
6370-001 - FALL 2021 - WEEK 7 (10/05, 10/07)

For any positive integer n and ring R, µn(R) denotes the group of nth roots of unity in
R; µ(R) = ⋃n µn(R) denotes all roots of unity in R.

Exercise 1. Let n be a positive integer. In this exercise you will show Gal(Q(µn(C))/Q) = (Z/nZ)×

(1) Recall a simple proof of when n is a prime number. Why doesn’t this work in general?
(2) For K an algebraically closed field, describe µn(K) as an abstract group (be careful about

characteristic!)

(3) Use the complex exponential to construct an explicit isomorphism Z/nZ ∼#→ µn(C).
(4) Give a canonical isomorphism (Z/nZ)× ≅ Aut(µn(C)), where Aut(µn(C)) denotes the auto-

morphisms of the group µn(C).
(5) Show that Q(µn(C))/Q is Galois, and show that restriction of a field automorphism to the

subset µn(C) induces an injective group homomorphism

Gal(Q(µn(C))/Q)↪ Aut(µn(C)) = (Z/nZ)×

(6) Let R = Z[µn(C)]. Show that µn(R) = µn(C), and that any element of Gal(Q(µn(C))/Q)
restricts to an automorphism of the ring R.

(7) Let ℓ ∤ n be a prime number. For R as above, construct a map ιℓ ∶ R → Fℓ, and show that ιℓ
restricts to an isomorphism of groups µn(R) = µn(Fℓ).

(8) Deduce that for any ℓ ∤ n prime, ℓ mod n is in the image of the injection from (4) (hint:
suppose ζ is a generator for µn(C) = µn(R) – argue that ζℓ is a factor of the minimal
polynomial of ζ if and only if ℓ is in the image of the map of (4), then consider the factorization
of the minimal polynomial mod ℓ and the action of the ℓ-power Frobenius automorphism on
the roots in Fℓ via a map ιℓ as above.)

(9) Conclude that Gal(Q(µn(C))/Q) = (Z/nZ)×.

Exercise 2. For p a prime number, we define the Legendre symbol

(a
p
) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if a is a nonzero square mod p

−1 if a is not a square mod p

0 if p∣a.

(1) For p ≥ 3, show a↦ (ap) is a surjective homomorphism (Z/pZ)× → {±1}. What’s the kernel?

The quadratic reciprocity law says that for p and q distinct odd primes,

(p
q
) = (−1)

(p−1)(q−1)
4 (q

p
)

We prove this as follows (below we identify Gal(Q(µp(C))/Q) = (Z/pZ)×):
(2) Show −1 is a square mod q if and only if resp. q ≡ 1 mod 4.
(3) Consider Q(

√
p∗) ⊆ Q(µp(C)) (see Week 4 - Exercise 2). Use (1) to show that q ∈ (Z/pZ)×

restricts to the trivial automorphism of Q(
√
p∗) if and only if q is a square mod p.

(4) Show that q ∈ Z/pZ× induces the q-power Frobenius map x↦ xq on Z[
√
p∗]/q.

(5) Conclude.

This gives us a way to simplify (nq ) for n a product of odd primes. To work for any n, we need:

(6) Compute (2q) in terms of q mod 8 (hint: consider Q(µ8(C)).)
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Exercise 3. We will show the ring of integers in K = Q[µp(C)] is Z[µp(C)]. (You may have already
done this earlier, but here we spell out the final part of the argument in case you have not!).

(1) First note that in the previous exercise this was never actually needed! If you used it at
some point, go back and try to argue without it. Note that we also didn’t use the full ring
of integers in the quadratic extension Q(

√
p∗) – why didn’t that get us in trouble either?

(2) Recall (or prove) that the discriminant of Z[µp(C)] is (−1)
p−1
2 pp−2. Deduce that

OK[1/p] = Z[1/p][µp(C)].
(3) Let ζp ∈ µp(C) be a primitive pth root of unity. For a ∈ OK use (2), to show that there is a

minimal k such that

pka = a0 + a1(ζp − 1) + . . . + ap−2(ζp − 1)p−2

for ai ∈ Z. Show k = 0 by using prime factorization of ideals in OK (how does (p) factor?)

Exercise 4. We will need this unit computation in the next exercise.

(1) For n > 2, show L ∶= Q(µn(C)) is a CM Field (see Week 6 - Exercise 5). Hint – show
K ∶= Q(ζn + ζ−1n ), for any primitive root ζn, is a totally real subfield and [L ∶K] = 2.

(2) For n = p an odd prime compute the ring of integers in the totally real subfield.
(3) For n = p an odd prime, show O×L = µ(L) ⋅O×K (Hint: see Week 6 - Exercise 5 to see what the

other possibility is, then get a contradiction working mod (1 − ζp). See Prop 6.7 in Milne).

Exercise 5. A prime p is called regular if p ∤ hp, where hp is the class number of Q(ζp). In this
exercise, we show

Theorem (No case 1 solutions to the Fermat equation for regular primes). If p ≥ 3 is a regular
prime, then there are no integer solutions to Xp+Y p = Zp such that p ∤ XY Z and gcd(X,Y,Z) = 1.

The restriction to gcd 1 is just a convenience, as we can always factor out the gcd from an arbitrary
solution to obtain such a solution. The case 2 solutions are those such that p divides XY Z. These
are harder to rule out (see Borevich and Shafarevich - Number Theory, 378-381). If you get stuck
on anything below, the proof we are outlining follows Milne, starting halfway down p.102.

(1) First, use GP/Pari to find some regular and irregular primes.
To prove the theorem, we argue by contradiction, so assume such a solution exists:

(2) Rule out p = 3 by working modulo 9. Assume from now on that p ≥ 5.
(3) Show that we may assume p ∤ X − Y (we cannot have x ≡ y ≡ −z mod p, so if x ≡ y build a

new solution by swapping Y ↦ −Z, Z ↦ −Y .)
(4) Show

∏
ζ∈µp(C)

(X − ζY ) = Zp.

(5) Show the factors on the left are relatively prime (hint: for any ζ and ζ ′ distinct pth roots of
unity, the ideal (ζ − ζ ′) = (1 − ζ ′/ζ) = (1 − ζ ′′) for ζ ′′ a primitive pth root of unity, and thus
is equal to the unique prime ideal dividing (p)).

(6) Deduce that each ideal (X −ζY ) must be of the form Ip for an ideal I. Using the assumption
on the class group, show the ideal I is principal, so X −ζY = uαp for u ∈ O× and α ∈ O. Using
exercise 4, show we can can rewrite X − ζY = ζrvαp for v = v a unit.

(7) Show that for any α ∈ O there is an integer a such that αp ≡ a mod (p).
(8) We thus have X−ζY = ζrva mod p for a an integer and v = v. Show also that X−ζY = ζ−rva

mod p.
(9) Deduce that X + ζY − ζ2rX − ζ2r−1Y ≡ 0 mod p.

(10) Show that if 1, ζ, ζ2r, ζ2r−1 are distinct then p divides X and Y (hint: this is where we use
p ≥ 5). Deduce a contradiction.
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(11) Treat the remaining cases (where these four are not distinct).
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