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Exercise 1.

(1) Compute the class groups of Q(
√
−5), Q(

√
−10), Q(

√
−23), and Q(

√
−47).

(2) It is a deep fact, due to Heegner, that Q(
√
−n) has class number 1 if and only if n =

1,2,3,7,11,19,43,67 or 163. Verify that the class number is 1 in each of these cases.

Exercise 2.

(1) Compute the Minkowski bound for Q(ζp) for p prime (you may assume that the ring of
integers is Z[ζp]. However, note that in terms of just getting a bound it is not really necessary
to assume this – why?).

(2) Compute the class group of Q(ζ5).
(3) Calculate explicitly the Minkowski bound for Q(ζ23). Use GP/Pari (or google) to find its

class number.

Exercise 3. Find a real quadratic field (i.e. one of the form Q(
√
m) with m positive squarefree)

with class number not equal to 1.

Exercise 4.

(1) Show that x3 + ax + b has discriminant −4a3 − 27b2.
(2) Show that x3 + x + 1 is irreducible over Q
(3) Show that the ring of integers in Q[x]/x3 + x + 1 is Z[x]/x3 + x + 1.
(4) Compute the class group of Q[x]/x3 + x + 1.

Exercise 5 (Milne 4-7) For K = Q(
√
−1,
√
−5), show OK = Z[

√
−1, 1+

√
5

2 ]. Show that the only

primes that ramify in K are 2 and 5, each with ramification degree 2. Deduce K/Q(
√
−5) is unram-

ified.

Exercise 6 (Not about class groups.) Suppose K is a number field (a finite extension of Q) and
α ∈ OK is such that, for every embedding ι ∶K ↪ C, ∣ι(α)∣ ≤ 1. Show that α is a root of unity.

Exercise 7. Let p be an odd prime. On last week’s worksheet, we gave a short proof using
ramification that the unique quadratic subfield of Q(ζp) is Q(

√
p∗). This exercise gives a different

method to find an explicit formula for a square root of p∗ using primitive pth roots of unity.

(1) Let m(x) = xp−1
x−1 = x

p−1 + . . . + 1. Show that m(x) ∈ Q[x] is irreducible. (Hint: use the Eisen-
stein criterion for irreducibility and the change of coordinates x = t + 1).

Let L = Q[x]/(m(x)). Part (1) implies that (m(x)) is a maximal ideal in the principal ideal
domain Q[x], thus L is a field. We write ζ ∈ L for the image of x under the quotient map.

(2) Show that ζ, ζ2, . . . , ζp−1 are a basis for L as a Q-vector space.

(3) Show that there is a unique ring homomorphism L → C sending ζ to e2πi/p and that the

image is the smallest subfield of C containing e2πi/p.
(4) For each k ∈ (Z/pZ)×, show that there is a unique field automorphism

σk ∶ L
∼+→ L

1



such that σk(ζ) = ζk.
(5) Use the uniqueness statement in (4) to show the map

(Z/pZ)× → Aut(K), k ↦ σk

is a group homomorphism.
(6) Show that if ℓ ∈ L satisifies σk(ℓ) = ℓ for all k ∈ (Z/pZ)× then ℓ ∈ Q ⊂ L. (Hint: use the basis

in (2), and the fact that m(ζ) = 0 implies ζ + ζ2 + . . . + ζp−1 = −1).

In the following, you may use without proof that Z/pZ is cyclic of order p − 1.

(7) Show that there is a unique non-trivial character χ ∶ (Z/pZ)× → {±1}, and that the kernel of
χ consists of the squares in (Z/pZ)×.

Let
τ = ∑

k∈(Z/pZ)×
χ(k)σk(ζ) = ∑

k∈(Z/pZ)×
χ(k)ζk ∈ L.

(8) Show that for any k ∈ (Z/pZ)×, σk(τ) = χ(k)τ . (Hint: χ(k) = χ(k)−1.)
(9) Show that for any k ∈ (Z/pZ)×, σk(τ2) = τ2, and deduce τ2 ∈ Q.

(10) Using the the embedding K ↪ C from (3) and Euler’s identity e2πit = cos(t)+i sin(t), to com-
pute directly τ2 when p = 3 and p = 5 (assuming the standard identities cos(±π/3) = −1/2,
cos(±π/5) =

√
5+1
4 , cos(±2π/5) =

√
5−1
4 , and their counterparts for sin.)

In the remaining steps we will show τ2 = −p if p ≡ 3 mod 4 and τ2 = p if p ≡ 1 mod 4.

(11) Write α = ∑k∈(Z/pZ)× σk(τ2). Use (9) to deduce that α = (p − 1)τ2.
(12) Fill in the details of the following computations:

α = ∑
k∈(Z/pZ)×

σk
⎛
⎜
⎝

⎛
⎝ ∑
s∈(Z/pZ)×

χ(s)ζs
⎞
⎠

2⎞
⎟
⎠

= (p − 1)2 ⋅ χ(−1) +
⎛
⎝ ∑
a,b∈(Z/pZ)×,a≠−b

χ(a)χ(b)
⎞
⎠
⋅ (ζ + ζ2 + . . . + ζp−1)

= (p − 1)2 ⋅ χ(−1) +
⎛
⎜
⎝

⎛
⎝ ∑
a∈(Z/pZ)×

χ(a)
⎞
⎠

2

− ∑
a∈(Z/pZ)×

χ(a)χ(−a)
⎞
⎟
⎠
⋅ (−1)

= (p − 1)2 ⋅ χ(−1) + (0 − (p − 1)χ(−1)) ⋅ (−1)
= (p − 1) ⋅ p ⋅ χ(−1).

(13) Conclude that τ2 = −p if p ≡ 3 mod 4 and τ2 = p if p ≡ 1 mod 4.

Exercise 8.
Let A be a Dedekind domain with fraction field F , let L/K/F be a separable extensions, let B be
the integral closure of A in K and let C be the integral closure of A in L. Then:

DC/A = NB/A(DC/B) ⋅D
[L∶K]
B/A

where here D denotes the relative discriminant (see Exercise 9 from last week) and N the norm of an
ideal. Work through the proof of this following Rabinoff’s notes: https://services.math.duke.

edu/~jdr/1516f-4803/disctower.pdf.
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https://services.math.duke.edu/~jdr/1516f-4803/disctower.pdf

