Exercise 1.
(1) Compute the class groups of $\mathbb{Q}(\sqrt{-5})$, $\mathbb{Q}(\sqrt{-10})$, $\mathbb{Q}(\sqrt{-23})$, and $\mathbb{Q}(\sqrt{-47})$.
(2) It is a deep fact, due to Heegner, that $\mathbb{Q}(\sqrt{-n})$ has class number 1 if and only if $n = 1, 2, 3, 7, 11, 19, 43, 67$ or 163. Verify that the class number is 1 in each of these cases.

Exercise 2.
(1) Compute the Minkowski bound for $\mathbb{Q}(\zeta_p)$ for p prime (you may assume that the ring of integers is $\mathbb{Z}[\zeta_p]$. However, note that in terms of just getting a bound it is not really necessary to assume this – why?).
(2) Compute the class group of $\mathbb{Q}(\zeta_5)$.
(3) Calculate explicitly the Minkowski bound for $\mathbb{Q}(\zeta_{23})$. Use GP/Pari (or google) to find its class number.

Exercise 3. Find a real quadratic field (i.e. one of the form $\mathbb{Q}(\sqrt{m})$ with m positive squarefree) with class number not equal to 1.

Exercise 4.
(1) Show that $x^3 + ax + b$ has discriminant $-4a^3 - 27b^2$.
(2) Show that $x^3 + x + 1$ is irreducible over \mathbb{Q}.
(3) Show that the ring of integers in $\mathbb{Q}[x]/x^3 + x + 1$ is $\mathbb{Z}[x]/x^3 + x + 1$.
(4) Compute the class group of $\mathbb{Q}[x]/x^3 + x + 1$.

Exercise 5 (Milne 4-7) For $K = \mathbb{Q}(\sqrt{-1}, \sqrt{-5})$, show $\mathcal{O}_K = \mathbb{Z}[\sqrt{-1}, \frac{1 + \sqrt{5}}{2}]$. Show that the only primes that ramify in K are 2 and 5, each with ramification degree 2. Deduce $K/\mathbb{Q}(\sqrt{-5})$ is unramified.

Exercise 6 (Not about class groups.) Suppose K is a number field (a finite extension of \mathbb{Q}) and $\alpha \in \mathcal{O}_K$ is such that, for every embedding $\iota : K \rightarrow \mathbb{C}$, $|\iota(\alpha)| \leq 1$. Show that α is a root of unity.

Exercise 7. Let p be an odd prime. On last week’s worksheet, we gave a short proof using ramification that the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$ is $\mathbb{Q}(\sqrt{p^*})$. This exercise gives a different method to find an explicit formula for a square root of p^* using primitive pth roots of unity.
(1) Let $m(x) = \frac{x^{p-1}}{x-1} = x^{p-1} + \ldots + 1$. Show that $m(x) \in \mathbb{Q}[x]$ is irreducible. (Hint: use the Eisenstein criterion for irreducibility and the change of coordinates $x = t + 1$).

Let $L = \mathbb{Q}[x]/(m(x))$. Part (1) implies that $(m(x))$ is a maximal ideal in the principal ideal domain $\mathbb{Q}[x]$, thus L is a field. We write $\zeta \in L$ for the image of x under the quotient map.

(2) Show that $\zeta, \zeta^2, \ldots, \zeta^{p-1}$ are a basis for L as a \mathbb{Q}-vector space.
(3) Show that there is a unique ring homomorphism $L \rightarrow \mathbb{C}$ sending ζ to $e^{2\pi i/p}$ and that the image is the smallest subfield of \mathbb{C} containing $e^{2\pi i/p}$.
(4) For each $k \in (\mathbb{Z}/p\mathbb{Z})^*$, show that there is a unique field automorphism
$$
\sigma_k : L \rightarrow L
$$
such that $\sigma_k(\zeta) = \zeta^k$.

5) Use the uniqueness statement in (4) to show the map
\[(\mathbb{Z}/p\mathbb{Z})^\times \to \text{Aut}(K), \ k \mapsto \sigma_k \]

is a group homomorphism.

6) Show that if $\ell \in L$ satisfies $\sigma_k(\ell) = \ell$ for all $k \in (\mathbb{Z}/p\mathbb{Z})^\times$ then $\ell \in \mathbb{Q} \subseteq L$. (Hint: use the basis in (2), and the fact that $m(\zeta) = 0$ implies $\zeta + \zeta^2 + \ldots + \zeta^{p-1} = -1$).

In the following, you may use without proof that $\mathbb{Z}/p\mathbb{Z}$ is cyclic of order $p - 1$.

7) Show that there is a unique non-trivial character $\chi : (\mathbb{Z}/p\mathbb{Z})^\times \to \{\pm 1\}$, and that the kernel of χ consists of the squares in $(\mathbb{Z}/p\mathbb{Z})^\times$.

Let
\[\tau = \sum_{k \in (\mathbb{Z}/p\mathbb{Z})^\times} \chi(k) \sigma_k(\zeta) = \sum_{k \in (\mathbb{Z}/p\mathbb{Z})^\times} \chi(k) \zeta^k \in L. \]

8) Show that for any $k \in (\mathbb{Z}/p\mathbb{Z})^\times$, $\sigma_k(\tau) = \chi(k) \tau$. (Hint: $\chi(k) = \chi(k)^{-1}$.)

9) Show that for any $k \in (\mathbb{Z}/p\mathbb{Z})^\times$, $\sigma_k(\tau^2) = \tau^2$, and deduce $\tau^2 \in \mathbb{Q}$.

10) Using the the embedding $K \to \mathbb{C}$ from (3) and Euler’s identity $e^{2\pi i t} = \cos(t) + i \sin(t)$, to compute directly τ^2 when $p = 3$ and $p = 5$ (assuming the standard identities $\cos(\pm\pi/3) = \pm 2/4$, $\cos(\pm\pi/5) = \sqrt{5} \pm 1/4$, and their counterparts for \sin.)

In the remaining steps we will show $\tau^2 = -p \text{ if } p \equiv 3 \mod 4 \text{ and } \tau^2 = p \text{ if } p \equiv 1 \mod 4$.

11) Write $\alpha = \sum_{k \in (\mathbb{Z}/p\mathbb{Z})^\times} \sigma_k(\tau^2)$. Use (9) to deduce that $\alpha = (p - 1)\tau^2$.

12) Fill in the details of the following computations:
\[
\alpha = \sum_{k \in (\mathbb{Z}/p\mathbb{Z})^\times} \left(\sum_{s \in (\mathbb{Z}/p\mathbb{Z})^\times} \chi(s) \zeta^s \right)^2 = (p - 1)^2 \chi(-1) + \left(\sum_{a, b \in (\mathbb{Z}/p\mathbb{Z})^\times, a \neq b} \chi(a) \chi(b) \right) \cdot (\zeta + \zeta^2 + \ldots + \zeta^{p-1})
\]
\[
= (p - 1)^2 \chi(-1) + \left(\sum_{a \in (\mathbb{Z}/p\mathbb{Z})^\times} \chi(a) \right)^2 - \left(\sum_{a \in (\mathbb{Z}/p\mathbb{Z})^\times} \chi(a) \chi(-a) \right) \cdot (-1)
\]
\[
= (p - 1)^2 \chi(-1) + (0 - (p - 1) \chi(-1)) \cdot (-1)
\]
\[
= (p - 1) \cdot p \cdot \chi(-1).
\]

13) Conclude that $\tau^2 = -p \text{ if } p \equiv 3 \mod 4 \text{ and } \tau^2 = p \text{ if } p \equiv 1 \mod 4$.

Exercise 8.

Let A be a Dedekind domain with fraction field F, let $L/K/F$ be a separable extensions, let B be the integral closure of A in K and let C be the integral closure of A in L. Then:
\[\mathcal{D}_{C/A} = N_{B/A}(\mathcal{D}_{C/B}) \cdot \mathcal{D}_{B/A}^{[L:K]} \]

where here \mathcal{D} denotes the relative discriminant (see Exercise 9 from last week) and N the norm of an ideal. Work through the proof of this following Rabinoff’s notes: https://services.math.duke.edu/~jdr/1516f-4803/disctower.pdf.