
6370-001 - FALL 2021 - WEEK 6 (9/28, 9/30)

Exercise 0. Compute the units in OK for K = Q(
√
m), m < 0 squarefree.

Exercise 1 (Marcus 5-33, 34). Let m > 0 be squarefree, and let K = Q(
√
m).

(1) Suppose m ≡ 2 or 3 mod 4. Consider the numbers mb2±1, b ∈ Z, and take the smallest positive
b such that one of these is a square a2 for a ∈ Z (why does the unit theorem imply such a b
exists?). Prove that a + b

√
m is the fundamental unit in OK .

(2) Establish a similar criteria for m ≡ 1 mod 4.
(3) Compute the fundamental unit in OK for all 2 ≤m ≤ 30 except 19 and 22.

Exercise 2 (Milne 5-2 plus some more). Read the very short section ”Example: real quadratic
fields,” in Chapter 5 of Milne. Then,

(1) Use this on a few examples from the previous exercise to convince yourself it’s right.
(2) Use this to find a fundamental unit when m = 19,22, 67. Use Pari to check your answer.
(3) Prove that the continued fraction expansion for an irrational number is periodic if and only

if it generates a degree 2 extension of Q.
(4) Why does this algorithm work? (see Borevich and Shafarevich - Number Theory, Ch 2 §7.3).

Exercise 3.

(1) Fix a positive integer m and a positive real number M . Show there are only finitely many
elements α ∈ C such that
(a) α is integral over Z with minimal polynomial of degree ≤m
(b) all of conjugates of α have absolute value ≤ M (here we mean all of the other roots of

the minimal polynomial over Q, not just the complex conjugate, which is the other root
of the minimal polynomial over R).

(2) Show that if α ∈ C is integral over Z and all conjugates of α have absolute value ≤ 1 then α
is a root of unity (this was also on last week’s exercises, stated in a slightly different way).

(3) (Milne 5-1) Is the set of algebraic integers α ∈ C with minimal polynomial of degree ≤m and
∣α∣ <M is finite?

Exercise 4. Let A = Fq[t] and consider the absolute valute ∣f(t)∣ = 2deg f (where we say deg 0 =∞).

(1) Explain how to extend this absolute value to K = Frac(A) = Fq(t).
(2) Show that the completion of K for the metric induced by this absolute value is Fq((s)),

where s = 1/t.
(3) We first enumerate some facts which will be justified (to some extent) later in the course

Fact 1: This absolute value extends uniquely to any algebraic closure Fq((s)).
Fact 2: C∞ ∶= Fq((s))

∧
, the completion for the metric induced by this extended absolute

value, is algebraically closed (Krasner’s lemma) and complete.

C∞ is a complete algebraically closed extension of Fq(t) that plays the same role
as C in the theory of number fields if we think of Fq[t] as being analogous to Z!
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If m is a positive integer and M is a positive real number, show there are only finitely many
elements of C∞ that are integral over Fq[t] with minimal polynomial of degree ≤ m and all
of whose conjugates have absolute value ≤M .

(4) Deduce that if α ∈ C∞ is integral over Fq[t] and all of its conjugates have absolute value ≤ 1,
then α is a root of unity.

(5) What would happen in the previous question if we replaced Fq with C (i.e. started with C[t]
instead of Fq[t])? If you know a little bit of the algebraic geometry of curves, then explain
the answer geometrically.

Exercise 5. Suppose K is a totally real field (i.e. a number field such that every embedding K ↪ C
factors through R). Let α be an element of K such that ι(α) < 0 for every embedding ι ∶K ↪ R, and
let L =K(

√
(α)) [a number field of this form is called a CM field ].

(1) Show [L ∶K] = 2 (i.e. show α is not a square in K).
(2) Show the ranks of O×L and O×K are the same.
(3) Show that µ(L)O×K is of index at most 2 in O×L. Hint: consider the homomorphism from O×L

to µ(L)/µ(L)2, η ↦ η/η.

Exercise 6. For K a number field, the narrow class group Cl+(OK) is the quotient of the group of
fractional ideals by the group of principal fractional ideals (a) generated by elements a ∈ K× such
that ι(a) > 0 for all ι ∶K ↪ R. We write h+K = ∣Cl

+(OK)∣.
(1) Show that h+K ≤ 2rhK , where r is the number of real embeddings.
(2) Deduce the narrow class number of an imaginary quadratic field is equal to its class number.
(3) Describe in terms of a fundamental unit when the narrow class number of a real quadratic

field will be equal to the class number.
(4) The class numbers of Q(

√
3) and Q(

√
5) are 1. What are their narrow class numbers?

(5) The following is one of the main results of class field theory:

Fact. The narrow class number of K is equal to the degree of the largest abelian extension
L/K such that every prime p of OK is unramified in L. Actually, the narrow class group is
canonically isomorphic to the Galois group of this extension!

Assuming this fact, what is the maximal extension of Q(
√
5) satisfying this property? How

about Q(
√
−5) (recall Week 5 - Exercise 5)? How about Q(

√
3)?

Exercise 7 (Milne 4-5). Here’s another closely related fact from class field theory:
Fact. The class number of K is equal to the degree of the largest abelian extension L/K such that
every prime p of OK is unramified in L and every real embedding of K extends to a real embedding
of L. Actually, the class group is canonically isomorphic to the Galois group of this extension! This
extension L is called the Hilbert class field of K.

(1) Assuming the first part of this fact, give another explanation of why the narrow class group
of a imaginary quadratic field is the same as its class group.

(2) We also have the additional
Fact. Every ideal in OK becomes a principal in OL for L/K the Hilbert class field.

(3) Without assuming this fact, prove that there is some extension L of K such that every ideal
in OK becomes principal in OL (Hint: use the finiteness of the class number).
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