ is finite for any p and n in particular, if \mathbb{Q}_p contains the *n*th roots of unity, deduced that there are only finitely many cyclic degree n extensions of \mathbb{Q}_p . Next week we will see that there are only finitely many extensions of any fixed degree of \mathbb{Q}_p .