6370-001 - FALL 2021 - WEEK 2 (8/31, 9/2)

1. Integral elements

Exercise 1.

Suppose L/\mathbb{Q} is an algebraic extension. Show that $a \in L$ is integral over \mathbb{Z} if and only if its minimal polynomial over \mathbb{Q} has coefficients in \mathbb{Z} .

Exercise 2.

Show that a UFD is integrally closed.

Exercise 3.

If $R \subset S \subset T$ are commutative rings with S integral over R, show that $t \in T$ is integral over R if and only if it is integral over S.

Exercise 4.

Suppose K is a field and $R \subset K$ is a subring. Suppose $a \in K$ and $R[a] \subset M \subset K$, where M is a finite R-module. Show a is integral by using a determinant to find a monic polynomial with coefficients in R such that f(a) = 0.

Exercise 5.

Recall from your study of field automorphisms that, for K a field and $G \leq \operatorname{Aut}(K)$ a finite subgroup, $[K:K^G] = |G|$, where K^G denotes the elements in K fixed by G (so, in particular, K/K^G is Galois with group G).

- (1) Use this to show that $\mathbb{Q}(t_1,\ldots,t_n)^{S_n} = \mathbb{Q}(e_1,\ldots,e_n)$, where e_i is the *i*th elementary symmetric polynomial, i.e. the sum of the distinct monomials of degree *i* in the $t_i's$.
- (2) Deduce that e_1, \ldots, e_n is a transcendence base.
- (3) Conclude that $\mathbb{Z}[t_1,\ldots,t_n]^{S_n} = \mathbb{Z}[e_1,\ldots,e_n]$ (hint: use the result of Exercise 2).
- (4) Use this to give another proof that the integers \mathcal{O}_K in a finite extension K/\mathbb{Q} is a ring.

Exercise 6.

For R a ring and \mathfrak{m} a maximal ideal, the tangent space of SpecR at \mathfrak{m} . Is defined to be $(\mathfrak{m}/\mathfrak{m}^2)^*$, a vector space over $\kappa = R/\mathfrak{m}$.

- (1) Explain why this is a good definition (hint: Taylor expansions).
- (2) Suppose R is a Noetherian domain of Krull dimension 1 (i.e. the only non-maximal prime ideal is 0). Show that R is integrally closed if and only if the tangent space at any maximal ideal is 1-dimensional. What does this mean geometrically?

2. Discriminants

Exercise 7. Trace and norm.

If L/K is a finite extension and $\alpha \in L$, the trace of α , $\text{Tr}_{L/K}(\alpha)$ is the trace of the K-linear transformation $L \to L$ given by multiplication by α . The norm, $N_{L/K}(\alpha)$ is the determinant.

(1) If M/L/K are finite extensions and $\alpha \in L$, show

$$\operatorname{Tr}_{M/K}(\alpha) = [M:L]\operatorname{Tr}_{L/K}(\alpha)$$
 and $\operatorname{N}_{M/K}(\alpha) = \operatorname{N}_{L/K}(\alpha)^{[L:M]}$.

- (2) Describe $\operatorname{Tr}_{L/K}(\alpha)$ and $\operatorname{N}_{L/K}(\alpha)$ in terms of the minimal polynomial of α (hint: use part (1) to reduced to $L = K(\alpha)$, then compute with the basis $1, \alpha, \alpha^2, \ldots$
- (3) For L/K separable, describe $\operatorname{Tr}_{L/K}(\alpha)$ and $\operatorname{N}_{L/K}(\alpha)$ in terms of the images of α under the embeddings of L into an algebraic closure of K.
- (4) Show that if K/\mathbb{Q} is a finite extension and $\alpha \in \mathcal{O}_K$, then $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$ and similarly for norm.

Exercise 8.

(1) Suppose $\alpha \in \mathbb{C}$, $K = \mathbb{Q}(\alpha)$ and $\alpha \in \mathcal{O}_K$. Show that the discriminant of $\mathbb{Z}[\alpha]/\mathbb{Z}$ is the discriminant of the minimal polynomial f_{α} : if we write the complex roots of f as $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_n$,

$$\operatorname{disc} f_{\alpha} = \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

(2) Show this is equal to $Nm_{K/\mathbb{Q}}f'_{\alpha}(\alpha)$.

Exercise 9. Suppose $[K : \mathbb{Q}] = n$. If $\alpha_1, \ldots, \alpha_n$ is \mathbb{Z} - basis for \mathcal{O}_K and $\sigma_1, \ldots, \sigma_n$ are the embbedings $K \hookrightarrow \mathbb{C}$, show that

$$\operatorname{disc}(\mathcal{O}_K/\mathbb{Z}) = \operatorname{det}((\sigma_i(\alpha_j)_{ij})^2$$

Exercise 10.

(1) Compute the discriminant of $\mathbb{Q}(\sqrt{n})$ for n squarefree.

Exercise 11. Let V be a finite dimensional \mathbb{Q} -vector space equipped with a non-degenerate bilinear pairing (,). A \mathbb{Z} -lattice $M \subset V$ is a finitely generated \mathbb{Z} -submodule such that $\mathbb{Q} \cdot M = V$.

- (1) Show a \mathbb{Z} -lattice is a free \mathbb{Z} -module of rank equal to $\dim_{\mathbb{Q}} V$.
- (2) Show that if M is a lattice then so is M^* .
- (3) For $M_2 \subset M_1$ two lattices, explain why the determinant of the change of basis matrix from any basis of M_1 to any basis of M_2 has absolute value $|M_2/M_1|$ and is well-defined up to its sign.
- (4) For M a lattice, the discriminant of M, $\operatorname{disc}(M)$ is the determinant of the change of basis matrix from the dual basis e_1^*, \ldots, e_n^* to e_1, \ldots, e_n for any basis e_i . explain why $\operatorname{disc}(M)$ is well-defined (i.e. why does the sign not depend on the basis of M?)

Exercise 12.

This exercise shows the following useful result:

Theorem. If K/\mathbb{Q} is a finite extension and $R \subset \mathcal{O}_K$ is such that $\operatorname{disc}(R)$ is square-free, then $R = \mathcal{O}_K$.

- (1) Let V be a finite dimensional \mathbb{Q} -vector space equipped with a non-degenerate bilinear pairing
 - (,). Suppose M_1 is a lattice in V such that $M_1 \subset M_1^*$, and $M_2 \subset M_1$ is a sublattice.
 - (a) Show $M_1^* \subset M_2^*$, and $|M_2^*/M_1^*| = |M_1/M_2|$.
 - (b) Deduce $\operatorname{disc}(M_2)$ and $\operatorname{disc}(M_1)$ differ by a square.
- (2) Conclude by applying the above to $R \subset \mathcal{O}_K$.

Exercise 13.

- (1) For p an odd prime, compute the discriminant of $\mathbb{Z}[\zeta_p] \subset \mathbb{Q}(\zeta_p)$.
- (2) Deduce that $\mathbb{Z}[\zeta_p]$ is the ring of integers in $\mathbb{Q}(\zeta_p)$.

Exercise 14. Let K/\mathbb{Q} be a finite extension and let D be the discriminant of K/\mathbb{Q} .

(1) Let 2s be the number of embeddings $K \to \mathbb{C}$ that don't factor through \mathbb{R} (why is this an even number?). Show

$$sign(D) = (-1)^s.$$

(2) Show Stickelberger's theorem:

$$D \equiv 1 \text{ or } 0 \text{ mod } 4.$$

(3) Compare both with your computation of the discriminants of quadratic fields.

Exercise 14.

- (1) Show that if L/K is a a finite extension of fields, the trace pairing on L (with values in K) is non-degenerate if and only if L/K is separable.
- (2) Show that if $L/\mathbb{F}_q(t)$ is a separable extension then the integral closure of $\mathbb{F}_q[t]$ in L is a finite free $\mathbb{F}_q[t]$ -module of rank $[L:\mathbb{F}_q(t)]$.
- (3) Show that if $L/\mathbb{F}_q(t)$ is any finite extension then the same still holds.