1. MODULAR ARITHMETIC

1.1. Divisibility. Given positive numbers a, b, if a # 0 we can write
b=aq+r

for appropriate integers ¢,r such that 0 < r < a. ' The number r
is the remainder. We say that a divides b (or alb) if 7 = 0 and so
b = aq i.e. b factors as a times q.

1.2. Primes. A number is prime if it can’t be factored (as a product
of two numbers greater or equal to 2). If a number factors (i.e. it is
not prime), then we say that it is composite.

Exercise 1.1. Find all prime numbers smaller than 100.

Here are several important questions:

(1) How do we determine whether a number is prime?
(2) How do we factor a number into primes?

(3) How can we find big prime numbers?

(4) How many prime numbers are there?

Exercise 1.2. Factor 12, 123, 1234, 1235, 1236, 128417.

Exercise 1.3. Show that every number is either prime or divisible by
a prime number.

Theorem 1.4. There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many prime numbers Py, - - - |, P,,
then N =P, - P,--- P, + 1 is not divisible by any prime, hence it does
not factor and hence it is a new prime! U

1.3. Divisibility tricks. Recall that a number is even if its last digit
is divisible by 2, it is divisible by 3 if the sum of its digits is divisible
by 3, it is divisible by 5 if its last digit is divisible by 5 etc.

Why is this? Can we find other divisibility tricks (eg. for 7)?

One possible explanation. Let abc be a 3 digit number so that abc =
a-100+0-10+c-1. Then

abc/2 = a-50 + b -5+ ¢/2 and this is an integer only if ¢/2 is an
integer.

abc/5 = a-20 + b -2+ ¢/5 and this is an integer only if ¢/5 is an
integer.

abc/3 = a-33+b-3+ (a+ b+ c)/3 and this is an integer only if
(a+ b+ c¢)/3 is an integer.

A better explanation is given by congruences.

'In Python notation r = b%a and ¢ = b//a.
1
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1.4. Congruences. We say that a is congruent to b modulo N i.e.
a = b mod N iff N divides a — b or equivalently iff «%N = 0% N. So a
is congruent modulo N to any number in the arithmetic progression

{--a—2N,a— N,a,a+ N,a+2N---}.

Here are some examples

(1) 273 = 593 mod 10
(2) 273 % 593 mod 100
(3) 359 =2 mod 17
(4) 216 = 12 mod 17

Exercise 1.5. Is 71651 divisible by 37 How about 771651 7

Exercise 1.6. (1) What is the last digit of 2731907
(2) Of 2731117
(3) What are the last two digits of the numbers above?

Solution: Every integer modulo 10 is congruent to one of:
{0,1,2,--- ,9}.
we call this a system of residues modulo 10. We now compute the
residue of 273!%. We have:
273 = 3, 2732 = 9, 2733 =271 =7, 273* = 1.

Then
27310 = (273M* = 1% = 1.

1.5. Arithmetic of residues (modular arithmetic). Residues mod-
ulo 5: {0,1,2,3,4} = Z/5.

Exercise 1.7. Write down the addition and multiplication tables.
We can compute 3 x4 =2, 343 =1 etc. We have
0=-0,4=-1,3=-2,2=-3, 1=—4.

Check 0+0=0,144=0,2+3 = 0. Now a/b makes little sense (eg.
what does 3/4 mean?). We should write a b1, eg. 3% 4!, From the
multiplication table, we see that 4 x4 = 1 so that 4! = 4 and then

3x4 1 =3%x4=2.

Exercise 1.8. (1) Write down the addition and multiplication ta-

bles for Z/7, Z/8.

(2) Find the additive and multiplicative inverses of 5 mod 11, 7
mod 23, 7 mod 101 and 4 mod 8.

(3) Find the order of 359 mod 17.

(4) Find the orders of 2,3,---,9 mod 11. Do you see a pattern?

(5) Can you solve > = 5 mod 117 and 22 = 6 mod 117

(6) Show that if a = b, ¢ = d then a +b = b+ d and ac = bd.



2. THE EUCLIDEAN ALGORITHM

2.1. The greatest common divisor. By definition the greatest com-
mon divisor of two numbers a,b is the largest number that divides
both a and b. We denote it by GCD(a,b) or just by (a,b). Eg
(7,11) =1, (10,15) = 5, (5555,7931) = 11. To see the last one, write
5555 = 5% 11%101 and 7931 = 7% 11103 so that the sets of divisors are
{1,5,11,55,101,505,1111, 5555} and {1,7,11,77,103,721,1133,7931}.
We can compute the GCD in the following ways:
(1) By brute force: Find all the divisors and compare.
(2) Find all divisors of a and throw out the ones that do not divide
b.
(3) Compare prime factors and multiply the highest powers that
divide both numbers.
(4) The Euclidean algorithm.

The Euclidean algorithm is by far the fastest method (for big numbers).

2.2. The Euclidean algorithm. Start with a = 2310, b = 1547 and
let » = a%b be the remainder. Replace a by b and b by r and repeat.
The last nonzero remainder is the GCD.

a b r q
2310 1547 763 1
763 21 7 36
21 7 0 3
The GCD is 7.

Exercise 2.1. Find the GCD of 12345, 54321 and of 45201647, 18296431.
Exercise 2.2. Factor the above numbers.

2.3. Python Code. def ged(a,b):
r=a%b
print a,b,r
while r>0:
a,b,r = b,r,b%r
print a,b,r
return b
It works as follows:
>>> ged(2310,1547)
2310 1547 763
1547 763 21
76321 7
2170
7

2.4. Well ordering principle. Fach nonempty set of positive integers
has a least element.



Note that this is not true for the rationals. Eg. Q- has no smallest
number.

Proposition 2.3. Given positive integers a,b, let S = {ax + by > 0}
where x,y are any integers. Let g be the least element in S, then
g =GCD(a,b).

Proof. 1t is enough to show that g divides GC'D(a, b) and that GC'D(a, b)
divides g.

Clearly GC'D(a, b) divides a and b so it divides any element in S and
so it divides g.

To see that g divides GC'D(a,b) it is enough to show that ¢ divides
a (and that g divides b). Consider a = gq + r, then r = a — gq =
a— (ax +by)g = (1 — ¢Jaz — (bq)y. Now 0 < r < g and so r = 0
(else r € S contradicting the fact that g is the smallest element of S).
Therefore g divides a (and by the same argument it divides b) and so
it divides GCD(a, b). O

So we can always write
GCD(a,b) = ax + by.

This allows us to find the inverse of any number 1 < a < p — 1 modulo
p when p is prime. In fact GCD(a,p) = 1 so we have 1 = ax + py so
modulo p we have 1 = az i.e. = a~! modulo p.

2.5. Finding = and y. Use back substitution! Eg. for a = 2310,
b = 1547 then GCD(a,b) = 7. Recall that

a b r q
2310 1547 763 1
1547 763 21 2
763 21 7 36
21 7 0 3

So 763 = 2310 — 1547, 21 = 1547 — 2% 763 and 7 = 763 — 36 * 21.
Then

7T="763—36%21 =763—36x% (1547 —2%763) = 73 %763 — 36 x 1547 =

73 % (2310 — 1547) — 36 * 1547 = 73 % 2310 — 109 * 1547.

Exercise 2.4. Solve

(1) 54321z + 12345y = 3
(2) 54321z + 12346y = 1.

Exercise 2.5. Find the multiplicative inverse of

(1) 44 mod 123
(2) 444 mod 1234567.



2.6. Python code for the Extended Euclidean Algorithm. .
def eged(a,b):
q,r = divmod(a,b)
x,y,u,v=1,-q,0,1
while r>0:
qq,rr = divmod(b,r)
XX,yy=u-qq*x,v-qq*y
a7b7r7q7X7y7u7V:b7r7rr7qq7XX7yy7X7y
print a,b,r,q,x,y,u,v
return u,v,b

Exercise 2.6. What are the last 4 digits of the multiplicative inverse
of 17 mod 101907

Exercise 2.7. [ have encoded my SSN using the algorithm f(x) = 103z
mod 10%. The result is 3536767732. What is my SSN? (You will need
a calculator that can compute with 20 digit numbers, eg, python.)

3. MODULAR POWERS

We begin by writing a table for the powers modulo 3, 5, 7.

Modulo 3

a a®> @ o o ab d
0O 0 0 0 0 0 O
1 1 1 1 1 1 1
2 1 2 1 2 1 2

Note that after we get a column with all 1’s (and a 0 at the top),
the pattern must repeat. Therefore, as soon as (and if) this happens,
the table just keeps repeating itself (and so we do not bother to keep
writing the repeated entries).

Modulo 5

a a* o a* d® d d
0 0 0 0 0 0 O
1 1 1 1 1 1 1
2 4 3 1 2 4 3
3 4 2 1 3 4 2
4 1 4 1 4 1 4
Here, the 4th column has all 1’s (and a 0 at the top).
Modulo 7

a a® o a* d® d d
0 0 0 0 0 0 O
1 1 1 1 1 1 1
2 4 1 2 4 1 2
3 2 6 4 5> 1 3
4 2 1 4 2 1 4
5 4 6 2 3 1 5
6 1 6 1 6 1 6



Do you notice a pattern? The first pattern, seems to be that for all
a # 0 we have a> = 1 mod 3; a* = 1 mod 5; a® = 1 mod 7. It is easy
to guess what the general pattern might be:

Theorem 3.1 (Fermat’s Little Theorem). Let p be any prime and
0<a<p. Then
=1 mod p.

Eg. 6?2 = 1 mod 23. (Check: 6% = 23 -572268277 + 1.) Similarly
841 = 1 mod 101. (Note that 84! has more than 100 digits, so
checking explicitly might not be so easy!)

Proof. We claim that the set {a,2a,---, (p—1)a} is the same as the set
{1,2,---,p— 1} (the elements are not in the same order!). Granting
the claim, then we have
]_.2...(p—]_):a.2a...(p—1)a:1.2...(p_1).ap_1_
Since p does not divide 1-2- - - (p—1), it follows that GCD(p,1-2-- - (p—
1)) = 1, so there is a number 1 < z < p—1such that x-1-2--- (p—1) =1
mod p. But then
l=2-1-2---(p—-1)=2-1-2---(p—1)-a" ' =a"!

as required.
To see the claim, we must check that
1) The map z — ax mod p induces a map

{1727"' 7p_1} - {a72a7"' 7(p_ 1)@}.
Le. that for all 1 < < p—1, we have that p does not divide az. This
is clear as p is a prime number that does not divide either of ¢ and .
2)If1 <z #y < p-1then ax # ay mod p (i.e. this function is 1
to 1). Suppose in fact that ez = ay mod p. As GCD(a,p) = 1, there
is a number b such that ba = 1 mod p. Therefore bax = bay so that
xr=y! O

Exercise 3.2. Compute 2'?**® mod 17

Exercise 3.3. Compute 2'?3*® mod 101.

Exercise 3.4. Compute the order of 2 mod 9, 15, 21 and 35.
Can you make a guess about the general pattern?

3.1. Euler’s ¢ function. How does Fermat’s Little Theorem general-
ize to numbers m that are not prime? The key thing in the proof is that
{1,2,---,p — 1} are coprime with p so that they have multiplicative
inverses in Zj,. It is then natural to define

dp(m) =#{a: 1 <a<m—1and GCD(a,m) = 1}.
This is Fuler’s ¢ function. We now compute its value for some m’s:
(1) ¢(p) =p — 1 for all prime numbers p. Eg. ¢(17) = 16.



(2) 0(9) = #{1,2, 8,4,5, 6,7,8} =6

(3) ¢(25) = #{1,2,3,4, 5,6,7,8,9, 10,11,12,13, 14, 15,16, 17, 18, 19,

20,21,22,23,24} = 20

(4) o(p?) = p2 — p for any prime number p. To see this, note that
in the list {1,---p? — 1} we must erase p,2p,---, (p—1)p so we
have p> — 1 — (p — 1) = p? — p entries.

(5) ¢p(p") = p* — p™~! for any prime number p. Explain this in

(6) = #{1,5} =2.
(10) = #{1,3,7,9} = 4.
) = #{1,3,5,9,11,13} = 6.

(15) = #{1,2,4,7,8,11,13,14} = 8

(p-q) = (p—1)(¢g—1) for any prime numbers p, q. To see this,
note that in the list {1, --- , pg—1} we must erase p, 2p,--- , (¢—
L)p and ¢,2q,-- -, (p—1)g so we have pg—1—(p—1)—(¢—1) =
(p —1)(g — 1) entries.

(11) ¢(m -n) = ¢(m) - p(n) whenever GCD(m,n) = 1.

Exercise 3.5. Prove the last fact.

Exercise 3.6. Compute ¢(1800).

Theorem 3.7 (Euler’s Formula). If GCD(a, m) =1, then
a®™ =1 mod m.

Exercise 3.8. Compute 17°?*3 mod 1800.

Exercise 3.9. Compute 2°° mod 91. Is 91 prime?

So if we pick a random number 0 < a < m and we have ¢ # a mod
m, then m is not prime. If ¢ = a mod m, then m maybe prime.
If @™ = a mod m for many a’s, then m is probably prime.

Exercise 3.10. There are some composite numbers such that o = a
mod m for all 1 <a < m — 1! Can you find one?

3.2. Powers mod m. How would you compute 71909:000.00 1,64 10403
by hand? (Or maybe with a pocket calculator.)

1) 10403 = 101 - 103 so ¢(10403) = 10200.

2) 10% = 98039 - 10200 + 2200 so 71000,000,000 — 72200 1,64 10403.

3) 7% =49, 7" = 49% = 2401, 7® = 2401% = 1539, 7'® = 1539? =
7040, 732 = 1708, 754 = 2401, 712 = 3733, 7256 — 5672, 7912 = 5508,
71024 — 92916, 7?98 = 3805. Now 2200 = 2048 + 128 + 16 + 8 so

72290 — 3805 - 3733 - 7040 - 1539 = 2324 mod 10403.

This was remarkably quick. It turns out that we did not need to
perform 1,000, 000, 000 operations. Just about log,(2200), so about 12
operations. note that in base 2, the number 2200 is 100010011000.

Exercise 3.11. Compute 21:000.000.000 1,64 35, mod 101, mod 103.
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Exercise 3.12. Estimate the number of doublings needed to compute
1251 mod 1012 - 103.

Exercise 3.13. Compute 2% mod 9991 without factoring 9991. Is
9991 prime? Factor 9991.

3.3. k-th roots mod m. We wish to solve the equation
¥ =b modm.

For example 2° = 427 mod 9991.

We have that 9991 = 103 % 97 and so ¢(9991) = 102 x 96 = 9792.
Now, GCD(5,9792) = 1 and so we can invert 5 modulo 9792. We
must write 5 x u = 1 mod 9792. We use the Euclidean Algorithm to
get 5 x 3917 + 9792 x (—2) = 1. Therefore

(x5)3917 — 9792%2+1 _ (x9792)2 *+x =x mod 9991.

So & = (427)%'7 mod 9991.
The general strategy to solve z¥ = b mod m where GCD(b,m) = 1
and GCD(k,p(m)) =1 is exactly the same:

(1) We compute ¢(m). (This is easy if we can factor m.)

(2) Write ku =1+ ¢(m)v. (Use the Euclidean Algorithm.)

(3) Then z = x'*¢(mv = ghv — v (Compute b* via the method of
successive squaring.

Exercise 3.14. Solve 2° = 7 mod 35 and z® = 37 mod 101.

4. RSA

The first step is to convert the alphabet to numbers. Eg. A — 11,
B—12,C —-13, D - 14, FE - 15, F - 16, G — 17, ..., Y — 35,
Z — 36. So

GOODMORNING — 1725251423252824192417

This code is very easy to break by frequency analysis. So we want to
jumble the numbers up in a way that will look completely random (to
the code breaker).
Fix p, ¢ two very large primes (eg. 100 to 200 digits). Let m = pq so
that ¢(m) = (p — 1)(q — 1). Pick k with GCD(k, ¢(m)) = 1.
Everyone knows m, k (they are public).
p,q (and hence ¢(m)) are secret.
For example, let p = 101, ¢ = 103 so that ¢(m) = 10200. Pick
k=177
(1) Break a message up in to numbers < m. (Eg. 1725, 2514, 2325,
2824, 1924, 1700.)
(2) Let b; = a¥ mod m. We compute this by repeated squaring to
get the encoded message by,...,b,. This is made public/sent
to the intended receiver. (Eg. b; = a!” mod 10403 gives 4377,
9088, 1475, 2642, 3358, 3521.)
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(3) To decode, solve z¥ = b; mod m. So find j with jk = 1 mod
¢(m). Then a; = b] mod m. (Eg. j = 8213. Check that kj = 1
mod 10200 and that 4377%%13 = 1725 mod 10403 etc.)

This system is very easy to explain and implement on a computer.
In order to decode it you must know ¢(m) So you must factor m.
This is very hard! Factoring a 200 digit number requires about 10!%
computations! In contrast, it is easy to produce big primes. (We will
do this later.)

Question: Couldn’t we find ¢(m) without factoring m and so easily
break the code?

Answer: No. Since m = pg, if we know ¢p(m) = (p —1)(¢ — 1) =
m—p—q+1 then we know p+¢ = m —¢(m)+1 and so we can find the
roots of 2 — (p+¢q)x +m = 0. But these are the roots of (z —p)(z —q)
and hence we have found p, gq.

Exercise 4.1. Encode GOODMORNING using m = 77 (2 digits at a
time). Decode 33,71,12,12,42, 53,73, 71.

4.1. RSA signatures. In practice each individual (A,B,C...) will have
will have his/her secret primes pa, g4 and will make ms = py - g4 and
k4 public.

Anyone can encrypt a message and send it to A (or B, C etc.). Just
do

a1y .. ., Gy —>a’f“,...,af“ =0by,...,0b.

We assume that by, ..., b, is public (or could be intercepted!).

Only A can decode this message since only A knows ¢(m,) so only
A can solve jaka =1 mod ¢(m,) and then compute a; = b* mod my.

Suppose that A is expecting a message from B. How does A know
that it really comes from the friendly B and not from the evil C?

B can attach a signature as follows:

BARTSIMPSON — oy, ..., a; — 2%, ..., 2% mod mp.

Only B can do this. Only B can find jg.
Now B encodes his message with the signature appended

jB jB — kA kA jB kA jB kA
Ary ooy Qryay? oo 028 = by b by, b =l A (adP)A L (adB) A,

Only A can decode the message and see ay,...,a,, %, ... o5, But
everyone knows kg so A can compute

(@8)fs .. (a2)s = ay,... a, = BARTSIMPSON.

So A can tell that B sent the message and no one else can!

5. COUNTING LARGE PRIMES

We already know that there are infinitely many prime numbers, but
how common are they?
Eg: “Half of the numbers are even.”
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To be more precise, if we let
ev(z) = #{even numbers n with 1 <n <z}

then ev(1) = 0, ev(2) = 1, ev(3) = 1, ev(4) = 2, ev(5) = 2, etc. So
ev(zr) = x/2 if z is even and ev(x) = (x — 1)/2 if x is odd. Then
ev(z)/x = 1/2 if x is even and ev(z)/z = 1/2 — 1/2z if x is odd.
Then ev(z)/x — 1/2 and © — oco. Eg ev(10,000)/10,000 = 1/2 and
ev(10001) /10,001 = 1/2 — 1/20, 002 = 0.49995....

We will now consider the function

m(x) = #{primes p such that p < x}.

Exercise 5.1. Find 7(10), 7(25), 7(50), 7(100). Use a computer to
find 7(1, 000), 7(2,000), 7(4, 000), (8, 000), 7 (16, 000).

We have

x 10 25 50 100 200 500 1000 5000

() 4 9 15 25 46 95 168 669

w(x)/x .400 .360 .300 .250 .230 .190 .168 .134

It would be reasonable to guess that m(x)/z — 0 as  — oo. This
means that for any € > 0, we have that for big values of = the inequality
7(z) < ex.

5.1. The Prime Number Theorem.

Theorem 5.2. We have that w(z)/(x/In(x)) — 1 as x — oo, i.e.

()

z—o0 2 /In(x) B
This means that for large x, the number 7(z) is very close to z/In(x).

Eg. 7(109)/10'° = 1/In(10") = 1/10(n(10) = 0.0434.... So the
probability of a random number 1 < n < 10'° being prime is 4.34%.

Exercise 5.3. How many primes < 10 are there? How many primes
with 10 digits? How many primes between 10 and 10! + 105.

6. FINDING LARGE PRIMES

We would like to produce big prime numbers (eg. with 100 digits).

We could pick a random number p with 100 digits and try and divide
by all the numbers < p'/2 = (10'°°)'/2 = 10°°. This would take way
too long.

Exercise 6.1. How long would this take assuming we can perform
1,000, 000, 000 divisions each second?

We will happily settle for a number which is prime with probability
say 99.9999%.
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6.1. Primality testing. How can we test if p is prime? By Fermat’s
little theorem, if p is prime then

a’? =a modp foralll <a<p-—1.

So if a”? # a mod p, then p is definitely not prime. If a? = a mod p,
we have some evidence that p might be prime. If af = ay, db = as,

., abyy = a0 mod p we are tempted to conclude that p is probably
prime. But what is the actual probability? Also, does this test detect
all non-prime numbers?

If n =10, then 21 = 4,310 =9, 410 =6, 710 =9, 810 =4 and 9'¥ = 1
mod 10 so we have 6 negatives (AKA witnesses) and 3 false positives
(the numbers 1,5, 6). Therefore this test is 6/9 = 66.67% effective.

Eg. n = 935 has 908 negatives/witnesses i.e. numbers such that
a? # a mod p. So this test is 908/934 = 97.22% accurate.

Eg. n =287, 190, 314 accuracy = 96.9%, 78.9%, 98.7%. Problem:
561 = 311 .17 satisfies a®®! = @ mod 561 for all 1 < a < 561. The
test is 0% accurate.

Proof. $(561) = 2-10-16 = 320. It is enough to show that a’! = q
mod 3,11, 17.

Modulo 3: If GCD(a,3) = 1, then a® = 1, so a®®* = (a?)*" = 1280 =
1.

Modulo 11: If GCD(a,11) = 1, then a'® = 1, so a®® = (a'%)°6 =
156 = 1.

Modulo 17: If GCD(a,17) = 1, then a'® = 1, so a®° = (a')¥ =
110 =1. U

Numbers with this property (¢ = a mod p for all 1 < a <p—1) are
called Carmichael numbers.

Eg. 561, 1105, 1729, 2465, 2821, 6601, 8911 are all the Carmichael
numbers less than 10, 000.

So maybe these numbers are very rare and this is not a problem.

Exercise 6.2. Can you show that there are infinitely many Carmichael
numbers?

Notice that 225 = 154 # 1 mod 561, so maybe we should be testing
for ¢! =1 mod m (not a™ = a mod m). It would be even better to
find a test that always works!

6.2. The Miller Rabin test.

Theorem 6.3. If p # 2 is prime, then we write p — 1 = ¢ - 2¥ where q
is odd. If (a,p) = 1 then either
1) a? =1 mod p, or

2/(:7].

2)a?=—1ora* =—-1ora*=—1or.. ora> 7=-1 modp.

Proof. We will use that fact that if p is prime, then the only numbers
that square to 1 mod p are 1,—1. Now, a4 = a»"! = 1 so a2 "¢ =
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+1. If ¢4 = —1 we are done, otherwise a2’ = +1. Repeat this
procedure until possibly a? = +1. if its a? = —1 we are in case 2.
Otherwise, a? = 1 and we are in case 1. U

Notice that for a composite number such as 24 we may have many
more square roots of 1 (eg. 1,5,19,23).

The Rabin Miller test for prime numbers works as follows: Pick n
any odd integer, and write n — 1 = ¢ - 2% with ¢ odd. If a? # 1 mod n
and a*?# —1 mod n for i =0,1,...,k — 1, then n is composite.

Theorem 6.4. If n is composite and odd, then at least 75% of the
numbers between 1 and n—1 fail the Rabin Miller test. So at least 75%
of such numbers are Rabin-Miller witnesses.

So if n passes the test for 100 random numbers, then n is not prime
with probability less than 0.25'%° = 1/(2%00) = 107%.

Exercise 6.5. Apply the Rabin-Miller test with a = 2 to n = 561.

7. THE PRIMITIVE ELEMENT THEOREM

We now return to the study of powers of a number a mod p where p is
prime. By Fermat’s Little Theorem, we know that forall 1 <a <p-—1
we have a? ! = 1 mod p. We would now like to answer, the question:
Are there any smaller powers such that a® =1 mod p?. Let e,(a) be
the smallest positive number such that a®»(® =1 mod p. The number
ey(a) is the exponent of a mod p.

Exercise 7.1. Find e,(a) for 1 <a < p—1and p=5,7,11. Do you
see a pattern?

There are two main observations, that are true for all primes:

Theorem 7.2. Let p be any prime and 1 < a <p—1. Then
(1) ey(a) divides p— 1.
(2) There are exactly ¢(p — 1) distinct numbers 1 < a < p—1 such
that ey(a) =p — 1.

Proof. For 1), if e,(a) does not divide p—1, then 1 < g = GCD(ep(a), p—
1) < e,(a) and we may write g = ze,(a) + y(p — 1) so that
ad = gFer(@tylp—1) _ (aep(a))fv . (apfl)y —1*.1Y =1

and this contradicts the fact that e,(a) is the smallest integer such that
a® =1 mod p.

For 2) we proceed as follows: since e,(a) always divides p — 1, we
begin by counting how many a’s with exponent e < p — 1 are there?
If p—1 = ¢" where ¢ is prime, then if e,(a) # p — 1, we have that
e,(a) divides ¢"~! and hence a is a root of the polynomial 27" —1 = 0.
There are at most ¢"~! such roots and so there are at least ¢" —¢"~! > 0
primitive roots. If p —1 = ¢ - - - ¢/~ with r > 2, then if e,(a) #p — 1,
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we have that e,(a) divides (p — 1)/q1 or ey(a) divides (p — 1)/gz, so
a is a root of (zP~V/@ — 1)(z(P~V/e2 — 1) = 0. There are at most
(p—1)/q1+ (p—1)/q2 — 1 distinct roots of this equation (the root 1 is
counted twice). It follows that there are at least

1 1
p=1-(p-D/a-p-1/e+1=p-1)1-—-—)+1>0
a1 G2
primitive roots. (We have used the fact that ¢; > 2 so that ,i"‘ q% <1)
We have so far verified that there is at least one primitive root say
g. So we know that

{]-7"'7p_]-}:{gag27"'7gp71}

(as unordered sets). The order of ¢* is p — 1 exactly when GC'D(i,p —
1) = 1 (exercise for the reader) and so we have exactly ¢(p—1) primitive
roots.

U

Exercise 7.3. Find an element of order 12 mod 13 (i.e. a primitive
element). What are the other elements of order 127 Find elements of
order 2,3,4,6. Is there an element of order 57

8. SQUARES MODULO A PRIME

Exercise 8.1. Is 5 a square modulo 117 L.e. can we find a number a
such that a? = 5 mod 117

Exercise 8.2. Compute all squares mod 13, 17, 19, 23. Do you notice
a pattern?

Theorem 8.3. Let p be a prime, then there are (p — 1)/2 non-zero
squares mod p.

Proof. Clearly a® = (—a)? so there can be at most (p — 1)/2 distinct
squares. Suppose that there are less than (p — 1)/2 squares, then there
is a number say a which is the square of at least 3 different numbers,
say b,c,d mod p. But then b, c,d are distinct roots of 22 — a. This is
impossible! (In fact, then z — b,  — ¢ and z — d all divide z? — a so
x? — a is divisible by a degree 3 equation which is impossible.) U
Exercise 8.4. Show that if p is a prime and a is a root of 22 + bz + ¢,
then a and —(b + a) are the only roots of z + bx + c.

Exercise 8.5. Find a number m and an equation z? + bx + ¢ that
has at least 3 solution. Conclude that z? + bz + ¢ has more than one
factorization.

We will call the squares mod p Quadratic Residues or just QR.
The non-zero numbers that are not QR will be called Non Residues
or just NR.
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The next observation is that if ¢« and b are squares modulo p, then
ab is a square mod p. In other words

QR x QR = QR.

Exercise 8.6. What happens when you multiply QR x NR, NR x
NR or NR x QR mod 77 Experiment mod 11. Can you draw any
conclusions?

Theorem 8.7. Let p be a prime, then modulo p, we have that QR X
QR=QR, QRX NR=NRXQR=NR and NRx NR=QR

Proof. The primitive root Theorem states that there is an integer g
such that g, ¢2,...,¢"! gives all numbers 1 < z < p — 1 mod p.
The QR’s are exactly the even powers of g and the NR are the odd
powers. So, to verify that NR x QR = NR we take a non-residue of
the form ¢%**! and a residue of the form ¢% and we multiply them to
get g2 +1g% = g?(k+9)+1 which is not a residue as 2(k+j)+1isodd. O

So multiplying QR’s and NR’s behaves like multiplying 1 and —1.
It makes sense to define the Legendre symbol of ¢ mod p as follows:
(3) =1ifais a QR mod p and () = —1if a is a NR mod p. So, if
a is a QR and b is a NR mod p, then ab is a NR mod p which can be
expressed by the following equality:

(5) - <5> | (;ﬁ) =1-(-)=-1

Exercise 8.8. Find a primitive element mod p = 11,13,17. Find all
QR’s mod p = 11,13, 17.

Exercise 8.9. Find the sum of all QR’s 1 < a < p—1mod p =
11,13,17. Do the same for the NR’s. Do you notice a pattern?

Exercise 8.10. Compute (*71) for p = 3,5,7,11,13,17,19, 23, 29, 31.
Do you notice a pattern?

The pattern is:

-1
<—> =1 ifp =1 mod 4,
p

-1
<—> = —1 ifp = 3 mod 4.
p

This follows immediately from
Euler’s Criterion: If p # 2 is a prime, then

a? V2 = (2) mod p.
D

Clearly, if p =1 mod 4, then p = 4k + 1 so that (71) (-1)%* =1
and if p = 3 mod 4, then p = 4k + 3 so that () = (=1)**' = 1. It
remains to prove Euler’s Criterion:
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Proof. If ais a QR, then a = b% so that a?~1/2 = p»=! =1 as required.
If a is a NR, then a is an odd power of a primitive element, i.e.
a = ¢?**1 so that

aP=1/2 = (CEP-1)/2 — ("~ 1k gP=/2 = 4(P=1)/2,

Now, g?~! =1 so that g®=Y/2 = £1, but since e,(g) = p—1 (i.e. p—1
is the smallest power e such that ¢¢ = 1), then ¢®~1/2 = —1. O

Next we would like to determine When is 2 a QR mod p? l.e. we
would like to compute (%) for all odd primes.

Exercise 8.11. Determine (127) for all primes 3 < p < 47. Do you see
a pattern?

The pattern (which is hard to spot) is
2
(—) =1ifp=1or 7 mod 8,
p

2
<—> = —1ifp =3 or 5 mod 8.
p

Proof. We multiply the even numbers

2-4-6---(p—1) :2(171)/2.1.2.3...1)Tl_
We now wish to rewrite the LHS 2-4-6---(p — 1) in a different way.
Consider the numbers > (p—1)/2 which are ..., (p—5), (p—3), (p—1)
or equivalently ..., —5, —3, —1. So when we multiply 2:4-6---(p—1),
we are actually multiplying all the even numbers < (p — 1)/2 and all
the odd numbers < (p — 1)/2 ? with a minus sign. Therefore

-1
2.4'6”'(29_1):(_l)t'1.2.”pT

where ¢ is the number of odd integers 1 < a < (p — 1)/2. Comparing
the two equations above and canceling 1 < a < (p —1)/2, we get

2-1/2 — (1) mod p.
We now can easily conclude via a case by case analysis:

If p=1mod 8, then p =8k + 1 so that (p —1)/2 = 4k and ¢t = 2k.
Then 2P~1/2 = (—1)?* = 1 mod p and by Euler’s Criterion, 2 is a
square mod p.

If p =3,5,7 mod 8, then p = 8k + 3, 8 + 5, 8k + 7 so that
(p—1)/2=4k+1, 4k +2, 4k+ 3 and hence t = 2k +1, 2k +1, 2k +2
and hence 2P~1/2 = —1, —1, 1 and by Euler’s Criterion, 2 is a NR,
NR, QR mod p. 0

Exercise 8.12. Compute (’71) and (%) for p = 101,103, 107,109, 113.
Exercise 8.13. Does 22 + 4z + 54 have a solution mod 97,101,103 ?

Af p—a > (p—1)/2, then (p+1)/2 > a so that (p+1)/2 > a—1ie. (p—1)/2 > a.
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8.1. Quadratic reciprocity. We would like to compute (%) for any
integer 1 < a < p—1. If we write a = ¢ ---¢"", then we have

() = (%) e (%). Now if n; is even, then ¢ is clearly a square so

that (‘%) = 1. If n; is odd, then (q%) = (%). Therefore, we just need
to compute

<q> ¢ .
— | for any primes ¢, p.
p

Exercise 8.14. Make a table for (%) for the primes 3,5,7,11,13,17, 19, 23, 29.
Can you see a pattern? Look at the rows and columns for p = 5,13, 17, 29.
Now rub these out. Is there a pattern?

The pattern is the following:

Theorem 8.15. If p # ¢ > 2 are primes, then?

<g> = <B> if either p =1 mod 4 or ¢ = 1 mod 4,
p q

<g> :—<]—9> if p# 1 mod 4 and ¢ # 1 mod 4.
p q

Exercise 8.16. Compute (53), (25), (2%).

We also have the Generalized Law of Quadratic Reciprocity:

Theorem 8.17. Let a,b be odd numbers, then

(1) (F)=1ib=1mod 4 and (3) = -1 if b =3 mod 4
(2)
(3)

() if either @ = 1 mod 4 or b = 1 mod 4, and (%) =
if @ # 1 mod 4 and a # 1 mod 4.

|
—
SIS
— |

9. PYTHAGOREAN TRIPLES

By definition, a Pythagorean triple is an integer solution to the
equation a®+b? = 2. It yields a rectangle triangle with sides of integer
length a,b,c. You are probably familiar with the Pythagorean triple
3,4,5.

Exercise 9.1. Can you find any other Pythagorean triples?

Of course, 6,8,10 is also a Pythagorean triple and so is 3a, 4a, 5a
for any positive integer a. We will say that a,b,c is a primitive
Pythagorean triple if a>+b? = ¢? and a, b, ¢ have no common factors.
(5,12, 13) is another such triple.

STogether with the rules 1) (=£) = 1if p = 1 mod 4 and (5}) = —1ifp =3
mod 4 and 2) (%) =1if p = £1 mod 8 and (%) = —1if p = £3 mod 8, this is
known as the Law of Quadratic Reciprocity.
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Exercise 9.2. Can you find any other primitive Pythagorean triples?
Can you show that there are infinitely many such triples? Write a
program to find all such triples with a,b < 100.

We would like to find all primitive Pythagorean triples. We notice
that if @ and b are even, then c is even so that 2 is a common factor of
a, b, c and then a, b, ¢ is not a primitive triple. If a and b are both odd,
then a =224+ 1,b=2y + 1 and

A =a?+V =42* + 40 + 1+ 4y* + 4y + 1 = 2 mod 4.

Now, 2 is not a square mod 4 so this is impossible. Therefore we
conclude that the set a, b are not both even or odd. So, we may assume
that

a is odd, b is even, and c is odd.

We now consider the factorization
a*=c—b* = (c—0b)(c+Db).
We claim that: Both ¢ — b and ¢+ b are squares.

Proof. First of all g = GCD(c — b,c+ b) = 1 as otherwise g divides
¢ —band ¢+ b so that g divides 2¢ = ((¢ — b) + (¢ + b)) and g divides
20 = ((c+b) — (c—b)). Since ¢+ b is odd, g is odd, so ¢ divides ¢ and
b and hence g divides a (as ¢g* divides a® = ¢* — b?) so that as a,b, ¢
have no common factor, we have g = 1.

So, if p is a prime number such that p divides ¢ + b, then p does not
divide ¢ — b. Let p' be the highest power of p dividing ¢ + b, then p' is
the highest power of p dividing a? = (¢ — b)(c + b). Therefore ¢ is even
and so if we write ¢ + b = pi* - -pl' with p; distinct primes, we have
that all the n; are even so that ¢ 4 b is a square. The same reasoning
also shows that ¢ — b is a square. U

So we write
c+b=s" and c—b=t
where s > ¢t > 1 are odd integers. Therefore, we have that

Theorem 9.3. All primitive Pythagorean triples are of the form

5% + 5?2 — 2
c= , b=
2 2
for some odd integers s >t > 1.

, and a = st

10. WHICH PRIME NUMBERS ARE SUMS OF TWO SQUARES

Exercise 10.1. Find all prime numbers < 47 that are sums of two
squares. do you notice a pattern?

The pattern is

Theorem 10.2. A prime number p # 2 is the sum of two squares if
and only if p =1 mod 4.
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Proof. If p is the sum of two squares, then p =1 mod 4: To see
this, write p = a? + b%. As p is odd, then we may assume that a is
even and b is odd. So mod 4 we have a € {0,2} so that a*> = 0 mod 4.
Similarly b € {1,3} mod 4 so that b* =1 mod 4, so p=0+1 =1 mod
4.

If p=1 mod 4 then p is the sum of two squares: This implica-
tion is much harder! The idea is as follows: By quadratic reciprocity,
we know that —1 = A? mod p so letting B = 1, we have A2 + B? = 0
mod p i.e. A2+ B? = Mp. If M = 1 we are done. Otherwise we need
a procedure to find new integers a, b, m such that a? + b*> = mp and
1 < m < M. We then repeat this procedure until m = 1.

This is known as Fermat’s Descent Procedure. This is how it works:

(1) Let p be any prime with p = 1 mod 4 (eg. 53), we may write
A% 4+ B% = Mp with M < p (eg. 132+ 192 =10-53).
(2) We may pick u = A,v = B mod M such that —%M <u,v <
M (eg. u =3, v=—1), then u* +v* = A* + B> = 0 mod M.
(3) We have u?+v? = Mr and A%+ B? = Mp for some 1 <r < M
(eg. 32+ (—1)*=10-1 and 13* +19% = 10 - 53).
Notice that r # 0 since otherwise u? +v? =0 so u = v = 0
so A=wu=0mod M and B = v = 0 mod M. But then M?
divides A% 4+ B? = Mp so that M divides p. But 1 < M < p so
that this is impossible.
Notice that r < M since r = “2;5[”2
M.
(4) If we multiply these together, we get

(uA+vB)? + (vA — uB)? = (u* + v*)(A® + B?) = M?rp.

(5) Notice that (uA +vB) = A + B> = Mp = 0 mod M and
(vA —uB) = BA— AB = 0 mod M. So (uA + vB) and
(vA — uB) are divisible by M. (Eg.(uA+vB) =39 —19 = 20
and (vA —uB) = —13 — 57 = —70.)

(6) We have therefore obtained the equation

uA +vB 2+ vA —uB 2_
M M 4

with 7 < M (eg. 2% + (—7)? = 22 + 7% = 53). Repeating this
we will get 7 = 1 as required.

< (M2 +(n/2)?

_ M
— M _2<

4

Exercise 10.3. Use Fermat’s descent procedure to write 97 as the sum
of 2 squares. Do the same for p = 881.

11. FERMAT’S LAST THEOREM

In the 17th century Fermat stated that the equation

a"+b" ="
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has no solutions for n > 3 and a,b,c¢ > 0. Remember that for n = 2
this equation has infinitely many solutions and we can describe all of
these. So this fact is very surprising. It also turns out to be a very
deep result which was eventually proven by Wiles at the end of the
20th century. We will show the following:

Theorem 11.1. The equation a™ + 0" = c¢" has no solution when n s
divisible by 4 and a,b,c > 0.

Proof. It is enough to show that the equation z* + y* = 2? has no
solution for x,y,z > 0. In fact if a,b,c is a solution of the original
equation, then z = a™*, y = v"/* and z = ¢"/? are solutions to our
new equation. The idea is once again to show that if there is a solution
x,y, 2, then we can find a new solution z’,v’, 2’ with 1 < 2/ < z. We
can’t repeat this infinitely many times, so there was no solution to
begin with!

To begin with, notice that we may assume that x,y, z have no com-
mon factor. Now, if we let a = 2%, b = y? and ¢ = 2z, then a,b,c is a
primitive Pythagorean triple and so we may write

5?2 — 12 52 2
2 B 2
for some odd integers s,t with no common factor. Now st = x

odd square so that st = 1 mod 4. It follows that either

s=t=1mod4ors=t=—1=3mod 4.

1 =a = st, Yy =b=

2 is an

Also, we have
2 =" —t* = (s +t)(s — 1)
Since s,t are odd and relatively prime, then the only common factor

of s+tand s —tis 2. Now 4 divides s — ¢t so s +t = 2r where r is an
odd number. Now 2y? = (s — t)(s + t) so we have

s+t =2u? and s —t = 4v?
where GC'D(u,2v) = 1. Solving for s,t we get
s = u? + 20? and t =u?— 20%

and so from the formula z? = st it follows that

2? =ut — 4ot or 2?4+ 4v* = ut.
We now let A =z, B = 2v? and C = u? so that
A? =B+ C?

and A, B, C' have no common factori.e. A, B, is a primitive Pythagorean

triplet. Therefore, we know that there are odd relatively prime integers

S, T such that

52 _ T2
2

v =A=ST, =B = 5

, u?=C
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So we get
WP=85-T*=(S-T)(S+T).
Now GCD(S —T,S+7T) =2 (S,T are odd and relatively prime). So
we must have
S+ 1T = 2z° and S —1T = 2¢* SO

S=z+y> and T=z*-9> so
o SPHTE (B4 (27— )
2 2
This is the new solution (Z, 4, u) to the original equation x* + y* = 22,
We must still show that « < z, but this is clear from the formula

2 4 42 2 1 9,,2)2 2 _ 9,,2)2
z:s—; :(u+v)—;—(u U) = ut + 40t

u =zt + gt

12. ANSWERS TO THE EXERCISES:

Ex. (1.1) 2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 87, 89, 97.

Ex. (1.2) 12=2%2.3,123=3-41, 1234 =2-617, 1235 =5- 13- 19,
1236 =22 - 3-103.

Ex. (1.5) 3 does not divide 71651, but it does divide 771651.

Ex. (1.6) To compute the last two digits of 273! we just need
to compute the last two digits of various powers of 273: 273% = 29,
273% = 41, 273% = 81, 273! = 61, 27332 = 21, 2735 = 41, 27390 =
2730443240 — 41 % 21 % 41 = 01. 2731 = 2736432164241 — 41 4 21 &
61 x 29 x 73 = 57.

Ex. (1.7) (2) 5-9=1mod 11, 7- 10 = 1 mod 23, 7-29 = 1 mod
101, 4! mod 8 does not exist.

(3) Mod 17 we have 359 = 2,22 =4,23=8,2' =16 = —1s502% = 1.

(4) Mod 11 the powers of 2 are 2,4,8,5,10,9,7,3,6, 1 so the order is
10. The powers of 3 are 3,9,5,4,1 so the order is 5.

The powers of 4 are 4,5,9, 3,1 so the order is 5.

The powers of 5 are 5,3,4,9,1 so the order is 5.

The powers of 6 are 6,3,7,9,10,5,8,4,2,1 so the order is 10.

The powers of 7 are 7,5,2,3,10,4,6,9,8,1 so the order is 10.

The powers of 8 are §,9,6,4,10,3,2,5,7,1 so the order is 10.

The powers of 9 are 9,4, 3,5,1 so the order is 5.

The powers of 10 are 10,1 so the order is 2.

(5) the squares mod 11 are: 1,4,9,5,3 so 22 = 6 has no solution
mod 11 and 42 = 72 = 5.

Ex. (2.1) 54321 = 4 - 12345 + 4941, 12345 = 2 - 4941 + 2463, 4941 =
2:2463+15, 2463 = 164-15+3, 15 = 5-3+0 so GC' D(54321,12345) = 3.

45201647%18296431 = 8608785, 18296431%8608785 = 1078861, 8608785%1078861 =
1056758, 1078861%1056758 = 22103, 1056758%22103 = 17917 22103%17917 =
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4186, 17917%4186 = 1173, 4186%1173 = 667, 1173%667 = 506, 667%506 =
161, 506%161 = 23, 161%23 = 0

Ex. (2.2) 12345 = 3 -5 823, 54321 = 3 - 19 - 953, 45201647 =
231965289 and 1965289 has no divisors < 241. We would need to use
a computer. 18296431 = 23 - 97 - 8201 (we got lucky here).

Ex. (2.4) (1) (referring to ex. 2.1) 3 = 2463 — 164 - 15 = 2463 — 164 -
(4941 —2-2463) = 329-2463 — 164 -4941 = 329- (12345 —2-4941) — 164 -
4941 = 32912345 — 8224941 = 329-12345—822- (54321 —4-12345) =
3617 - 12345 — 822 - 54321.

Ex. (2.5) (1) 123 = 44%2+35, 44 = 3549, 35 = 9%3+8,9 = 8+1 s0
1=9-8=9—-(35—9%3) = 4%x9—35 = 4%(44—35)—35 = 4x44—5%35 =
4544 — 5% (123 — 44 %2) = 14 %44 — 5% 123 so 14 « 44 = 1 mod 123.

Ex. (2.6) ...... abed x 17 =1+ X 100 = .....0001. So 17d = 1 mod
10 i.e. d = 3,

c3 %17 =1 mod 100 i.e. ¢x 170 =1 — 51 = —50 = 50 mod 100 so
that ¢ * 7 = 5, mod 10 so that ¢ = 5,

b53 * 17 = 1 mod 1000 i.e. b* 1700 = 1 — 901 = 100 mod 1000 i.e.
bx7=1,mod 10 so b =3

a353 %17 =1 mod 10000 i.e. ax17000 =1 —6001 = 4000 mod 10000
so ax7=4mod 10 so a = 2.

Ex. (2.7) 101 = 103 % 97087378 + 66, 103 = 66 + 37, 66 = 37 + 29,
37 =29+8,29=8%3+5,8=5+3,5=3+2,3=2+1. So
1=3-2=3-(5-3)=3%2—-5=(8—-5)%2—-5=8%2—-5%3=
8%2—(29—-8%3)%«3=8%11—-29%3=(37—-29) %11 —29%3 =
37+ 11 —29% 14 = 37 % 11 — (66 — 37) % 14 = 37 %25 — 66 * 14 =
(103 — 66) * 25 — 66 % 14 = 103 % 25 — 66 x 39 = 103 % 25 — (10'° — 103 %
97087378) x 39 = 103 x 3786407767 — 10 x 39. So 103! = 3786407767
mod 10 so SSN = 3536767732 * 3786407767 = 519774444 mod 10*°

Ex. (32)22=4,21=(22)2=42=16=-1,25= (242 = (-1)?2 =
1. Since 12345 = 8- 1543 + 1, we have

212345 — (28)1543 L2 = 11543 .2 =9

Ex. (3.3) 22 =4, 2* = 16, 28 = 256 = 54, 216 = 542 = 2916 = 88,
22 — 882 = 7744 = 68. So

212345 — (2100)123 . 245 — 1123 . 232+8+4+1 —68-54-16-2 = 41.

Ex. (3.4) Mod 9: 2° = -1, 26 =1.
Mod 15: 2* =16 = —1, 28 = 1. The order is 8.
Mod 21: 2° = 32 = 11, 25 = 22 = 1. The order is 6.
Mod 35: 26 = 64 = 29, 27 = 58 = 23, 28 = 46 = 11, 2° = 22,
210 =44 =9, 21 = 18, 2!2 = 36 = 1. The order is 12.
Ex. (3.6) 480.
Ex. (3.8) 17.
Ex. (3.9) 2% =64 # 1 mod 91. 91 is not prime!
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Ex. (3.11) Mod 35, we have ¢(35) = 4% 6 = 24 so 10°%24 = 16 and
210 — 916 Now 24 = 16, 2° = 162 = 256 = 11, 2'6 = 112 = 121 = 16.

Mod 101: ¢(101) = 100 so that 210" = (2100)107 — 1107 — 7

Mod 103: ¢(103) = 102, 10°%102 = 58. 2* = 16, 28 = 256 = 50,
216 = 2500 = 28, 232 = 282 = 784 = 63, 278 = 232H16H8+2 — (3 4 96 «
o0 x4 = 25.

Ex. (3.12) ¢(1012-103) = 1,000, 000 and l0g,(10°) = 20 so about 20
doublings.

Ex. (3.13) 2999 = 4599 mod 9991.

Ex. (3.14) Mod 35: ¢(35) = 24, 5% 5 = 1 mod 24 so x = (2°)° =
7° =7 mod 35.

Mod 101: ¢(101) = 100 and 3 x 67 = 201 = 1 mod 100 so z =
(23)%7 = 377 mod 101. Now 37% = 56, 371 = 5, 378 = 25, 37! = 19,
3732 =58, 37% = 31. So 375" = 31 % 56 x 37 = 97.

Ex. (4.1) 52, 53,53,42,23,53,63,73,68,73,52; WELLDONE (note that
$(77) = 60 and 7+ 103 = 721 = 1 mod 60).

Ex. (5.3) 7(10'0) = 434, 204, 482; 7(10'0) — 71(10%) = 434, 204, 482 —
48,254,942 = 386,039, 540; (10" + 10%) — 7(10'0) = 4,514

Ex. (6.1) 10%s = 2.77 x 103"hrs = 3.16 * 10® years.

Ex. (7.1) n—1 = 560 = 35-2%. 2% = 263 mod 561. 270 = 2632 = 166
mod 561. 2 = 166% = 67 mod 561. 2% = 672 = 1 mod 561 and
2560 — 12 = 1 mod 561. So 561 failed the Rabin-Miller test, therefore
it can not be prime. 2 is a Rabin-Miller witness for the number 561.

Ex. (7.3) 2* = 3 and 2° = 8 mod 13, so the order of 2 is 12. The
other elements of order 12 are 25, 27, 2'1. 22 has order 6, 23 has order
4, 2* has order 3 and 2° has order 2.

Ex. (8.1) We square all the residues mod 11 and we get 0 = 07,
1=12=10%,4=22=92,9=232=8%2 5=42="7% and 3 = 5% = 62
mod 11. So the answer is yes.

Ex. (8.2) Mod 13: 1,4,9,3,12, 10.

Mod 17: 1,4,9,16,8,2,15, 13.

Mod 19: 1,4,9,16,6,17,11,7,5

Mod 23: 1,4,9,16,2,13,3,18,12,8, 6.

Ex. (84) (x—a)(x+b+a) =2*+b*x — a(b+ a) so we must show
that ¢ = —a(b + a) but this is clear as a is a root of 22 + b* z + ¢
so a2 +ab+c = 0. If z is a third root of 22 + b x  + ¢ mod p, then
(z—a)(z+b+a) = 0 so that p divides (z — a) or it divides (z + b+ a),
but then z = a¢ mod p or z = —b — a mod p. So these are the only two
roots.

Ex. (8.5) 2,4,8,10 are roots of 2 = 4 mod 12 so z° — 4 = (z —
2)(z —10) = (x — 4)(z — 8).

Ex. (8.6) QR=1, 4, 2; NR = 3, 5, 6 s0 QR * NR =NR * QR =3, 5,
6 =NR and NR * NR = 1, 4, 2 = QR.

Ex. (8.8) Mod 11: 2; QR=20=1,22 =4, 24 = 5,26 = 9, 25 = 3.

Mod 13: 2; QR=20 = 1,22 =4, 24 = 3 26 = 12 28 — 9 210 — 1.
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Mod 17: 3; QR=3" =1, 32 =9, 3* =13, 35 = 15, 3% = 16, 3! = 8,
312 =4, 34 =2,
Ex. (8.9) Mod 11: 144+549+3 = 22; Mod 13: 1+4+3+12+9+10 =
39 Mod 17: 1+9+4+13+154+16+8+4+2 = 68. They are all 0 mod p.
Ex. (810) (_1) = _17 (_Tl) = 17 (_71) = _17 (__11) = _17 (__113) = 17
Ex. (8.11) (g) —1, =
) =

Ex. (8.12) (—71) =1,-1,—-1,1,1 and (%) =-1,1,-1,-1,1.

Ex. (8.13) 2 +4x+54 = (z +2)?+50s0is =50 = —1 x 2% 5% a
square mod p? Equivalently is —1 % 2 a square mod p?

Mod 97: (57) = —1 and (g&) =1 so no.

Mod 101: 1% (=1) = —1 so no.

Mod 103 (—1) * 1 so no.

Bx. (816) (4) = () = () = () = 1 () = () = (=
(1) = (50) = —(§) =

Ex.(10.1) 2 = 12—|-12 5 =124+22 13 = 22 + 3%, 17 = 12 + 52,
29 =22 452 37 =12 —i—62 41—42—|-52

Ex. (103) A=1,B=22s012+222 =5%97so M =5, u = 1,
v=2s0 (uA+vB)/M =9 and (vA — uB)/M = —4, so 97 = 4* + 92,



