
6370-001 - FALL 2021 - WEEK 2 (8/31, 9/2)

1. Integral elements

Exercise 1.
Suppose L/Q is an algebraic extension. Show that a ∈ L is integral over Z if and only if its minimal
polynomial over Q has coefficients in Z.

Exercise 2.
Show that a UFD is integrally closed.

Exercise 3.
If R ⊂ S ⊂ T are commutative rings with S integral over R, show that t ∈ T is integral over R if and
only if it is integral over S.

Exercise 4.
Suppose K is a field and R ⊂K is a subring. Suppose a ∈K and R[a] ⊂M ⊂K, where M is a finite
R-module. Show a is integral by using a determinant to find a monic polynomial with coefficients in
R such that f(a) = 0.

Exercise 5.
Recall from your study of field automorphisms that, for K a field and G ≤ Aut(K) a finite subgroup,
[K ∶ KG] = ∣G∣, where KG denotes the elements in K fixed by G (so, in particular, K/KG is Galois
with group G).

(1) Use this to show thatQ(t1, . . . , tn)Sn = Q(e1, . . . , en), where ei is the ith elementary symmetric
polynomial, i.e. the sum of the distinct monomials of degree i in the t′js.

(2) Deduce that e1, . . . , en is a transcendence base.
(3) Conclude that Z[t1, . . . , tn]Sn = Z[e1, . . . , en] (hint: use the result of Exercise 2).
(4) Use this to give another proof that the integers OK in a finite extension K/Q is a ring.

Exercise 6.
For R a ring and m a maximal ideal, the tangent space of SpecR at m. Is defined to be (m/m2)∗, a
vector space over κ = R/m.

(1) Explain why this is a good definition (hint: Taylor expansions).
(2) Suppose R is a Noetherian domain of Krull dimension 1 (i.e. the only non-maximal prime

ideal is 0). Show that R is integrally closed if and only if the tangent space at any maximal
ideal is 1-dimensional. What does this mean geometrically?

2. Discriminants

Exercise 7. Trace and norm.
If L/K is a finite extension and α ∈ L, the trace of α, TrL/K(α) is the trace of the K-linear transfor-
mation L→ L given by multiplication by α. The norm, NL/K(α) is the determinant.

(1) If M/L/K are finite extensions and α ∈ L, show

TrM/K(α) = [M ∶ L]TrL/K(α) and NM/K(α) = NL/K(α)[L∶M].
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(2) Describe TrL/K(α) and NL/K(α) in terms of the minimal polynomial of α (hint: use part (1)

to reduced to L =K(α), then compute with the basis 1,α,α2, . . ..
(3) For L/K separable, describe TrL/K(α) and NL/K(α) in terms of the images of α under the

embeddings of L into an algebraic closure of K.
(4) Show that if K/Q is a finite extension and α ∈ OK , then TrK/Q(α) ∈ Z and similarly for norm.

Exercise 8.

(1) Suppose α ∈ C, K = Q(α) and α ∈ OK . Show that the discriminant of Z[α]/Z is the discrim-
inant of the minimal polynomial fα: if we write the complex roots of f as α = α1,α2, . . . ,αn,

discfα =∏
i<j
(αi − αj)2.

(2) Show this is equal to NmK/Qf
′
α(α).

Exercise 9. Suppose [K ∶ Q] = n. If α1, . . . ,αn is Z- basis for OK and σ1, . . . ,σn are the embbedings
K ↪ C, show that

disc(OK/Z) = det((σi(αj)ij)2

Exercise 10.

(1) Compute the discriminant of Q(
√
n) for n squarefree.

Exercise 11. Let V be a finite dimensional Q-vector space equipped with a non-degenerate bilinear
pairing (, ). A Z-lattice M ⊂ V is a finitely generated Z-submodule such that Q ⋅M = V .

(1) Show a Z-lattice is a free Z-module of rank equal to dimQ V .
(2) Show that if M is a lattice then so is M∗.
(3) For M2 ⊂ M1 two lattices, explain why the determinant of the change of basis matrix from

any basis of M1 to any basis of M2 has absolute value ∣M2/M1∣ and is well-defined up to its
sign.

(4) For M a lattice, the discriminant of M , disc(M) is the determinant of the change of basis
matrix from the dual basis e∗1 , . . . , e

∗
n to e1, . . . , en for any basis ei. explain why disc(M) is

well-defined (i.e. why does the sign not depend on the basis of M?)

Exercise 12.
This exercise shows the following useful result:
Theorem. If K/Q is a finite extension and R ⊂ OK is such that disc(R) is square-free, then R = OK .

(1) Let V be a finite dimensional Q-vector space equipped with a non-degenerate bilinear pairing
(, ). Suppose M1 is a lattice in V such that M1 ⊂M∗

1 , and M2 ⊂M1 is a sublattice.
(a) Show M∗

1 ⊂M∗
2 , and ∣M∗

2 /M∗
1 ∣ = ∣M1/M2∣.

(b) Deduce disc(M2) and disc(M1) differ by a square.
(2) Conclude by applying the above to R ⊂ OK .

Exercise 13.

(1) For p an odd prime, compute the discriminant of Z[ζp] ⊂ Q(ζp).
(2) Deduce that Z[ζp] is the ring of integers in Q(ζp).

Exercise 14. Let K/Q be a finite extension and let D be the discriminant of K/Q.
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(1) Let 2s be the number of embeddings K ↪ C that don’t factor through R (why is this an even
number?). Show

sign(D) = (−1)s.
(2) Show Stickelberger’s theorem:

D ≡ 1 or 0 mod 4.

(3) Compare both with your computation of the discriminants of quadratic fields.

Exercise 14.

(1) Show that if L/K is a a finite extension of fields, the trace pairing on L (with values in K)
is non-degenerate if and only if L/K is separable.

(2) Show that if L/Fq(t) is a separable extension then the integral closure of Fq[t] in L is a finite
free Fq[t]-module of rank [L ∶ Fq(t)].

(3) Show that if L/Fq(t) is any finite extension then the same still holds.
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