6370-001 - FALL 2021 - WEEK 11 (11/9, 11/11)

Exercise 1.

- (1) Let $K = \mathbb{Q}_3(\zeta_3)$, where ζ_3 is a primitive 3rd root of unity. Find the Galois group of K/\mathbb{Q}_3 , and compute its ramification groups.
- (2) Do the same for $\mathbb{Q}_3(\zeta_9)$.

Exercise 2.

- (1) Compute the Galois group of $x^n t \in \mathbb{C}((t))[x]$.
- (2) Show that every Galois extension of $\mathbb{C}((t))$ is abelian.
- (3) Is the same true for $\mathbb{R}((t))$?
- (4) Compute the Galois group of $x^n p \in \mathbb{Q}_p[x]$, for $p \neq n$.
- (5) Show every tamely ramified extension of \mathbb{Q}_p is contained in $\mathbb{Q}_p(\zeta_n, p^{1/n})$ for some $p \neq n$.

Exercise 3.

- (1) Show every polynomial over \mathbb{R} can be solved in radicals.
- (2) Can every polynomial over \mathbb{Q}_p be solved in radicals?

Exercise 4.

- (1) Let K/\mathbb{Q} be a Galois extension. Show that the inertia groups $I(\mathfrak{p})$ as \mathfrak{p} runs over all prime ideals in \mathcal{O}_K generate $\operatorname{Gal}(K/\mathbb{Q})$.
- (2) Use basic algebraic topology to explain an analogous result if \mathbb{Q} is replaced with $\mathbb{C}(t)$.

Exercise 5. If L/K is a Galois extension of number fields and β_1 and β_2 are prime ideals in \mathcal{O}_L that lie above the same prime ideal \mathfrak{p} in \mathcal{O}_K , show the Frobenius elements for β_1 and β_2 are conjugate.

Exercise 6 (Milne 8-3). Read the section "computing Galois groups the easy way" in Milne, then try compute the Galois group over \mathbb{Q} of

$$X^{6} + 2 * X^{5} + 3 * X^{4} + 4 * X^{3} + 5 * X^{2} + 6 * X + 7.$$

Exercise 7. Do the practice exam in Milne - Appendix B (p. 162). Questions 5 and 6 from the practice exam are exercises 1-(1) and 4-(1) above, so you're almost done! The other questions will be review of earlier topics, but it's a good time to go back and revisit some earlier ideas.