
6370-001 - FALL 2021 - WEEK 13 (11/23)

This week we study and prove:

Theorem (Analytic class number formula for quadratic imaginary fields). Let K/Q be a quadratic
imaginary field, and let χK be the function on N defined on primes by

χK(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if p splits in K

−1 if p is inert in K

0 if p ramifies in K.

and extended multiplicatively to composites (and set χK(1) = 1). Then, for hK the class number of
K, DK the discriminant of K, and µ(K) the roots of unity in K,

2π ⋅ hK = ∣µ(K)∣ ⋅
√
∣DK ∣ ⋅

∞
∑
k=1

χK(n)
n

.

Exercise 1.

(1) Use the analytic class number formula when K = Q(i) to evaluate

1 − 1/3 + 1/5 − 1/7 + 1/9 − 1/11 + . . .
Confirm your answer by using a Taylor series to compute arctan(1).

(2) Repeat for K = Q(ζ3) = Q(
√
−3) (except for the arctan part!).

(3) Using quadratic reciprocity explain why, in general, χK is a character of (Z/DKZ)×.
(4) Explain why a computer can use this formula to quickly compute the class number of an

imaginary quadratic field Q(
√
−d). If yo’re up for it, try implementing this computation in

PARI (or any computer algebra system), then compare with the answers you worked out
using the Minkowski bound in Week 5.

In the remaining exercises (flip the page over!) we will prove the theorem. The strategy
is to introduce the Dedekind zeta function of a number field K

ζK(s) ∶= ∑
I⊆OK a nonzero ideal

1

N(I)s

When K = Q this is just the Riemann zeta function (why?). Like the Riemann zeta
function, the sum can be shown to converge for Res > 1 and admit a meromorphic con-
tinuation with a simple pole at s = 1, a functional equation, etc.... We will work through
just the parts of this we need in the case when K is imaginary quadratic, and then the
theorem will be obtained by computing the residue at s = 1 in two different ways.

For a more comprehensive treatment and complements, see Marcus - Number Fields,
Ch. 5-7 (but I recommend working through the problems below first!).

From last week we need only the results of Exercise 1, which gave a meromorphic
continuation of ζ(s) = ζQ(s) to Res > 0 with a simple pole at s = 1 of residue 1.

Gobble Gobble, Happy Thanksigiving!
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Exercise 2 – An infinite product expansion for ζK .

(1) For any K/Q, explain why, as formal series (i.e. ignoring all convergence questions)

ζK(s) = ∏
p a nonzero prime of OK

1

1 −N(p)−s

In the rest of this exercise, we assume K/Q is a quadratic field.
(2) Show that for

LχK
(s) ∶=∏

p

1

1 − χK(p)p−s
= ∑

n≥1

χK(n)
ns

,

we have a formal identity
ζK(s) = ζQ(s)LχK

(s).
(3) Deduce that the series describing ζK(s) converges to an analytic function on Re(s) > 1.
(4) Show the series describing LχK

(s) converges to an analytic function on Res > 0.
Hint: ∑DK−1

n=0 χK(n) = 0 because χK is a non-trivial character of (Z/DKZ)×.
(5) Continue ζK(s) to Res > 0 and show it has a simple pole at s = 1 with residue ∑∞n=1

χK(n)
n .

Exercise 3 – A lemma on Dirichlet series. Prove (or admit for later exercises):

Lemma. If ∑n
k=1 ak = O(nr) for r ∈ R>0, then ∑∞n=1 an

n−s defines an analytic function on Res > r.

Exercise 4 – Counting ideals in an ideal class. Let K be an imaginary quadratic field, and let
C be an ideal class of OK . Let IC(M) denote the number of ideals in C of norm ≤M . We now show

Lemma. IC(M) = κM +O(
√
M), where κ ∶= 2π

∣µ(K)∣
√
∣DK ∣

.

(1) Let J be an ideal in the class C−1. Show that I ↦ IJ defines a bijection between ideals I in
the class C with N(I) ≤M and principal ideals (α) ⊆ I with N(α) ≤M ⋅N(J).

(2) Deduce that ∣µ(K)∣IC(M) is the number of elements α ∈ J with N(α) ≤M ⋅N(J).
(3) Estimate the number of these elements to deduce the lemma.

Exercise 5 – A second meromorphic continuation of ζK
(1) Explain why we can rewrite

ζK(s) = ∑
C∈Cl(OK)

∑
n≥1

#{I ∈ C ∣N(I) = n}
ns

Then, apply the results of the previous two exercises to show ζK(s) has a meromorphic
continuation to Res > 1/2 with a simple pole at s = 1 of residue hKκ.
Hint: subtract the series for hk ⋅ κ ⋅ ζ(s) from the expression above for ζK(s).

(2) Combine with the computation of Exercise 2 to deduce the analytic class number formula.

Remarks. For any number field K there is an analytic class number formula computing hK in terms
of the residue of ζK(s) at s = 1, the discriminant of K, the number of roots of unity, a simple factor
depending on the number of real and complex places (2π in the above), and the regulator, which
measures the size of the logarithm lattice of the units (so is only interesting when the units have
positive rank, which is why this didn’t appear in the imaginary quadratic case). The proof follows
the same lines as Exercise 4 and 5, but the estimate of the number of principal ideals of bounded
size contained in a given ideal is more difficult when there are infinitely many units (try doing the
real quadratic case without looking up a proof!). This residue can be matched with simple character
sums like those coming from Exercise 2 only for abelian extensions of Q; for example this gives a
method to compute the class numbers of cyclotomic fields! (compare Week 5 - Exercise 2).
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