
1. Modular arithmetic1.1. Divisibility. Given positive numbers a; b, if a 6= 0 we can writeb = aq + rfor appropriate integers q; r such that 0 � r � a. 1 The number ris the remainder. We say that a divides b (or ajb) if r = 0 and sob = aq i.e. b factors as a times q.1.2. Primes. A number is prime if it can't be factored (as a productof two numbers greater or equal to 2). If a number factors (i.e. it isnot prime), then we say that it is composite.Exercise 1.1. Find all prime numbers smaller than 100.Here are several important questions:(1) How do we determine whether a number is prime?(2) How do we factor a number into primes?(3) How can we �nd big prime numbers?(4) How many prime numbers are there?Exercise 1.2. Factor 12, 123, 1234, 1235, 1236, 128417.Exercise 1.3. Show that every number is either prime or divisible bya prime number.Theorem 1.4. There are in�nitely many prime numbers.Proof. Suppose that there are only �nitely many prime numbers P1; � � � ; Pn,then N = P1 � P2 � � �Pn + 1 is not divisible by any prime, hence it doesnot factor and hence it is a new prime! ˜1.3. Divisibility tricks. Recall that a number is even if its last digitis divisible by 2, it is divisible by 3 if the sum of its digits is divisibleby 3, it is divisible by 5 if its last digit is divisible by 5 etc.Why is this? Can we �nd other divisibility tricks (eg. for 7)?One possible explanation. Let abc be a 3 digit number so that abc =a � 100 + b � 10 + c � 1. Thenabc=2 = a � 50 + b � 5 + c=2 and this is an integer only if c=2 is aninteger.abc=5 = a � 20 + b � 2 + c=5 and this is an integer only if c=5 is aninteger.abc=3 = a � 33 + b � 3 + (a + b + c)=3 and this is an integer only if(a+ b + c)=3 is an integer.A better explanation is given by congruences.1In Python notation r = b%a and q = b==a.1



21.4. Congruences. We say that a is congruent to b modulo N i.e.a � b mod N i� N divides a� b or equivalently i� a%N = b%N . So ais congruent modulo N to any number in the arithmetic progressionf� � �a� 2N; a�N; a; a+N; a+ 2N � � � g:Here are some examples(1) 273 � 593 mod 10(2) 273 6� 593 mod 100(3) 359 � 2 mod 17(4) 216 � 12 mod 17Exercise 1.5. Is 71651 divisible by 3? How about 771651 ?Exercise 1.6. (1) What is the last digit of 273100?(2) Of 273111?(3) What are the last two digits of the numbers above?Solution: Every integer modulo 10 is congruent to one of:f0; 1; 2; � � � ; 9g:we call this a system of residues modulo 10. We now compute theresidue of 273100. We have:273 � 3; 2732 � 9; 2733 � 27 � 7; 2734 � 1:Then 273100 = (2734)25 = 125 = 1:1.5. Arithmetic of residues (modular arithmetic). Residues mod-ulo 5: f0; 1; 2; 3; 4g = Z=5.Exercise 1.7. Write down the addition and multiplication tables.We can compute 3 � 4 = 2, 3 + 3 = 1 etc. We have0 = �0; 4 = �1; 3 = �2; 2 = �3; 1 = �4:Check 0 + 0 = 0, 1 + 4 = 0, 2 + 3 = 0. Now a=b makes little sense (eg.what does 3=4 mean?). We should write a � b�1, eg. 3 � 4�1. From themultiplication table, we see that 4 � 4 = 1 so that 4�1 = 4 and then3 � 4�1 = 3 � 4 = 2:Exercise 1.8. (1) Write down the addition and multiplication ta-bles for Z=7, Z=8.(2) Find the additive and multiplicative inverses of 5 mod 11, 7mod 23, 7 mod 101 and 4 mod 8.(3) Find the order of 359 mod 17.(4) Find the orders of 2; 3; � � � ; 9 mod 11. Do you see a pattern?(5) Can you solve x2 = 5 mod 11? and x2 = 6 mod 11?(6) Show that if a � b, c � d then a+ b � b+ d and ac � bd.



32. The Euclidean Algorithm2.1. The greatest common divisor. By de�nition the greatest com-mon divisor of two numbers a; b is the largest number that dividesboth a and b. We denote it by GCD(a; b) or just by (a; b). Eg(7; 11) = 1, (10; 15) = 5, (5555; 7931) = 11. To see the last one, write5555 = 5�11�101 and 7931 = 7�11�103 so that the sets of divisors aref1; 5; 11; 55; 101; 505; 1111; 5555g and f1; 7; 11; 77; 103; 721; 1133; 7931g.We can compute the GCD in the following ways:(1) By brute force: Find all the divisors and compare.(2) Find all divisors of a and throw out the ones that do not divideb.(3) Compare prime factors and multiply the highest powers thatdivide both numbers.(4) The Euclidean algorithm.The Euclidean algorithm is by far the fastest method (for big numbers).2.2. The Euclidean algorithm. Start with a = 2310, b = 1547 andlet r = a%b be the remainder. Replace a by b and b by r and repeat.The last nonzero remainder is the GCD.a b r q2310 1547 763 1763 21 7 3621 7 0 3The GCD is 7.Exercise 2.1. Find the GCD of 12345, 54321 and of 45201647, 18296431.Exercise 2.2. Factor the above numbers.2.3. Python Code. def gcd(a,b):r=a%bprint a,b,rwhile r>0:a,b,r = b,r,b%rprint a,b,rreturn bIt works as follows:>>> gcd(2310,1547)2310 1547 7631547 763 21763 21 721 7 072.4. Well ordering principle. Each nonempty set of positive integershas a least element.



4 Note that this is not true for the rationals. Eg. Q>0 has no smallestnumber.Proposition 2.3. Given positive integers a; b, let S = fax + by > 0gwhere x; y are any integers. Let g be the least element in S, theng = GCD(a; b).Proof. It is enough to show that g dividesGCD(a; b) and thatGCD(a; b)divides g.Clearly GCD(a; b) divides a and b so it divides any element in S andso it divides g.To see that g divides GCD(a; b) it is enough to show that g dividesa (and that g divides b). Consider a = gq + r, then r = a � gq =a � (ax + by)q = (1 � q)ax � (bq)y. Now 0 � r < g and so r = 0(else r 2 S contradicting the fact that g is the smallest element of S).Therefore g divides a (and by the same argument it divides b) and soit divides GCD(a; b). ˜So we can always writeGCD(a; b) = ax+ by:This allows us to �nd the inverse of any number 1 � a � p� 1 modulop when p is prime. In fact GCD(a; p) = 1 so we have 1 = ax + py somodulo p we have 1 � ax i.e. x = a�1 modulo p.2.5. Finding x and y. Use back substitution! Eg. for a = 2310,b = 1547 then GCD(a; b) = 7. Recall thata b r q2310 1547 763 11547 763 21 2763 21 7 3621 7 0 3So 763 = 2310 � 1547, 21 = 1547 � 2 � 763 and 7 = 763 � 36 � 21.Then7 = 763� 36 � 21 = 763� 36 � (1547� 2 � 763) = 73 � 763� 36 � 1547 =73 � (2310� 1547)� 36 � 1547 = 73 � 2310� 109 � 1547:Exercise 2.4. Solve(1) 54321x+ 12345y = 3(2) 54321x+ 12346y = 1.Exercise 2.5. Find the multiplicative inverse of(1) 44 mod 123(2) 444 mod 1234567.



52.6. Python code for the Extended Euclidean Algorithm. .def egcd(a,b):q,r = divmod(a,b)x,y,u,v=1,-q,0,1while r>0:qq,rr = divmod(b,r)xx,yy=u-qq*x,v-qq*ya,b,r,q,x,y,u,v=b,r,rr,qq,xx,yy,x,yprint a,b,r,q,x,y,u,vreturn u,v,bExercise 2.6. What are the last 4 digits of the multiplicative inverseof 17 mod 10100?Exercise 2.7. I have encoded my SSN using the algorithm f(x) = 103xmod 1010. The result is 3536767732. What is my SSN? (You will needa calculator that can compute with 20 digit numbers, eg, python.)3. Modular PowersWe begin by writing a table for the powers modulo 3, 5, 7.Modulo 3a a2 a3 a4 a5 a6 a70 0 0 0 0 0 01 1 1 1 1 1 12 1 2 1 2 1 2Note that after we get a column with all 1's (and a 0 at the top),the pattern must repeat. Therefore, as soon as (and if) this happens,the table just keeps repeating itself (and so we do not bother to keepwriting the repeated entries).Modulo 5a a2 a3 a4 a5 a6 a70 0 0 0 0 0 01 1 1 1 1 1 12 4 3 1 2 4 33 4 2 1 3 4 24 1 4 1 4 1 4Here, the 4th column has all 1's (and a 0 at the top).Modulo 7a a2 a3 a4 a5 a6 a70 0 0 0 0 0 01 1 1 1 1 1 12 4 1 2 4 1 23 2 6 4 5 1 34 2 1 4 2 1 45 4 6 2 3 1 56 1 6 1 6 1 6



6 Do you notice a pattern? The �rst pattern, seems to be that for alla 6= 0 we have a2 � 1 mod 3; a4 � 1 mod 5; a6 � 1 mod 7. It is easyto guess what the general pattern might be:Theorem 3.1 (Fermat's Little Theorem). Let p be any prime and0 < a < p. Then ap�1 � 1 mod p:Eg. 622 � 1 mod 23. (Check: 622 = 23 � 572268277 + 1.) Similarly84100 � 1 mod 101. (Note that 84100 has more than 100 digits, sochecking explicitly might not be so easy!)Proof. We claim that the set fa; 2a; � � � ; (p�1)ag is the same as the setf1; 2; � � � ; p � 1g (the elements are not in the same order!). Grantingthe claim, then we have1 � 2 � � � (p� 1) = a � 2a � � � (p� 1)a = 1 � 2 � � � (p� 1) � ap�1:Since p does not divide 1�2 � � � (p�1), it follows thatGCD(p; 1�2 � � � (p�1)) = 1, so there is a number 1 � x � p�1 such that x�1�2 � � � (p�1) � 1mod p. But then1 � x � 1 � 2 � � � (p� 1) � x � 1 � 2 � � � (p� 1) � ap�1 � ap�1as required.To see the claim, we must check that1) The map x! ax mod p induces a mapf1; 2; � � � ; p� 1g ! fa; 2a; � � � ; (p� 1)ag:I.e. that for all 1 � x � p� 1, we have that p does not divide ax. Thisis clear as p is a prime number that does not divide either of a and x.2) If 1 � x 6= y � p � 1 then ax 6= ay mod p (i.e. this function is 1to 1). Suppose in fact that ax = ay mod p. As GCD(a; p) = 1, thereis a number b such that ba = 1 mod p. Therefore bax = bay so thatx = y! ˜Exercise 3.2. Compute 212345 mod 17Exercise 3.3. Compute 212345 mod 101.Exercise 3.4. Compute the order of 2 mod 9, 15, 21 and 35.Can you make a guess about the general pattern?3.1. Euler's � function. How does Fermat's Little Theorem general-ize to numbersm that are not prime? The key thing in the proof is thatf1; 2; � � � ; p � 1g are coprime with p so that they have multiplicativeinverses in Zp. It is then natural to de�ne�(m) = #fa : 1 � a � m� 1 and GCD(a;m) = 1g:This is Euler's � function. We now compute its value for some m's:(1) �(p) = p� 1 for all prime numbers p. Eg. �(17) = 16.



7(2) �(9) = #f1; 2; 6 3; 4; 5; 6 6; 7; 8g = 6(3) �(25) = #f1; 2; 3; 4; 6 5; 6; 7; 8; 9; 6 10; 11; 12; 13; 14; 6 15; 16; 17; 18; 19;6 20; 21; 22; 23; 24g = 20(4) �(p2) = p2 � p for any prime number p. To see this, note thatin the list f1; � � �p2� 1g we must erase p; 2p; � � � ; (p� 1)p so wehave p2 � 1� (p� 1) = p2 � p entries.(5) �(pn) = pn � pn�1 for any prime number p. Explain this indetail!(6) �(6) = #f1; 5g = 2.(7) �(10) = #f1; 3; 7; 9g = 4.(8) �(14) = #f1; 3; 5; 9; 11; 13g = 6.(9) �(15) = #f1; 2; 4; 7; 8; 11; 13; 14g = 8(10) �(p � q) = (p�1)(q�1) for any prime numbers p; q. To see this,note that in the list f1; � � � ; pq�1g we must erase p; 2p; � � � ; (q�1)p and q; 2q; � � � ; (p�1)q so we have pq�1�(p�1)�(q�1) =(p� 1)(q � 1) entries.(11) �(m � n) = �(m) � �(n) whenever GCD(m;n) = 1.Exercise 3.5. Prove the last fact.Exercise 3.6. Compute �(1800).Theorem 3.7 (Euler's Formula). If GCD(a;m) = 1, thena�(m) � 1 mod m:Exercise 3.8. Compute 175243 mod 1800.Exercise 3.9. Compute 290 mod 91. Is 91 prime?So if we pick a random number 0 < a < m and we have am 6= a modm, then m is not prime. If am = a mod m, then m maybe prime.If am = a mod m for many a's, then m is probably prime.Exercise 3.10. There are some composite numbers such that am = amod m for all 1 � a � m� 1! Can you �nd one?3.2. Powers mod m. How would you compute 71;000;000;000 mod 10403by hand? (Or maybe with a pocket calculator.)1) 10403 = 101 � 103 so �(10403) = 10200.2) 109 = 98039 � 10200 + 2200 so 71;000;000;000 = 72200 mod 10403.3) 72 = 49, 74 = 492 = 2401, 78 = 24012 = 1539, 716 = 15392 =7040, 732 = 1708, 764 = 2401, 7128 = 3733, 7256 = 5672, 7512 = 5508,71024 = 2916, 72048 = 3805. Now 2200 = 2048 + 128 + 16 + 8 so72200 = 3805 � 3733 � 7040 � 1539 = 2324 mod 10403:This was remarkably quick. It turns out that we did not need toperform 1; 000; 000; 000 operations. Just about log2(2200), so about 12operations. note that in base 2, the number 2200 is 100010011000.Exercise 3.11. Compute 21;000;000;000 mod 35, mod 101, mod 103.



8Exercise 3.12. Estimate the number of doublings needed to compute12510100 mod 1012 � 103.Exercise 3.13. Compute 29990 mod 9991 without factoring 9991. Is9991 prime? Factor 9991.3.3. k-th roots mod m. We wish to solve the equationxk = b modm:For example x5 = 427 mod 9991.We have that 9991 = 103 � 97 and so �(9991) = 102 � 96 = 9792.Now, GCD(5; 9792) = 1 and so we can invert 5 modulo 9792. Wemust write 5 � u = 1 mod 9792. We use the Euclidean Algorithm toget 5 � 3917 + 9792 � (�2) = 1. Therefore(x5)3917 = x9792�2+1 = (x9792)2 � x = x mod 9991:So x = (427)3917 mod 9991.The general strategy to solve xk = b mod m where GCD(b;m) = 1and GCD(k; �(m)) = 1 is exactly the same:(1) We compute �(m). (This is easy if we can factor m.)(2) Write ku = 1 + �(m)v. (Use the Euclidean Algorithm.)(3) Then x = x1+�(m)v = xku = bu. (Compute bu via the method ofsuccessive squaring.Exercise 3.14. Solve x5 = 7 mod 35 and x3 = 37 mod 101.4. RSAThe �rst step is to convert the alphabet to numbers. Eg. A ! 11,B ! 12, C ! 13, D ! 14, E ! 15, F ! 16, G ! 17, ..., Y ! 35,Z ! 36. SoGOODMORNING! 1725251423252824192417This code is very easy to break by frequency analysis. So we want tojumble the numbers up in a way that will look completely random (tothe code breaker).Fix p; q two very large primes (eg. 100 to 200 digits). Let m = pq sothat �(m) = (p� 1)(q � 1). Pick k with GCD(k; �(m)) = 1.Everyone knows m; k (they are public).p; q (and hence �(m)) are secret.For example, let p = 101, q = 103 so that �(m) = 10200. Pickk = 77.(1) Break a message up in to numbers < m. (Eg. 1725, 2514, 2325,2824, 1924, 1700.)(2) Let bi = aki mod m. We compute this by repeated squaring toget the encoded message b1; : : : ; br. This is made public/sentto the intended receiver. (Eg. bi = a77i mod 10403 gives 4377,9088, 1475, 2642, 3358, 3521.)



9(3) To decode, solve xk = bi mod m. So �nd j with jk = 1 mod�(m). Then ai = bji mod m. (Eg. j = 8213. Check that kj = 1mod 10200 and that 43778213 = 1725 mod 10403 etc.)This system is very easy to explain and implement on a computer.In order to decode it you must know �(m) So you must factor m.This is very hard! Factoring a 200 digit number requires about 10100computations! In contrast, it is easy to produce big primes. (We willdo this later.)Question: Couldn't we �nd �(m) without factoring m and so easilybreak the code?Answer: No. Since m = pq, if we know �(m) = (p � 1)(q � 1) =m�p�q+1 then we know p+q = m��(m)+1 and so we can �nd theroots of x2� (p+ q)x+m = 0. But these are the roots of (x�p)(x� q)and hence we have found p; q.Exercise 4.1. Encode GOODMORNING using m = 77 (2 digits at atime). Decode 33; 71; 12; 12; 42; 53; 73; 71.4.1. RSA signatures. In practice each individual (A,B,C...) will havewill have his/her secret primes pA; qA and will make mA = pA � qA andkA public.Anyone can encrypt a message and send it to A (or B, C etc.). Justdo a1; : : : ; ar ! akA1 ; : : : ; akAr = b1; : : : ; br:We assume that b1; : : : ; br is public (or could be intercepted!).Only A can decode this message since only A knows �(mA) so onlyA can solve jAkA = 1 mod �(mA) and then compute ai = bjAi mod mA.Suppose that A is expecting a message from B. How does A knowthat it really comes from the friendly B and not from the evil C?B can attach a signature as follows:BARTSIMPSON ! �1; : : : ; �s ! �jB1 ; : : : ; �jBs mod mB:Only B can do this. Only B can �nd jB.Now B encodes his message with the signature appendeda1; : : : ; ar; �jB1 ; : : : ; �jBs ! b1; : : : ; br; br+1; : : : ; br+s = akA1 ; : : : ; akAr ; (�jB1 )kA; : : : ; (�jBs )kA:Only A can decode the message and see a1; : : : ; ar; �jB1 ; : : : ; �jBs . Buteveryone knows kB so A can compute(�jB1 )kB ; : : : ; (�jBs )kB = �1; : : : ; �s = BARTSIMPSON:So A can tell that B sent the message and no one else can!5. Counting large primesWe already know that there are in�nitely many prime numbers, buthow common are they?Eg: \Half of the numbers are even."



10 To be more precise, if we letev(x) = #feven numbers n with 1 � n � xgthen ev(1) = 0, ev(2) = 1, ev(3) = 1, ev(4) = 2, ev(5) = 2, etc. Soev(x) = x=2 if x is even and ev(x) = (x � 1)=2 if x is odd. Thenev(x)=x = 1=2 if x is even and ev(x)=x = 1=2 � 1=2x if x is odd.Then ev(x)=x ! 1=2 and x ! 1. Eg ev(10; 000)=10; 000 = 1=2 andev(10001)=10; 001 = 1=2� 1=20; 002 = 0:49995:::.We will now consider the function�(x) = #fprimes p such that p � xg:Exercise 5.1. Find �(10), �(25), �(50), �(100). Use a computer to�nd �(1; 000), �(2; 000), �(4; 000), �(8; 000), �(16; 000).We havex 10 25 50 100 200 500 1000 5000�(x) 4 9 15 25 46 95 168 669�(x)=x .400 .360 .300 .250 .230 .190 .168 .134It would be reasonable to guess that �(x)=x ! 0 as x ! 1. Thismeans that for any � > 0, we have that for big values of x the inequality�(x) < �x.5.1. The Prime Number Theorem.Theorem 5.2. We have that �(x)=(x=ln(x))! 1 as x!1, i.e.limx!1 �(x)x=ln(x) = 1:This means that for large x, the number �(x) is very close to x=ln(x).Eg. �(1010)=1010 � 1=ln(1010) = 1=10ln(10) = 0:0434:::. So theprobability of a random number 1 � n � 1010 being prime is 4:34%.Exercise 5.3. How many primes � 1010 are there? How many primeswith 10 digits? How many primes between 1010 and 1010 + 105.6. Finding large primesWe would like to produce big prime numbers (eg. with 100 digits).We could pick a random number p with 100 digits and try and divideby all the numbers � p1=2 � (10100)1=2 = 1050. This would take waytoo long.Exercise 6.1. How long would this take assuming we can perform1; 000; 000; 000 divisions each second?We will happily settle for a number which is prime with probabilitysay 99:9999%.



116.1. Primality testing. How can we test if p is prime? By Fermat'slittle theorem, if p is prime thenap = a mod p for all 1 � a � p� 1:So if ap 6= a mod p, then p is de�nitely not prime. If ap = a mod p,we have some evidence that p might be prime. If ap1 = a1, ap2 = a2,... , ap100 = a100 mod p we are tempted to conclude that p is probablyprime. But what is the actual probability? Also, does this test detectall non-prime numbers?If n = 10, then 210 = 4, 310 = 9, 410 = 6, 710 = 9, 810 = 4 and 910 = 1mod 10 so we have 6 negatives (AKA witnesses) and 3 false positives(the numbers 1; 5; 6). Therefore this test is 6=9 = 66:67% e�ective.Eg. n = 935 has 908 negatives/witnesses i.e. numbers such thatap 6= a mod p. So this test is 908=934 = 97:22% accurate.Eg. n = 287; 190; 314 accuracy = 96:9%; 78:9%; 98:7%. Problem:561 = 3 � 11 � 17 satis�es a561 = a mod 561 for all 1 � a � 561. Thetest is 0% accurate.Proof. �(561) = 2 � 10 � 16 = 320. It is enough to show that a561 = amod 3; 11; 17.Modulo 3: If GCD(a; 3) = 1, then a2 = 1, so a560 = (a2)280 = 1280 =1. Modulo 11: If GCD(a; 11) = 1, then a10 = 1, so a560 = (a10)56 =156 = 1.Modulo 17: If GCD(a; 17) = 1, then a16 = 1, so a560 = (a16)10 =110 = 1. ˜Numbers with this property (ap = a mod p for all 1 � a � p� 1) arecalled Carmichael numbers.Eg. 561, 1105, 1729, 2465, 2821, 6601, 8911 are all the Carmichaelnumbers less than 10; 000.So maybe these numbers are very rare and this is not a problem.Exercise 6.2. Can you show that there are in�nitely many Carmichaelnumbers?Notice that 22560 = 154 6= 1 mod 561, so maybe we should be testingfor am�1 = 1 mod m (not am = a mod m). It would be even better to�nd a test that always works!6.2. The Miller Rabin test.Theorem 6.3. If p 6= 2 is prime, then we write p� 1 = q � 2k where qis odd. If (a; p) = 1 then either1) aq = 1 mod p, or2) aq = �1 or a2q = �1 or a4q = �1 or ... or a2k�1q = �1 mod p.Proof. We will use that fact that if p is prime, then the only numbersthat square to 1 mod p are 1;�1. Now, a2kq = ap�1 = 1 so a2k�1q =



12�1. If a2k�1q = �1 we are done, otherwise a2k�2q = �1. Repeat thisprocedure until possibly aq = �1. if its aq = �1 we are in case 2.Otherwise, aq = 1 and we are in case 1. ˜Notice that for a composite number such as 24 we may have manymore square roots of 1 (eg. 1; 5; 19; 23).The Rabin Miller test for prime numbers works as follows: Pick nany odd integer, and write n� 1 = q � 2k with q odd. If aq 6= 1 mod nand a2iq 6= �1 mod n for i = 0; 1; : : : ; k � 1, then n is composite.Theorem 6.4. If n is composite and odd, then at least 75% of thenumbers between 1 and n�1 fail the Rabin Miller test. So at least 75%of such numbers are Rabin-Miller witnesses.So if n passes the test for 100 random numbers, then n is not primewith probability less than 0:25100 = 1=(2200) � 10�60.Exercise 6.5. Apply the Rabin-Miller test with a = 2 to n = 561.7. The Primitive Element TheoremWe now return to the study of powers of a number a mod p where p isprime. By Fermat's Little Theorem, we know that for all 1 � a � p�1we have ap�1 = 1 mod p. We would now like to answer, the question:Are there any smaller powers such that ae = 1 mod p?. Let ep(a) bethe smallest positive number such that aep(a) = 1 mod p. The numberep(a) is the exponent of a mod p.Exercise 7.1. Find ep(a) for 1 � a � p � 1 and p = 5; 7; 11. Do yousee a pattern?There are two main observations, that are true for all primes:Theorem 7.2. Let p be any prime and 1 � a � p� 1. Then(1) ep(a) divides p� 1.(2) There are exactly �(p� 1) distinct numbers 1 � a � p� 1 suchthat ep(a) = p� 1.Proof. For 1), if ep(a) does not divide p�1, then 1 � g = GCD(ep(a); p�1) < ep(a) and we may write g = xep(a) + y(p� 1) so thatag = axep(a)+y(p�1) = (aep(a))x � (ap�1)y = 1x � 1y = 1and this contradicts the fact that ep(a) is the smallest integer such thatae = 1 mod p.For 2) we proceed as follows: since ep(a) always divides p � 1, webegin by counting how many a's with exponent e < p � 1 are there?If p � 1 = qn where q is prime, then if ep(a) 6= p � 1, we have thatep(a) divides qn�1 and hence a is a root of the polynomial xqn�1�1 = 0.There are at most qn�1 such roots and so there are at least qn�qn�1 > 0primitive roots. If p� 1 = qn11 � � � qnrr with r � 2, then if ep(a) 6= p� 1,



13we have that ep(a) divides (p � 1)=q1 or ep(a) divides (p � 1)=q2, soa is a root of (x(p�1)=q1 � 1)(x(p�1)=q2 � 1) = 0. There are at most(p� 1)=q1+ (p� 1)=q2� 1 distinct roots of this equation (the root 1 iscounted twice). It follows that there are at leastp� 1� (p� 1)=q1 � (p� 1)=q2 + 1 = (p� 1)(1� 1q1 � 1q2 ) + 1 > 0primitive roots. (We have used the fact that qi � 2 so that 1q1 + 1q2 � 1.)We have so far veri�ed that there is at least one primitive root sayg. So we know thatf1; : : : ; p� 1g = fg; g2; : : : ; gp�1g(as unordered sets). The order of gi is p� 1 exactly when GCD(i; p�1) = 1 (exercise for the reader) and so we have exactly �(p�1) primitiveroots.
˜Exercise 7.3. Find an element of order 12 mod 13 (i.e. a primitiveelement). What are the other elements of order 12? Find elements oforder 2; 3; 4; 6. Is there an element of order 5?8. Squares modulo a primeExercise 8.1. Is 5 a square modulo 11? I.e. can we �nd a number asuch that a2 = 5 mod 11?Exercise 8.2. Compute all squares mod 13, 17, 19, 23. Do you noticea pattern?Theorem 8.3. Let p be a prime, then there are (p � 1)=2 non-zerosquares mod p.Proof. Clearly a2 = (�a)2 so there can be at most (p � 1)=2 distinctsquares. Suppose that there are less than (p� 1)=2 squares, then thereis a number say a which is the square of at least 3 di�erent numbers,say b; c; d mod p. But then b; c; d are distinct roots of x2 � a. This isimpossible! (In fact, then x � b, x � c and x � d all divide x2 � a sox2 � a is divisible by a degree 3 equation which is impossible.) ˜Exercise 8.4. Show that if p is a prime and a is a root of x2 + bx+ c,then a and �(b + a) are the only roots of x2 + bx + c.Exercise 8.5. Find a number m and an equation x2 + bx + c thathas at least 3 solution. Conclude that x2 + bx + c has more than onefactorization.We will call the squares mod p Quadratic Residues or just QR.The non-zero numbers that are not QR will be called Non Residuesor just NR.



14 The next observation is that if a and b are squares modulo p, thenab is a square mod p. In other wordsQR�QR = QR:Exercise 8.6. What happens when you multiply QR � NR, NR �NR or NR � QR mod 7? Experiment mod 11. Can you draw anyconclusions?Theorem 8.7. Let p be a prime, then modulo p, we have that QR �QR = QR, QR�NR = NR �QR = NR and NR �NR = QRProof. The primitive root Theorem states that there is an integer gsuch that g; g2; : : : ; gp�1 gives all numbers 1 � x � p � 1 mod p.The QR's are exactly the even powers of g and the NR are the oddpowers. So, to verify that NR � QR = NR we take a non-residue ofthe form g2k+1 and a residue of the form g2j and we multiply them toget g2k+1g2j = g2(k+j)+1 which is not a residue as 2(k+j)+1 is odd. ˜So multiplying QR's and NR's behaves like multiplying 1 and �1.It makes sense to de�ne the Legendre symbol of a mod p as follows:(ap) = 1 if a is a QR mod p and (ap) = �1 if a is a NR mod p. So, ifa is a QR and b is a NR mod p, then ab is a NR mod p which can beexpressed by the following equality:�ap� = �ap� � � bp� = 1 � (�1) = �1:Exercise 8.8. Find a primitive element mod p = 11; 13; 17. Find allQR's mod p = 11; 13; 17.Exercise 8.9. Find the sum of all QR's 1 � a � p � 1 mod p =11; 13; 17. Do the same for the NR's. Do you notice a pattern?Exercise 8.10. Compute (�1p ) for p = 3; 5; 7; 11; 13; 17; 19; 23; 29; 31.Do you notice a pattern?The pattern is: ��1p � = 1 ifp = 1 mod 4;��1p � = �1 ifp = 3 mod 4:This follows immediately fromEuler's Criterion: If p 6= 2 is a prime, thena(p�1)=2 = �ap� mod p:Clearly, if p = 1 mod 4, then p = 4k + 1 so that (�1p ) = (�1)2k = 1and if p = 3 mod 4, then p = 4k + 3 so that (�1p ) = (�1)2k+1 = �1. Itremains to prove Euler's Criterion:



15Proof. If a is a QR, then a = b2 so that a(p�1)=2 = bp�1 = 1 as required.If a is a NR, then a is an odd power of a primitive element, i.e.a = g2k+1 so thata(p�1)=2 = g(2k+1)(p�1)=2 = (gp�1)k � g(p�1)=2 = g(p�1)=2:Now, gp�1 = 1 so that g(p�1)=2 = �1, but since ep(g) = p� 1 (i.e. p� 1is the smallest power e such that ge = 1), then g(p�1)=2 = �1. ˜Next we would like to determine When is 2 a QR mod p? I.e. wewould like to compute (2p) for all odd primes.Exercise 8.11. Determine (2p) for all primes 3 � p � 47. Do you seea pattern?The pattern (which is hard to spot) is�2p� = 1 ifp = 1 or 7 mod 8;�2p� = �1 ifp = 3 or 5 mod 8:Proof. We multiply the even numbers2 � 4 � 6 � � � (p� 1) = 2(p�1)=2 � 1 � 2 � 3 � � � p� 12 :We now wish to rewrite the LHS 2 � 4 � 6 � � � (p� 1) in a di�erent way.Consider the numbers > (p�1)=2 which are : : : ; (p�5); (p�3); (p�1)or equivalently : : : ;�5; �3; �1. So when we multiply 2 �4 �6 � � � (p�1),we are actually multiplying all the even numbers � (p � 1)=2 and allthe odd numbers � (p� 1)=2 2 with a minus sign. Therefore2 � 4 � 6 � � � (p� 1) = (�1)t � 1 � 2 � � � p� 12where t is the number of odd integers 1 � a � (p � 1)=2. Comparingthe two equations above and canceling 1 � a � (p� 1)=2, we get2(p�1)=2 = (�1)t mod p:We now can easily conclude via a case by case analysis:If p = 1 mod 8, then p = 8k + 1 so that (p� 1)=2 = 4k and t = 2k.Then 2(p�1)=2 = (�1)2k = 1 mod p and by Euler's Criterion, 2 is asquare mod p.If p = 3; 5; 7 mod 8, then p = 8k + 3; 8k + 5; 8k + 7 so that(p� 1)=2 = 4k+1; 4k+2; 4k+3 and hence t = 2k+1; 2k+1; 2k+2and hence 2(p�1)=2 = �1; �1; 1 and by Euler's Criterion, 2 is a NR,NR, QR mod p. ˜Exercise 8.12. Compute (�1p ) and (2p) for p = 101; 103; 107; 109; 113.Exercise 8.13. Does x2 + 4x + 54 have a solution mod 97; 101; 103 ?2If p�a > (p�1)=2, then (p+1)=2 > a so that (p+1)=2 � a�1 i.e. (p�1)=2 � a.



168.1. Quadratic reciprocity. We would like to compute (ap) for anyinteger 1 � a � p � 1. If we write a = qn11 � � � qnrr , then we have(ap) = ( qn11p ) � � � ( qnrrp ). Now if ni is even, then qnii is clearly a square sothat ( qniip ) = 1. If ni is odd, then ( qniip ) = ( qip ). Therefore, we just needto compute �qp� for any primes q; p:Exercise 8.14. Make a table for ( qp) for the primes 3; 5; 7; 11; 13; 17; 19; 23; 29.Can you see a pattern? Look at the rows and columns for p = 5; 13; 17; 29.Now rub these out. Is there a pattern?The pattern is the following:Theorem 8.15. If p 6= q � 2 are primes, then3�qp� = �pq� if either p = 1 mod 4 or q = 1 mod 4;�qp� = ��pq� if p 6= 1 mod 4 and q 6= 1 mod 4:Exercise 8.16. Compute (4453), ( 51101), ( 91127):We also have the Generalized Law of Quadratic Reciprocity:Theorem 8.17. Let a; b be odd numbers, then(1) (�1b ) = 1 if b = 1 mod 4 and (�1b ) = �1 if b = 3 mod 4(2) (2b ) = 1 if b = �1 mod 8 and (2b ) = �1 if b = �3 mod 8,(3) (ab ) = ( ba) if either a = 1 mod 4 or b = 1 mod 4; and (ab ) =�( ba) if a 6= 1 mod 4 and a 6= 1 mod 4:9. Pythagorean triplesBy de�nition, a Pythagorean triple is an integer solution to theequation a2+b2 = c2. It yields a rectangle triangle with sides of integerlength a; b; c. You are probably familiar with the Pythagorean triple3; 4; 5.Exercise 9.1. Can you �nd any other Pythagorean triples?Of course, 6; 8; 10 is also a Pythagorean triple and so is 3a; 4a; 5afor any positive integer a. We will say that a; b; c is a primitivePythagorean triple if a2+b2 = c2 and a; b; c have no common factors.(5; 12; 13) is another such triple.3Together with the rules 1) (�1p ) = 1 if p = 1 mod 4 and (�1p ) = �1 if p = 3mod 4 and 2) ( 2p ) = 1 if p = �1 mod 8 and ( 2p ) = �1 if p = �3 mod 8, this isknown as the Law of Quadratic Reciprocity.



17Exercise 9.2. Can you �nd any other primitive Pythagorean triples?Can you show that there are in�nitely many such triples? Write aprogram to �nd all such triples with a; b � 100.We would like to �nd all primitive Pythagorean triples. We noticethat if a and b are even, then c is even so that 2 is a common factor ofa; b; c and then a; b; c is not a primitive triple. If a and b are both odd,then a = 2x+ 1, b = 2y + 1 andc2 = a2 + b2 = 4x2 + 4x + 1 + 4y2 + 4y + 1 = 2 mod 4:Now, 2 is not a square mod 4 so this is impossible. Therefore weconclude that the set a; b are not both even or odd. So, we may assumethat a is odd; b is even; and c is odd:We now consider the factorizationa2 = c2 � b2 = (c� b)(c+ b):We claim that: Both c� b and c+ b are squares.Proof. First of all g = GCD(c � b; c + b) = 1 as otherwise g dividesc� b and c+ b so that g divides 2c = ((c� b) + (c+ b)) and g divides2b = ((c+ b)� (c� b)). Since c+ b is odd, g is odd, so g divides c andb and hence g divides a (as g2 divides a2 = c2 � b2) so that as a; b; chave no common factor, we have g = 1.So, if p is a prime number such that p divides c+ b, then p does notdivide c� b. Let pt be the highest power of p dividing c+ b, then pt isthe highest power of p dividing a2 = (c� b)(c+ b): Therefore t is evenand so if we write c + b = pn11 � � � pnrr with pi distinct primes, we havethat all the ni are even so that c + b is a square. The same reasoningalso shows that c� b is a square. ˜So we write c+ b = s2 and c� b = t2where s > t � 1 are odd integers. Therefore, we have thatTheorem 9.3. All primitive Pythagorean triples are of the formc = s2 + t22 ; b = s2 � t22 ; and a = stfor some odd integers s > t � 1.10. Which prime numbers are sums of two squaresExercise 10.1. Find all prime numbers � 47 that are sums of twosquares. do you notice a pattern?The pattern isTheorem 10.2. A prime number p 6= 2 is the sum of two squares ifand only if p = 1 mod 4.



18Proof. If p is the sum of two squares, then p = 1 mod 4: To seethis, write p = a2 + b2. As p is odd, then we may assume that a iseven and b is odd. So mod 4 we have a 2 f0; 2g so that a2 = 0 mod 4.Similarly b 2 f1; 3g mod 4 so that b2 = 1 mod 4, so p = 0+ 1 = 1 mod4. If p = 1 mod 4 then p is the sum of two squares: This implica-tion is much harder! The idea is as follows: By quadratic reciprocity,we know that �1 = A2 mod p so letting B = 1, we have A2 + B2 = 0mod p i.e. A2 + B2 = Mp. If M = 1 we are done. Otherwise we needa procedure to �nd new integers a; b;m such that a2 + b2 = mp and1 � m < M . We then repeat this procedure until m = 1.This is known as Fermat's Descent Procedure. This is how it works:(1) Let p be any prime with p = 1 mod 4 (eg. 53), we may writeA2 +B2 = Mp with M < p (eg. 132 + 192 = 10 � 53).(2) We may pick u = A; v = B mod M such that �12M � u; v �12M (eg. u = 3, v = �1), then u2 + v2 = A2 +B2 = 0 mod M .(3) We have u2+ v2 = Mr and A2+B2 = Mp for some 1 � r < M(eg. 32 + (�1)2 = 10 � 1 and 132 + 192 = 10 � 53).Notice that r 6= 0 since otherwise u2 + v2 = 0 so u = v = 0so A = u = 0 mod M and B = v = 0 mod M . But then M2divides A2 +B2 =Mp so that M divides p. But 1 < M < p sothat this is impossible.Notice that r < M since r = u2+v2M � (M=2)2+(M=2)2M = M2 <M .(4) If we multiply these together, we get(uA+ vB)2 + (vA� uB)2 = (u2 + v2)(A2 +B2) =M2rp:(5) Notice that (uA + vB) = A2 + B2 = Mp = 0 mod M and(vA � uB) = BA � AB = 0 mod M . So (uA + vB) and(vA� uB) are divisible by M . (Eg.(uA+ vB) = 39� 19 = 20and (vA� uB) = �13� 57 = �70.)(6) We have therefore obtained the equation�uA+ vBM �2 + �vA� uBM �2 = rpwith r < M (eg. 22 + (�7)2 = 22 + 72 = 53). Repeating thiswe will get r = 1 as required.
˜Exercise 10.3. Use Fermat's descent procedure to write 97 as the sumof 2 squares. Do the same for p = 881.11. Fermat's Last TheoremIn the 17th century Fermat stated that the equationan + bn = cn



19has no solutions for n � 3 and a; b; c > 0. Remember that for n = 2this equation has in�nitely many solutions and we can describe all ofthese. So this fact is very surprising. It also turns out to be a verydeep result which was eventually proven by Wiles at the end of the20th century. We will show the following:Theorem 11.1. The equation an + bn = cn has no solution when n isdivisible by 4 and a; b; c > 0.Proof. It is enough to show that the equation x4 + y4 = z2 has nosolution for x; y; z > 0. In fact if a; b; c is a solution of the originalequation, then x = an=4, y = bn=4 and z = cn=2 are solutions to ournew equation. The idea is once again to show that if there is a solutionx; y; z, then we can �nd a new solution x0; y0; z0 with 1 � z0 < z. Wecan't repeat this in�nitely many times, so there was no solution tobegin with!To begin with, notice that we may assume that x; y; z have no com-mon factor. Now, if we let a = x2, b = y2 and c = z, then a; b; c is aprimitive Pythagorean triple and so we may writex2 = a = st; y2 = b = s2 � t22 ; z = c = s2 + t22for some odd integers s; t with no common factor. Now st = x2 is anodd square so that st = 1 mod 4. It follows that eithers = t = 1 mod 4 or s = t = �1 = 3 mod 4:Also, we have 2y2 = s2 � t2 = (s+ t)(s� t):Since s; t are odd and relatively prime, then the only common factorof s+ t and s� t is 2. Now 4 divides s� t so s+ t = 2r where r is anodd number. Now 2y2 = (s� t)(s+ t) so we haves+ t = 2u2 and s� t = 4v2where GCD(u; 2v) = 1. Solving for s; t we gets = u2 + 2v2 and t = u2 � 2v2;and so from the formula x2 = st it follows thatx2 = u4 � 4v4 or x2 + 4v4 = u4:We now let A = x, B = 2v2 and C = u2 so thatA2 = B2 + C2and A;B;C have no common factor i.e. A;B;C is a primitive Pythagoreantriplet. Therefore, we know that there are odd relatively prime integersS; T such thatx = A = ST; 2v2 = B = S2 � T 22 ; u2 = C = S2 + T 22 :



20So we get 4v2 = S2 � T 2 = (S � T )(S + T ):Now GCD(S � T; S + T ) = 2 (S; T are odd and relatively prime). Sowe must haveS + T = 2�x2 and S � T = 2�y2 soS = �x2 + �y2 and T = �x2 � �y2 sou2 = S2 + T 22 = (�x2 + �y2)2 + (�x2 � �y2)22 = �x4 + �y4:This is the new solution (�x; �y; u) to the original equation x4 + y4 = z2.We must still show that u < z, but this is clear from the formulaz = s2 + t22 = (u2 + 2v2)2 + (u2 � 2v2)22 = u4 + 4v4:
˜12. Answers to the exercises:Ex. (1.1) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,61, 67, 71, 73, 79, 83, 87, 89, 97.Ex. (1.2) 12 = 22 � 3, 123 = 3 � 41, 1234 = 2 � 617, 1235 = 5 � 13 � 19,1236 = 22 � 3 � 103.Ex. (1.5) 3 does not divide 71651, but it does divide 771651.Ex. (1.6) To compute the last two digits of 273100 we just needto compute the last two digits of various powers of 273: 2732 = 29,2734 = 41, 2738 = 81, 27316 = 61, 27332 = 21, 27364 = 41, 273100 =27364+32+4 = 41 � 21 � 41 = 01. 273111 = 27364+32+16+2+1 = 41 � 21 �61 � 29 � 73 = 57.Ex. (1.7) (2) 5 � 9 = 1 mod 11, 7 � 10 = 1 mod 23, 7 � 29 = 1 mod101, 4�1 mod 8 does not exist.(3) Mod 17 we have 359 = 2, 22 = 4, 23 = 8, 24 = 16 = �1 so 28 = 1.(4) Mod 11 the powers of 2 are 2; 4; 8; 5; 10; 9; 7; 3; 6; 1 so the order is10. The powers of 3 are 3; 9; 5; 4; 1 so the order is 5.The powers of 4 are 4; 5; 9; 3; 1 so the order is 5.The powers of 5 are 5; 3; 4; 9; 1 so the order is 5.The powers of 6 are 6; 3; 7; 9; 10; 5; 8; 4; 2; 1 so the order is 10.The powers of 7 are 7; 5; 2; 3; 10; 4; 6; 9; 8; 1 so the order is 10.The powers of 8 are 8; 9; 6; 4; 10; 3; 2; 5; 7; 1 so the order is 10.The powers of 9 are 9; 4; 3; 5; 1 so the order is 5.The powers of 10 are 10; 1 so the order is 2.(5) the squares mod 11 are: 1; 4; 9; 5; 3 so x2 = 6 has no solutionmod 11 and 42 = 72 = 5.Ex. (2.1) 54321 = 4 � 12345 + 4941, 12345 = 2 � 4941 + 2463, 4941 =2�2463+15, 2463 = 164�15+3, 15 = 5�3+0 so GCD(54321; 12345) = 3.45201647%18296431 = 8608785, 18296431%8608785 = 1078861, 8608785%1078861 =1056758, 1078861%1056758 = 22103, 1056758%22103 = 17917 22103%17917 =



214186, 17917%4186 = 1173, 4186%1173 = 667, 1173%667 = 506, 667%506 =161, 506%161 = 23, 161%23 = 0Ex. (2.2) 12345 = 3 � 5 � 823, 54321 = 3 � 19 � 953, 45201647 =23 � 1965289 and 1965289 has no divisors � 241. We would need to usea computer. 18296431 = 23 � 97 � 8201 (we got lucky here).Ex. (2.4) (1) (referring to ex. 2.1) 3 = 2463� 164 � 15 = 2463� 164 �(4941�2 �2463) = 329 �2463�164 �4941 = 329 �(12345�2 �4941)�164 �4941 = 329 �12345�822 �4941 = 329 �12345�822 �(54321�4 �12345) =3617 � 12345� 822 � 54321:Ex. (2.5) (1) 123 = 44�2+35, 44 = 35+9, 35 = 9�3+8, 9 = 8+1 so1 = 9�8 = 9�(35�9�3) = 4�9�35 = 4�(44�35)�35 = 4�44�5�35 =4 � 44� 5 � (123� 44 � 2) = 14 � 44� 5 � 123 so 14 � 44 = 1 mod 123.Ex. (2.6) ::::::abcd � 17 = 1 +X � 10100 = :::::0001. So 17d = 1 mod10 i.e. d = 3,c3 � 17 = 1 mod 100 i.e. c � 170 = 1 � 51 = �50 = 50 mod 100 sothat c � 7 = 5, mod 10 so that c = 5,b53 � 17 = 1 mod 1000 i.e. b � 1700 = 1 � 901 = 100 mod 1000 i.e.b � 7 = 1, mod 10 so b = 3a353�17 = 1 mod 10000 i.e. a�17000 = 1�6001 = 4000 mod 10000so a � 7 = 4 mod 10 so a = 2.Ex. (2.7) 1010 = 103 � 97087378 + 66, 103 = 66 + 37, 66 = 37 + 29,37 = 29 + 8, 29 = 8 � 3 + 5, 8 = 5 + 3, 5 = 3 + 2, 3 = 2 + 1. So1 = 3� 2 = 3� (5� 3) = 3 � 2� 5 = (8� 5) � 2� 5 = 8 � 2� 5 � 3 =8 � 2 � (29 � 8 � 3) � 3 = 8 � 11 � 29 � 3 = (37 � 29) � 11 � 29 � 3 =37 � 11 � 29 � 14 = 37 � 11 � (66 � 37) � 14 = 37 � 25 � 66 � 14 =(103� 66) � 25� 66 � 14 = 103 � 25� 66 � 39 = 103 � 25� (1010� 103 �97087378)� 39 = 103 � 3786407767� 1010 � 39. So 103�1 = 3786407767mod 1010 so SSN = 3536767732 � 3786407767 = 519774444 mod 1010Ex. (3.2) 22 = 4, 24 = (22)2 = 42 = 16 = �1, 28 = (24)2 = (�1)2 =1. Since 12345 = 8 � 1543 + 1, we have212345 = (28)1543 � 2 = 11543 � 2 = 2:Ex. (3.3) 22 = 4, 24 = 16, 28 = 256 = 54, 216 = 542 = 2916 = 88,232 = 882 = 7744 = 68. So212345 = (2100)123 � 245 = 1123 � 232+8+4+1 = 68 � 54 � 16 � 2 = 41:Ex. (3.4) Mod 9: 23 = �1, 26 = 1.Mod 15: 24 = 16 = �1, 28 = 1. The order is 8.Mod 21: 25 = 32 = 11, 26 = 22 = 1. The order is 6.Mod 35: 26 = 64 = 29, 27 = 58 = 23, 28 = 46 = 11, 29 = 22,210 = 44 = 9, 211 = 18, 212 = 36 = 1. The order is 12.Ex. (3.6) 480.Ex. (3.8) 17.Ex. (3.9) 290 = 64 6= 1 mod 91. 91 is not prime!



22 Ex. (3.11) Mod 35, we have �(35) = 4 � 6 = 24 so 109%24 = 16 and2109 = 216. Now 24 = 16, 28 = 162 = 256 = 11, 216 = 112 = 121 = 16.Mod 101: �(101) = 100 so that 2109 = (2100)107 = 1107 = 1.Mod 103: �(103) = 102, 109%102 = 58. 24 = 16, 28 = 256 = 50,216 = 2500 = 28, 232 = 282 = 784 = 63, 258 = 232+16+8+2 = 63 � 26 �50 � 4 = 25.Ex. (3.12) �(1012 � 103) � 1; 000; 000 and log2(106) � 20 so about 20doublings.Ex. (3.13) 29990 = 4599 mod 9991.Ex. (3.14) Mod 35: �(35) = 24, 5 � 5 = 1 mod 24 so x = (x5)5 =75 = 7 mod 35.Mod 101: �(101) = 100 and 3 � 67 = 201 = 1 mod 100 so x =(x3)67 = 3767 mod 101. Now 372 = 56, 374 = 5, 378 = 25, 3716 = 19,3732 = 58, 3764 = 31. So 3767 = 31 � 56 � 37 = 97.Ex. (4.1) 52, 53,53,42,23,53,63,73,68,73,52; WELLDONE (note that�(77) = 60 and 7 � 103 = 721 = 1 mod 60).Ex. (5.3) �(1010) � 434; 294; 482; �(1010)� �(109) � 434; 294; 482�48; 254; 942 = 386; 039; 540; �(1010 + 105)� �(1010) = 4; 514Ex. (6.1) 1041s = 2:77 � 1037hrs = 3:16 � 1033 years.Ex. (7.1) n�1 = 560 = 35�24. 235 = 263 mod 561. 270 = 2632 = 166mod 561. 2140 = 1662 = 67 mod 561. 2280 = 672 = 1 mod 561 and2560 = 12 = 1 mod 561. So 561 failed the Rabin-Miller test, thereforeit can not be prime. 2 is a Rabin-Miller witness for the number 561.Ex. (7.3) 24 = 3 and 23 = 8 mod 13, so the order of 2 is 12. Theother elements of order 12 are 25, 27, 211. 22 has order 6, 23 has order4, 24 has order 3 and 26 has order 2.Ex. (8.1) We square all the residues mod 11 and we get 0 = 02;1 = 12 = 102, 4 = 22 = 92, 9 = 32 = 82, 5 = 42 = 72 and 3 = 52 = 62mod 11. So the answer is yes.Ex. (8.2) Mod 13: 1; 4; 9; 3; 12; 10.Mod 17: 1; 4; 9; 16; 8; 2; 15; 13.Mod 19: 1; 4; 9; 16; 6; 17; 11; 7; 5Mod 23: 1; 4; 9; 16; 2; 13; 3; 18; 12; 8; 6.Ex. (8.4) (x� a)(x+ b+ a) = x2 + b � x� a(b+ a) so we must showthat c = �a(b + a) but this is clear as a is a root of x2 + b � x + cso a2 + ab + c = 0. If z is a third root of x2 + b � x + c mod p, then(z� a)(z+ b+ a) = 0 so that p divides (z� a) or it divides (z+ b+ a),but then z = a mod p or z = �b� a mod p. So these are the only tworoots.Ex. (8.5) 2; 4; 8; 10 are roots of x2 = 4 mod 12 so x2 � 4 = (x �2)(x� 10) = (x� 4)(x� 8).Ex. (8.6) QR=1, 4, 2; NR = 3, 5, 6 so QR * NR =NR * QR =3, 5,6 =NR and NR * NR = 1, 4, 2 = QR.Ex. (8.8) Mod 11: 2; QR= 20 = 1, 22 = 4, 24 = 5, 26 = 9, 28 = 3.Mod 13: 2; QR= 20 = 1, 22 = 4, 24 = 3, 26 = 12, 28 = 9, 210 = 10.



23Mod 17: 3; QR=30 = 1, 32 = 9, 34 = 13, 36 = 15, 38 = 16, 310 = 8,312 = 4, 314 = 2.Ex. (8.9) Mod 11: 1+4+5+9+3 = 22; Mod 13: 1+4+3+12+9+10 =39 Mod 17: 1+9+13+15+16+8+4+2 = 68. They are all 0 mod p.Ex. (8.10) (�13 ) = �1, (�15 ) = 1, (�17 ) = �1, (�111 ) = �1, (�1; 13) = 1,(�117 ) = 1, (�119 ) = �1 (�1; 23) = �1, (�129 ) = 1, (�131 ) = �1.Ex. (8.11) (23) = �1, (25) = �1, (27) = 1, ( 211) = �1, ( 213) = �1,( 217) = 1, ( 219) = �1, ( 223) = 1, ( 229) = �1, ( 231) = 1, ( 237) = �1,( 241) = 1, ( 243) = �1, ( 247) = 1.Ex. (8.12) (�1p ) = 1;�1;�1; 1; 1 and (2p) = �1; 1;�1;�1; 1.Ex. (8.13) x2 + 4x + 54 = (x + 2)2 + 50 so is �50 = �1 � 2 � 52 asquare mod p? Equivalently is �1 � 2 a square mod p?Mod 97: (�197 ) = �1 and ( 297) = 1 so no.Mod 101: 1 � (�1) = �1 so no.Mod 103 (�1) � 1 so no.Ex. (8.16) (4453) = (1153) = (5311) = ( 911) = 1; ( 51101) = (10151 ) = (4951) = 1;( 91127) = (12791 ) = �(3691) = �1.Ex.(10.1) 2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 52,29 = 22 + 52, 37 = 12 + 62, 41 = 42 + 52.Ex. (10.3) A = 1, B = 22 so 12 + 222 = 5 � 97 so M = 5, u = 1;v = 2 so (uA+ vB)=M = 9 and (vA� uB)=M = �4, so 97 = 42 + 92.


